An Adjunction for Modules over Projective Schemes
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For modules over a ring there is an adjunction between the associated sheaf functor AMod —

Mod(SpecA) and the global sections functor Mod(SpecA) — AMod. In this note we develop
the graded version of this result. All of this material is taken from EGA.
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1 Introduction

Let S be a graded ring generated by S; as an Sp-algebra and set X = ProjS. If # is a sheaf of
Ox-modules then for n,d € Z there is an isomorphism of modules :

k4 F(n)(d) — F(n+d)
(F®0x(n)®@0x(d) =7 ®(0x(n)®0x(d) =2 F 0x(n+d)

This isomorphism is natural in %, in the sense that if ¢ : . — ¢ is a morphism of modules
then for n,d € Z the following diagram commutes:

F(n)(d) = F(n +d)
¢<n><d>l l¢<n+d>
G (n)(d) == Y (n + d)

For n € Z we let k™ denote the isomorphism .# (n)(—n) = .#(0) = .%. This is also natural in .Z.
For any graded S-module M and n € Z there is a natural isomorphism of modules

P M(n)” 2 (M ®S(n)” = M®S(n)” = M(n)

Let m € M be homogenous of degree n and and consider the global section p — m/1 of M(n)
which we denote by 7. Then the corresponding global section of M~ (n) is defined as follows: let
p be given and find f € S; with f ¢ p. Then

P (m)(p) = (D4(f),m/fr @ )

Where we handle n < 0 by replacing m/f™ by f~"m and f™ by 1/f~", as usual. That is, m/f"
denotes the action of f™ of m/1 in T='M, which is the localisation of M at the homogenous
elements not in p.

)



2 The Adjunction

Throughout this section S denotes a graded ring generated by S; as an Sy-algebra. Associated to
any Ox-module .7 is the graded S-module

(5-m); = Z w4 (m2s,)
d>0,j€Z
dtj=i
for s € Sand m € I'.(.#). The homogenous part of I, (%) of degree n is the subgroup I'( X, .# (n)).
Let ¢ : % — % be a morphism of Ox-modules. We define a morphism of graded S-modules
[.(¢) : Tu(F) — Tu(9)
L. (@)(m)i = ¢(i) x (M)
This defines an additive functor I, : 9t60(X) — SGrMod. The aim of this note is to show that

this functor is right adjoint to the additive functor — : SGrMod — Mod(X). First we have
some technical observations to make.

The definition of the module structure on I',(—) uses the isomorphisms k%7 on global sections.
We extend this definition to all open sets. Let U C X be open, .% a Ox-module, i,j € Z and
re Ox()(U),m e Z(i)(U). Then we define

r-m =k (m&r) € F(i+j)(U)

We now collect some properties of this action. First of all if »r € Ox(0)(U) = Ox(U) then
r-m € % (j)(U) agrees with the normal action of Ox on .Z (j). If V C U is open it is easy to see
that (r-m)|y = r|y - m|y. We have additivity in each variable:

(r+7) m=r-m+7r"-m
r-(m+m)=r-m+r-m

Suppose z,y € Z and s € Ox(z)(U),r € Ox(y)(U) are given. Let sr denote the image of s®r in
Ox (2 + y)(U) under the isomorphism 7 : Ox(z) ® Ox(y) =2 Ox(z + y). Then we claim that

(st) - m=s-(r-m)

Both sides are elements of .7 (z +y +4)(U). The fact that they are equal follows from diagram
(3) of our note on compatibility of the associator and —. Referring to the explicit definition of
it is not difficult to check that if 1 € Ox(0)(U) = Ox(U) then 1-m = m for any m € . (U).

Lemma 1. Let S be a graded ring generated by S1 as an Sp-algebra and set X = ProjS. Let %
be a sheaf of modules on X. Then for every p € X there is a canonical morphism of S(,)-modules

kp T F)(p) — Fp
kp(m/s) = (Di(s),v(1/s-m|p,(s)))
forse S, and m € I'(X, #(n)), where v : #(0) — .F is the canonical isomorphism.

