CHAPTER 3

Statistical Mechanics

Most applications of conformal invariance pertain to statistical systems at criti-
cality. A brief introduction to statistical mechanics is therefore required for those
readers unfamiliar with the subject. The emphasis is put on the concepts under-
lying the hypothesis of conformal invariance in critical systems. Some parallels
are to be drawn with the previous chapter, since quantum field theory and statis-
tical mechanics walk hand in hand in the modem theory of critical phenomena.
Section 3.1 reviews the notion of statistical ensemble of states and describes some
basic models defined on the lattice or in the continuum. Section 3.2 explains the
basic features of critical phenomena and how the scaling hypothesis provides a
unified understanding of phenomena at or near the critical point. Section 3.3 justi-
fies the scaling hypothesis with the idea of real-space renormalization. Section 3.4
applies the concepts of the renormalization group to continuum models and gives
deeper meaning to the notion of scale invariance for Euclidian field theories. Fi-
nally, Sect. 3.5 briefly explains the transfer matrix method, a discrete analogue in
statistical mechanics of the operator formalism of quantum theory.

§3.1. The Boltzmann Distribution

Statistical mechanics describes complex physical systems (i.e., systems made of
a large number of atoms in interaction) whose exact states cannot be specified
because of this complexity. Instead, macroscopic properties alone may be speci-
fied, and the role of the theory is to infer these properties from the microscopic
Hamiltonian. Thus, statistical mechanics distinguishes microscopic states (or mi-
crostates) from macroscopic states (or macrostates). A microstate is specified by
the quantum numbers of all the particles in the system or, classically, by the ex-
act configuration (positions and momenta) of all the particles. It characterizes the
system from a dynamical point of view in the sense that its future state is fixed by
its present state through deterministic laws. A macrostate is specified by a finite
number of macroscopic parameters, which characterize the system from the point
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of view of observation, such as pressure, temperature, magnetization, and so on.
To a given macrostate corresponds a large number of microstates, each leading to
the same macroscopic properties. Having no more information about an isolated
system than that given by the macroscopic parameters, we assume that all the mi-
crostates associated with the observed macrostate have equal probabilities to be
the actual state of the system.

The basic idea behind the statistical study of a complex system is that any
physical property—Ilike the energy, the magnetization, and so on—may be regarded
as a statistical average, calculated over a suitable ensemble of microstates. Of
course, at any instant, the system is in a specific (but unknown) microstate. The
replacement of this microstate by a statistical ensemble needs some justification.
It has long been customary to justify this replacement by invoking the so-called
ergodic hypothesis, which states that the time average of a quantity over the time
evolution of a specific microstate is equal to the average of the same quantity,
at fixed time, over some statistical ensemble of microstates. If one accepts this
hypothesis, then the use of a statistical ensemble is justified provided the time
necessary for an efficient sweep of the ensemble by any of its microstates is short
enough compared with the time of measurement of the physical quantity of interest.
This is far from obvious. A better justification for the use of statistical ensembles
follows from dividing the system into a very large number of mesoscopic parts,
each of them large enough to display the complex properties of the whole system.
At any instant, each of these mesoscopic subsystems is characterized by its own
microstate, but the properties of the whole system are obtained by averaging over
all subsystems. Thus, the ensemble averaging amounts more to a spatial averaging
than to a time averaging.

Which ensemble of states is most appropriate for averaging depends on how
isolated the system is. If it is completely isolated, with no exchange of energy or
particles with its surroundings, the relevant ensemble of microstates is made of all
states on a given energy “shell”, occurring with equal probabilities. It is called the
microcanonical ensemble.