Proof. For s € S,,, p— s/1 defines a global section of Ox(n) which we denote by §, and p — 1/s
defines a section of Ox (—n) over D (s) which we denote by 1/s. To show that &, is well-defined,
we must show that if m/s = m'/s’ with m, s homogenous of degree i and m’, s’ of degree j then

(1/s-mlp, )le = (1/s"-m'[p, (+1)le (1)



in .7 (Q) for some open Q C D (s) N D (s") with p € Q. By definition m/s = m'/s" implies that
there is homogenous t € Sy with ¢t ¢ p and ts'-m = ts-m/. Let Q = D, (t) N Dy (s) N Dy(s).
Then ) . _
tlg - (s'lq - mle) = tle - (3lo - m'lq)

Acting on both sides with 1/t|Q € Ox(—k)(Q) and using the properties of the action gives
'l -m|g = 3|q -m'|q. Using 1/s|g and 1/s'|q we end up with 1/s|g -m|q = 1/s|q - m’|q which
implies (1), so ryp is well-defined. The group I'.(#)(,) has a canonical S(,)-module structure,
as does .7, via the isomorphism Ox , = S(;), and it is readily seen that r, is a morphism of
S(py-modules. O

Proposition 2. Let S be a graded ring generated by S1 as an Sp-algebra and set X = ProjsS.
Then we have a diagram of adjoints

T T _
SGrMod Moo (X) ——T,
S~

(=)

For a graded S-module M and a sheaf of modules % on X the unit and counit are defined by

n: M —T,(M) e:TW(F) —F
n(m); = plx () germpey (s) = rp(s(p))
In particular if m € T(X, Z#(i)) and s € S; then 5D+(S)(mys) =v(1/s- m|p, (s))-

Proof. First we check that the given unit n : M — T',(M) is a morphism of graded S-modules.
It is clearly a graded morphism of abelian groups, and to prove it is a morphism of S-modules it
suffices to prove that n(s-m) = s - n(m) for homogenous s € S; and m € M.. Both sides of this
equation are sequences whose ith elements are global sections of M~ (). Let p be given and find
f €5y with f ¢ p. Then using the definition of x we have

n(s - m)are(p) = P ((s - m))(p) = (D4 (), (s - m)/ fo+e @ f47°) = (Do (f),m/ fe @ s]°)
(5 - 0(m))ase(p) = K (pS () ©3) (p) = (D4 (f)sm] f* @ s]°)

Hence 7 is a morphism of graded S-modules. Naturality of n in M follows from naturality of the
isomorphism p. .

To show that n : M — T'.(M) is universal, let ¢ : M — TI',(.#) be a morphism of graded
S-modules. For p € X we have a morphism of S(p)-modules ¢,y : M) — T'(F) (). When
composed with r, this gives us a morphism of S(,)-modules

Yp 2 M) —> Ty
Yp(m/s) = (D+(s),v(1/s- ¢(m)|p, (s)))

Here m, s are homogenous of the same degree i, so ¢(m) is a sequence with a single nonzero entry
in T'(X,.%#(i)), and by abuse of notation we denote this element by ¢(m). We define

Y M— F
germptpy (s) = 1Pp(s(p))

This is well-defined since .# is a sheaf and the germs are locally those of a section of #. It is
clear that 1 is a morphism of Ox-modules. Next we show that the following diagram commutes:

M (2)



Let m € M be given. Then for ¢ € Z and p € X we have
(Cu()n(m)); (p) = (@) x (n(m):) (p) = () x (px (12:)) (p)
Find f € Sy such that f ¢ p. Then pi (n;)(p) = (D4(f), ms/f! ® f1), and so
(T ()n(m)); (p) = (D4 (£), ¥p, (1) (ma/ £1) @ F1) = (D4 (£), v(1/ - d(mi) D) © F7)

Consider the following pentagon, which is commutative by earlier notes:

(7(i) ® Ox (iz‘)) ® Ox (i) F(i)® (Ox(lz’) ® Ox(i))
Z(0) ® Ox(i) Z (i) ® Ox(0)
F (i)

Applied to (¢(m;)|p, (/®1/fH)@f this shows that v(1/f* - ¢(m;)|p, (5))@f = ¢(mi)|p, (r) and
therefore (I'y(¢)n(m)), (p) = ¢(m);(p), as required, so (2) commutes. It only remains to show
that 1 is unique with this property. Suppose ¢’ : M~ — % is another morphism making (2)
commute. Using naturality of various isomorphisms we get a commutative diagram:

M) ® Ox(—i) == M

w’(i)®1l iw’

F(i) @ Ox (=) —> F

Let s € S and m € M be homogenous of degree i. Then the section m/s € M(D+(s)) is the
image of p’ ()| p, (5y®1/s, and denoting by « the isomorphism Z (i) ® Ox(—i) — # we have

U, (o m/5) = ap. (o) (¥'(0)x (o (7)) p, (991/5)
But ¢/ (i) x (p% (1)) = (T« (¥")n(m)); and by assumption T, (1)) = I, (¢)n so we have
U, (s (m/8) = Up, (5)(m/s)

Using the isomorphism M,y = Mp we see that the morphisms 1,1’ determine the same map
M,~ — F, for every p € X and are thus equal, proving uniqueness. This completes the proof
that — is left adjoint to I'y. The natural isomorphism

B:Homg(M,T.(F)) — HomoX(M,ﬁz)

Is given by the association ¢ — 1 given in the proof. Note that ¥y (m/s) = v(1/s - ¢(m)|y). In
particular the counit has the form given in the statement of the Proposition. O

By definition of the counit, for any module .% if we let M = T',(.#) then the unit M — T, (M)
followed by TI'.(¢) is the identity. If n € Z and m € T'(X,.#(n)), let i denote the canonical global
section of M(n)~. Then the composite

—~— " e(n)

M(n) == M(n) —> Z(n)
Maps m to a global section of .% (n). This global section is m, since

e(n)x(px(m)) = e(n)x (n(m)n) = Lu(e)(n(m))n = m

Where, as usual, we also denote by m the sequence in M whose only nonzero entry is the element
m € I'(X, #(n)).



Corollary 3. Let S be a graded ring generated by Sy as an Sy-algebra and set X = ProjS. Then
the functor I'y : Mod(X) — SGrMod is left exact.

Lemma 4. Let .F be a sheaf of modules on X. Then for n € Z there is a canonical isomorphism
I.(Z(n)) 2T.(F)(n) of graded S-modules natural in F.

Proof. We have a degree preserving isomorphism of abelian groups

I.(F(n)) = @ T, Z(n)(m))

mEZ

~ (P I(X, F(n+m))
meZ
= T(F)(n)

It follows from commutativity of the diagram (3) on p.11 of our Section 2.5(Proj) notes that this
is an isomorphism of graded S-modules. Naturality in .% is easily checked. O

3 Functorial Properties

Lemma 5. Let ¢ : S — T be a morphism of graded rings. Set X = ProjS,Y = ProjT and let
® : U — X be the induced morphism of schemes. For n € Z there is a canonical morphism of
sheaves of modules

X" Ox(n) — @.(Oy(n)|v)
a/s— ¢(a)/¢(s)

If ¢ is an isomorphism then so is x™. If S is generated by Sy as an Sy-algebra and T is generated
by T1 as a Ty-algebra then there is a canonical isomorphism of sheaves of modules natural in M

w": (sM)"(n) — 2. (M(n)lv)
mys ® d/t — m/d)(s) ® qzﬁ(a)]gb(t)
Proof. Let x™ be the following composite
Ox(n) = S(n)™ — T(n)™ = &.(T(n)[v) = @.(Oy (n)|o)

This has the required property and is clearly an isomorphism if ¢ is. Let w™ be the following
isomorphism N

(sM)"(n) = (sM(n))” = @.(M(n)"|v) = ®.(M(n)|v)
Using (H, 5.12b) and (MPS,Proposition 7) it is clear that w™ has the required property and is
natural in M. 0