If, on the other hand, a system S is in thermal contact with its surroundings
and hence is free to exchange energy with it, then all microstates of S do not
have equal probabilities. However, all microstates of the “universe” (S plus its
surroundings) have equal probabilities. This, in turn, provides us with a distribution
of probabilities for the microstates of S: The probability that a specific microstate
of S be the actual state of the system depends only on its energy and is given by
the Boltzmann distribution:

1 1
P; = - exp—pE; B=7 (3.1)
where T is the absolute temperature! and Z is the normalization of the distribution,
called the partition function:

! This definition of temperature includes the unit-dependent Boltzmann constant k5. Thus T has the
dimension of energy.
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Z = exp—pE, (3.2)

The ensemble of microstates defined by the Boltzmann distribution is the canonical
ensemble.

The partition function (3.2) is of central importance in statistical mechanics
since macroscopic quantities are generically related to derivatives of Z. For in-
stance, the average energy within the canonical ensemble is obtained by lowering
a factor of E, in the sum of Boltzmann weights through differentiation with respect

to B:

1
U= 7 Zi:E,- exp —BE;

__1% (3.3)
Z ap
]
= -T?_(F
31,( /T)
where we have introduced the free energy:
F=-TinZ (3.9

Similarly, the heat capacity C at constant volume is

U 9*F

The specific heat is defined as the heat capacity per unit volume. Thus, the partition
function is the generating function of all the thermodynamic functions of interest.

In practice, statistical mechanics studies systems composed of a large quantity
of N identical components (atoms, molecules). The properties of each individual
atom (e.g., energy, spin, etc.) fluctuate according to the Boltzmann distribution,
but the physical quantities of interest are summed over all N components of the
system. Because of the law of large numbers, their fluctuations vary as 1/v/N
and are completely negligible when N is large. The limit N — oo is called the
thermodynamic limit since then the variance of the macroscopic properties vanishes
and their values cease to be random variables, becoming instead exact variables to
be treated in the formalism of thermodynamics.

3.1.1. Classical Statistical Models

In practice the number of systems for which the partition function can be calculated,
even in an approximate way, is very small. Confronted with the extreme complexity
of most realistic systems one relies on simplified models to investigate finite-
temperature properties. Some of these models are defined in terms of discrete,
classical variables, which live on a lattice of sites. The best-known and simplest of
these discrete models is the Ising model. It consists of a discrete lattice of spins o;,
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each taking the value —1 or 1. Unless otherwise indicated, a square lattice is used
and 7 stands for a lattice site. For a lattice with N sites the number of different spin
configurations [o] is 2V, and the energy of a given configuration is

Elo] = -J)_ o0 — hZa (3.6)
{if)

where the notation (ij) indicates that the summation is taken over pairs of nearest-
neighbor lattice sites. The first term in the energy represents the interaction of
neighboring spins through a ferromagnetic (J > 0) or antiferromagnetic (J < 0)
coupling. The second term represents the interaction with an external magnetic
field /2. We shall not try to explain how such a simple model can arise from the
microscopic quantum theory of magnetism but will be content in considering it
for its own sake. We will assume that J > 0, although the case J < 0 is strictly
equivalent at zero field (2 = 0). In zero field, the lowest energy configuration is
doubly degenerate: The spins can be either all up (+1) or all down (—1). If the
field & is nonzero, the lowest energy configuration will have all spins aligned with
h (i.e., of the same sign as &).

The first thermodynamic quantity of interest is the magnetization M, the mean
value of a single spin. By translation invariance, this is the same for all spins, and
we can write:

= (o) (anyj)

1
=z > {Zai}exp—ﬁE[G] 3.7

i

1 oF

N dh

where the notation (...) denotes an ensemble average. Also of interest is the
magnetic susceptibility, which indicates how the magnetization responds to a very
small external field:

M
X= oh ln=0

— N 3h Z Z (Zo) exp — ﬁE[a]} 3.8)

1
=~ NT {<th (O, }

where o,, = ) ; 0;. The susceptibility is therefore proportional to the variance of
the total spin, and measures its fluctuations.