Lemma 6. Let ¢ : S — T be a morphism of graded rings with S generated by Sy as an Sy-algebra
and T generated by Ty as a Ty-algebra. If M is a graded T-module then for n,d € Z the following
diagram commutes

(sM)™(n) ® Ox(d) = (sM)~(n+d)

wn®xdi

@, (M(n)|y) ® ©.(0y(d)|v)

i e

3, (M(n)|y ® Oy (d)|v)

ﬂ

®.(M(n) ® Oy (d)|ly =———> ®u(M(n+ d)|v)
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Proof. Tt suffices to check commutativity on sections of the form (m/s ® a/t) ® ¢/q which is
straightforward. O

Lemma 7. Let ¢ : S — T be a surjective morphism of graded rings where S is generated by
S1 as an Sy-algebra. Let ® : ProjT — ProjS the induced closed immersion. If M is a graded
T-module then there is a canonical isomorphism of graded S-modules natural in M

i Du((sM)7) — sTw (M)

Proof. Set X = ProjS and Y = ProjT. Then using Lemma 5 we have the following isomorphism
of abelian groups

piTu((sM)7) = BT, (sM)™(n)

neZ

~ (DT (X, .(M(n)))

neZ

=@Pr(v, Mn)
nez

=T.(M)

It follows from Lemma 6 that this is a morphism of graded S-modules. Naturality in M is easily
checked. O

Throughout the last part of this section ¢ : S — T is an isomorphism of graded rings with S
generated by S; as an Sy-algebra and T generated by T; as a Ty-algebra. Set X = ProjS,Y =
ProjT and let ® : Y — X be the induced isomorphism of schemes.

Lemma 8. If .Z is a sheaf of modules on'Y then the following diagram of sheaves of modules on
X commutes for n,d € 7

Kn,d

(@,.7)(n) © Ox (d) —="2 s (&,F)(n + d)
(9.7 ® D,.(Oy(n))) ® Ox(d)

3,(F(n)) @ Ox(d) ?,

Y

® ©.(Oy(n +d))

&,(Z (n)(d)) 3,(F(n+d)

¢,*I{n,d

Proof. 1t suffices to check commutativity on sections of the form (m ®a/b) & ¢/d which is straight-
forward. O

Lemma 9. Let M be a graded T-module. Then the following diagram of sheaves of modules on



X commutes forn € Z

{sM}(n) == sM(n)

&, (M(n)) = ®.(M(n))

Proof. Inverting the top morphism, we can reduce to checking the modified diagram commutes
on sections m/s ® a/b of (s M)~ (n), which is straightforward. O

Lemma 10. The the following diagram of functors commutes up to a canonical natural equivalence

Mod(V) —== Mod(X)

F*l lr*

TGrMod —— SGrMod

Moreover for a graded T-module M the isomorphism F*(m) ~T, (0, M) = SF*(M) fits into the
following commutative diagram of graded S-modules

sM ——T,(sM) (3)

ﬂ

sTs (M )
Proof. Let .7 be a sheaf of modules on Y. Then we have an isomorphism of abelian groups

v:T.(2.7) = PT(X, 2.7 @ Ox(n))
o~ gF(X,é*,?@@*@Y("))
=~ gr(x,@*(y“@oy(n)))
— %F(Y,ﬂ@@y(n))

~T.(%)

To check this is a morphism of graded S-modules it suffices to show that v(s-m) = s-v(m)
for s € Sy and m € I'(X,®,.# ® Ox(n)), which follows from Lemma 8. Naturality of v in .%#
is easily checked. The diagram (3) says that the isomorphism v identifies the unit morphisms
n:M —T,o0(=)of T and S. Using Lemma 9 it is not difficult to check that (3) commutes. [

4 The Quasicoherent Case

Throughout this section S denotes a graded ring generated by S; as an Sp-algebra and we set
X = ProjS.

Lemma 11. Let f € S be homogenous of degree e > 0 and f € T(X, Ox(e)) as above. Then

Xy = Dy(f), where Xj is the canonical open set associated to the global section f of the invertible
sheaf Ox (e).