The susceptibility is also related to the pair correlation function I'(7):
ri—j)= (0;0;) (3.9)

Because of translation invariance, the correlator I" can depend only on the differ-
ence of lattice sites. Moreover, for large distances |i — j|, the lattice structure is
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less relevant, some rotation symmetry is restored and the correlators depend only
on the distance | — j|. The connected correlation function

L ) = (6,0}, = (0,0)) — (G,){0) (3.10)

is a measure of the mutual statistical dependence of the spins o; and o;, in terms
of which the susceptibility may be rewritten as

00
x=B8) TG (3.11)
i=0
We therefore expect the susceptibility to be a measure of the statistical coherence
of the system, increasing with the statistical dependence of all the spins.

The Boltzmann distribution is ,of course, invariant under a constant shift of the
energy. This allows us to write the Hamiltonian of the Ising model in a slightly
different way. Indeed, since 0,0; = 280','01_ — 1, the configuration energy is, up to a
constant,

Elol=-2) 8,,—h) o (3.12)
{ij) i

This form lends itself to an immediate generalization of the Ising model, the so-
called g-state Potts model, in which the spin o; takes g different integer values:
o; = 1,2,---,q. To each possible value of o we associate a unit vector d(o) in
q — 1 dimensional space such that }_? d(o) = 0.d(o) plays the role of the magnetic
dipole moment associated with the spin value o. The configuration energy in an
external field is

Elol=-a) 5, , —h-Y d(o) (3.13)
{if) i
Other generalizations of the Ising model are possible, wherein for instance the
spins are regarded as “flavors” of atoms interacting with their nearest neighbors
with coupling constants depending on which flavors are paired (Ashkin-Teller
models) and so on.

In Ising-type models, the variables (spins) reside on the sites of the lattice
whereas the interaction energy resides on the links between nearest-neighbor pairs.
In systems such as the eight-vertex model the opposite is true: The variables are
arrows living on the links, each taking one of two possible directions along the
link. The interaction energy resides on the sites and its value depends on how the
four arrows come together at that point, with the constraint that the number of
arrows coming into (and out of) a site must be even.

Other statistical models involve continuous degrees of freedom rather than
discrete ones. For instance, a more realistic treatment of classical ferromagnetism
is obtained by assuming the local spin to be a unit vector n, with the configuration
energy

En]=7) n;-nj— > h-n, (3.14)

(i7) i
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where A is some external magnetic field. This is the classical Heisenberg model,
or the classical O(n) model if the vector n is taken to have n components.

When discussing critical properties (in the next section) it is often more con-
venient to replace the lattice by a continuum, in which case the use of continuous
degrees of freedom is mandatory. The above Hamiltonian is then equivalent to

E[n] = f d’x {Joyn - 3n —h - n) (3.15)

whereinn; and h; are replaced by n(x) and A(x). The gradient term is the equivalent
of the nearest-neighbor interaction of the discrete case.

Because the constraint n?(x) = 1 at every position is difficult to implement
in practical calculations, we may consider the simpler alternative in which it is
replaced by the single constraint

%/ddxnz =1 (3.16)

where V is the volume of the system. One then obtains the spherical model,
which differs from the O(#) model by the constraint imposed. Another way to
approximate the constraint n2(x) = 1 is to make it energetically unfavorable for
n?(x) to be different from 1. This may be done with the help of a quartic potential
V(|n|) having a minimum at |r| = 1. After rescaling the field n, the energy
functional may be taken as

E[n] = fddx {%8kn - d,n — %uznz + %u(nz)z} 3.17)
The position of the minimum of energy as a function of |n| depends on the relative
values of x and w. If » has a single component ¢, this is termed the ¢* model. The
sign of the ¢? term (positive or negative) determines whether the ground state value
of ¢ vanishes or not. The case # = 0 is exactly solvable, and is called the Gaussian
model since the partition function reduces to a product of Gaussian integrals. The

associated configuration energy is
1 1
Elg] = f d'x (G (Vo) + Su’¢™) (3.18)

All of these models were extensively studied and are discussed in great detail in
most texts devoted to critical phenomena.