Proof. By assumption X is covered by open sets D, (g) for g € Sy, so it suffices to show that
XyNDy(g)=D(f)NDy(g) for g € S;. We showed in (5.12) that Ox (e)|p, (g) = Ox|p, (y) and
under this isomorphism p — f/1 corresponds to the section p — f/g° of Ox over D (g). Under
¢ : Ox|p, () = SpecS(g) this corresponds to the element f/g® of S(s). We showed in our notes on
locally free sheaves that Xy N Dy (g) = ¢ 'D(f/g°). But p(p) = (pSf) N S(s) so it is clear that
¢ 'D(f/9°) = D1+(f) N D4(g), as required. O

Lemma 12. Let e € Z and n > 0 be given. Then there is an isomorphism of Ox -modules

¢:O0x(e)®" — Ox(ne)
f1/51® ®fn/$n’_’fl"'fn/51"'5n

where fi,..., fn,51, -+, 5, €S are homogenous with s; of degree d; and f; of degree d; + e.

Proof. The proof is by induction on n. If n = 1 the result is trivial, so assume n > 1 and the
result is true for n — 1. Let ¢ be the isomorphism

Ox(€)®" = Ox(e) ® Ox(e)*" ) = Ox(e) ® Ox (ne — €) = Ox (ne)

Using the inductive hypothesis and the explicit form of the isomorphism 7 : Ox (e) @ Ox (ne—e) =
Ox (ne) one checks that we have the desired isomorphism. O

Proposition 13. Let S be a graded ring finitely generated by S1 as an Sy-algebra and set X =
ProjS. If F is a sheaf of modules on X then the counit e : T'(F)~ — F is an isomorphism if
and only if & is a quasi-coherent.

Proof. 1If the generators of S over Sy are fi,..., f, € S1 then the open sets D, (f;) cover X =
ProjS, and consequently X is quasi-compact. If S is generated by the empty set over Sp, it is
generated by the single element 0 € S7, so we can always assume n > 1.

If the counit is an isomorphism then .% is trivially quasi-coherent, so it only remains to prove
the converse. So assume that .% is a quasi-coherent sheaf of modules on X and let M be the
graded S-module T',(.#). For homogenous f € S of degree e > 0 define

¢ : My — F(D(f))
p(m/f") = v(1/f"-m|p, (s)

Where 1/f7 € Ox(—ne)(D4(f)) and m € (X, .Z(ne)). One checks this is well-defined morphism
of groups in the same way as for s, earlier. We now show that ¢ is bijective.

If o(m/f") = 0 then m|p, sy = 0, and Lemma 11 implies that D, (f) = Xy, where fis
a global section of the invertible sheaf Ox(e). Moreover X is quasi-compact and since tensor
products of quasi-coherent modules are quasi-coherent, the sheaf % (ne) is quasi-coherent. So we
can apply (5.14a) to the global section m € T'(X,.% (ne)) to see that for some M > 0 we have
m@fEM = 0 as a global section of .Z(ne) ® Ox(e)®M. By Lemma 12 there is an isomorphism
F(ne) @ Ox(e)®M = FZ(ne) @ Ox(Me) which identifies m®f®M with m&fM. Thus fM - m =
n”e’Me(m@)fM) =0 and so m/f™ = 0 in My, showing that ¢ is injective.

To see that ¢ is surjective let ¢t € #(0)(D+(f)) be given. By assumption X is covered by
the affine open sets D4 (f1),..., D4+ (fn) and Ox(e) is an invertible sheaf which restricts to a free
sheaf on each of these sets. Each D (f;) N D (f;) is affine and thus quasi-compact. So by (5.14b)
for some M > 0 the section t®f\%]+w(f) of Z(0) ® Ox(e)®*M extends to a global section a. There
is an isomorphism

Z(0) ® Ox(e)®M = 7(0) ® Ox(Me) = F(Me)

Let m € I'(X, .7 (Me)) be the global section corresponding to a. Then m|p, () = fM -t, where the

action of Ox (Me)(D4(f)) on #(0)(Dy(f)) is the canonical one. It follows that 1/fM-m|p (s =
t, so @ is surjective.



To show that e is an isomorphism it suffices to show that ep_ (y) is an isomorphism for every
homogenous f € S;. But this follows from bijecitivity of ¢ and commutativity of the following
diagram

— €D

M(Dy(f)) —= FZ(D(f))

| =

My

Hence ¢ is an isomorphism, as required. O

5 Sheaves of Algebras

Throughout this section S denotes a graded ring generated by S; as an Syp-algebra and X = ProjS.
In previous sections we defined the functor I', : MMod(X) — SGrMod, which is the projective
analogue of the global sections functor I' : 9tod(SpecA) — AMod. In the affine case there are
also functors (SOA,Definition 6)

I': nAlg(SpecA) — AnAlg
I': Alg(SpecA) — AAlg

In this section we take the first steps towards defining a projective version of these functors by
defining the structure of a commutative Z-graded ring on the graded S-module I', (Ox).

A subtle point is that we must distinguish between Ox (n) = S(n) and Ox (n) = Ox ® Ox(n).

~

Of course using the natural isomorphism Ox ® &% = .# there is an isomorphism Ox (n) = Ox (n).
With this distinction, we have

neZ

For m,n € Z let A"™" denote the following isomorphism of modules:
A" Ox(m) ® Ox(n) = Ox(m) ® Ox(n) = Ox(m+n) = Ox(m+n)

Where we use the isomorphism 77" : Ox(m) ® Ox(n) — Ox(m + n) defined earlier in notes.
Ifr,s e I'(X,0x) and u € T'(X,O0x(m)),v € I'(X, Ox(n)) then

A" ((rew)e(sev)) = 1o ((r- u)e(s - v))

For a,b € I',(Ox) we define
(a-b); = Z A" (am@by,)
m—+n=1
It is easy enough to check that this operation is commutative and left and right distributive over
addition. The identity element is the sequence I with I; = 0 for i # 0 and Iy = 1®1. By reduction
to homogenous elements, associativity follows from commutativity of the following pentagon for
integers x,y,z € Z

(Ox(2) ® Ox(y)) ® Ox(2) Ox(z) ® (Ox(y)) ® Ox(2)
@X(x+y)®@x(z)\ /6x<w>®@x(y+z)
(5}((IE +vy+ Z)
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Commutativity of this diagram follows from commutativity of the pentagon for Ox(—). This
structure makes I',(Ox) is a Z-graded commutative ring. Consider the unit morphism of graded
S-modules

n:S —TI.(0x)
n(s)p =1® s,

It is not hard to see that 7 is a morphism of Z-graded rings.

Definition 1. Let S be a graded ring generated by S; as an Sp-algebra. We denote by I'(Ox )’ the
subring @, ., I'(X, Ox (n)) of T',(Ox). This is a graded ring and there is a canonical morphism
of graded rings n : S — I',(Ox)’. If Ais aring and S a graded A-algebra then I',(Ox)’ becomes
a graded A-algebra via the ring morphism A — S — T',(Ox)’.

Lemma 14. For n € Z there is a canonical isomorphism I'.(Ox(n)) = I'.(Ox)(n) of graded
S-modules.

Proof. This follows immediately from Lemma 4. O

Proposition 15. Let A be a ring, S = Alzo,...,x,] forr > 1 so X = P%. Then the morphism
of Z-graded rings n : S — T.(Ox) is an isomorphism. Therefore for all n € Z there is an
isomorphism of A-modules

S, — (X, 0x(n))

S §

In particular T'(X,Ox (n)) =0 for anyn < 0 and I'(X,Ox) = A as rings.

Proof. The morphism 7 defined above agrees with the one obtained in the proof of Proposition
5.13 of Hartshorne, and we proved there that this was an isomorphism. O

Corollary 16. Let A be a nonzero ring and set X =P’y forr > 1. Then for n > 0 the A-module
I'(X,0x(n)) is free of rank ("1").

Proof. This follows from the fact the A-module S, is free on the set of monomials of degree n. [J
Proposition 17. Let S be a graded domain generated by S1 as an Sy-algebra with S # 0. Then
(i) The morphism S — T'.(Ox) is injective.

(i) If S is finitely generated by S as an Sp-algebra then I'v(Ox) is a domain. If further S is
noetherian, I'.(Ox)’ is integral over the subring S.

Proof. (i) To show that the morphism of rings S — I'.(Ox) is injective it suffices to show that
the map S,, — T'(X,Ox(n)) defined by s — § is injective. Suppose that $ = 0 in T'(X, Ox(n)).
Since S1 # 0 we can find a homogenous prime ideal p € ProjS, and by assumption s/1 = 0 in
S(n) ). Therefore gs = 0 for some ¢ ¢ p which implies s = 0, as required. We therefore identify
S with a subring of I, (Ox)".

(74) Assume that S is generated by over Sy by nonzero elements xzg,...,z, € S1. Let of :
(Sz;)n — ['(D4 (z;),Ox(n)) be the isomorphism of groups given by the composite (Sz,)n =
S(n)(z,) =T(Dy(x:),8(n)") = F(D+(mi),6x(n)). So a*(a/x™) = 1®(a/z™) and for any i, j the
following diagram commutes

n

<511>n —————I(D- (), Ox (n)) (4)
(Sria;)n ===—==T(D (z;7;), Ox (n))

10



Let €2 be the set of tuples (o, ...,t.) where ¢; € S;, and t;,; have the same image in S, for all
i,j. Under the pointwise operations this becomes a Z-graded ring, with graded piece €2,, given by
those sequences with ¢; € (Sy, ), for all i. Commutativity of (4) implies that there is a bijection
between global sections of O x(n) and the set €,,. This gives rise to an isomorphism of Z-graded
rings

0:Q—T.(0Ox)
B(tos - - str)nlpy @) = @i ((ti)n)

Since the z; are all nonzero and S is a domain, the canonical ring morphisms S;, — Sg,2; and
Yi : Sz; — Szy...z, are all injective. Moreover ; factors through Sy,z; — Si,...z, for any j. The
map Q — Sy,...z,. given by (fo,...,t) — 7(t;) is independent of ¢ and is an injection of rings
(that is, if two tuples in € agree in any position they agree in all positions) since 7;(t;) = v;(t;) for
any 4, j by the assumption on the tuples in Q. Consequently for any n € Z if two global sections
of Ox(n) (or Ox(n)) agree when restricted to D (x;) for any ¢, then they are equal globally.

We can thus identify I', (Ox) with a subring of the domain Sy, ..., containing S and contained
in the intersection of all the localisations S,, (the composite S — T',(Ox) =2 Q — Sy;..a.
agrees with the canonical injection S — Sy,...z,.). In particular the rings I'.(Ox), T (Ox)’ are
integral domains. R

Now assume that S is noetherian and let a homogenous element b € T'.(Ox),, = T'(X, Ox(n))
be given. Then for 0 < i <7 we have b|p,_ (5,) = 1®(a/-xlm) for some a/x* € (Sy,)n. Since n(z;)™b
and n(a) agree on D, (z;) they are equal. Now identify S with a graded subring of I',(Ox)’. We
have shown that for every homogenous element b of the larger ring and 1 < i < r there is m > 0
with 2"b € S. Choose one m that works for all i. Since the x; generate S over Sy any element
y € Sy, is a linear sum of monomials in xq,...,z, of degree m with coefficients from Sy. So by
making m sufficiently large we can assume that yb € S for all y € Sy with d > m. In fact since
n > 0 we can say that for any y € S>,, = @,~,, Se, yb € S>,,. Now it follows inductively that
y(b9) € S for any ¢ > 1 and y € S>,,. In particular for every ¢ > 1 we have z{'0? € S. Let @
be the quotient field of T',(Ox)’. Then (1/z7*)S is a finitely generated sub-S-module of @, which
contains the ring S[b]. Since S is noetherian the S-module S[b] is finitely generated, so by A & M
Proposition 5.1, b is integral over S. Since the integral closure of S in I',(Ox)’ is a ring, it follows
that T'x(Ox)’ is integral over S, as required. O
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