For models defined on the continuum, the analogy between statistical mechanics
and quantum field theory is manifest. The partition function of the ¢* model is a
sum over the possible configurations of the field ¢ (i.e., a functional integral):

Z= [ [de] exp —BE[¢)

1 1 1
= f[d(p] exp —/ddx — (V)2 4+ —r¢® + -ugp*
2 2 4
Here we have rescaled the field ¢ by /B and the ¢* coupling u by 1/8, so that
the inverse temperature does not explicitly appear. The partition function of a

3.19)
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d-dimensional statistical model is thus entirely analogous to the generating func-
tional of a quantum field in d space-time dimensions in the Euclidian formalism.
Changing the temperature then amounts to scaling the field ¢ and modifying the
@* coupling.

3.1.2. Quantum Statistics

The statistical models described in the preceding subsection are all classical: All
physical quantities have a definite value within each microstate of the statistical
ensemble. In quantum statistical mechanics, we must deal with quantum indeter-
minacy as well as with thermal fluctuations. In that context, we define the density
operator

p =exp—BH (3.20)

where H is the Hamiltonian of the system. The partition function may be expressed
as a sum over the eigenstates of H:

Z=) e’ =Trp (3.21)
n

The statistical average of an operator A is then
(A) =) (nlePTAn) = Tr (pA) (3.22)

n
The resemblance between the density operator e #H and the evolution operator
e~H" allows for the representation of the density operator as a functional integral.
This introduces the Lagrangian formalism into statistical mechanics. Explicitly,
consider the kernel of the density operator for a single degree of freedom:

plxp,x;) = (xle P |x;) (3.23)

The path integral is adapted to this kernel by substituting ¢ — —it (the Wick
rotation), where t is a real variable going from O to B. The action S[x(z)] then
becomes the Euclidian action iSg[x(7)]. The kernel of the density operator p
becomes then

(x7.8)
ol x) = f( | 1dx] exp—Sglx) (3.24)
The partition function may be expressed as
Z = f dx p(x,x) = f [dx] exp —Sg[x] (3.25)

This time, the integration limits are no longer specified: all “trajectories” such
that x(0) = x(B) contribute. Here the “time” t is merely an auxiliary variable
introduced to take advantage of the analogy with path integrals. The expectation
value of an operator A is

1 ;
w= f dx (x|pAlx)



§3.2. Critical Phenomena 67
1
= Z/dxdy {xlply) (y|Alx)

1 .8
=3 f dxdy [ [dx] (y|A|x) exp —Sg[x]

x,0)

1 v.8)
- f dxdy f( [dx] A(x)8(x — y) exp —S,[x]

x,0)
1
= f [dx] A(x(0)) exp—S[x] (3.26)

where we have supposed that A is a function of x only, so that
¥lAlx) = A(x)é(x — y) (3.27)

Hence, the expectation value of A is calculated as in the path-integral method.
Note, however, that the operator A is evaluated at t = 0.

The generalization to a system with a continuum of degrees of freedom and to
multipoint correlation functions is straightforward. The key point here is that the
partition function of a quantum system in the path integral formalism is obtained
from the ordinary path integral by a Wick rotation and by restricting the Euclidian
time to a finite domain of extent 8. At zero temperature this domain is infinite in
extent and we recover the usual generating functional in Euclidian time. At finite
temperatures, the quantum partition function of a d-dimensional system resembles
that of a (d + 1)-dimensional classical system defined on a strip of width B.

§3.2. Critical Phenomena

3.2.1. Generalities

Phase transitions are arguably the most interesting feature of statistical systems.
They are characterized by a sudden and qualitative change in the macroscopic prop-
erties of the system as the temperature (or some other control parameter) is varied.
We distinguish first-order transitions from continuous transitions. First-order tran-
sitions are characterized by a finite jump in the energy U (the latent heat) at the
transition temperature. This means that the system must absorb or deliver a finite
amount of energy before leaving the transition temperature. Liquid-gas transitions
and other structural transitions are generally of this type. On the other hand, con-
tinuous phase transitions do not involve any latent heat, nor any abrupt change in
the average value of microscopic variables, such as the magnetization. However,
the derivatives of such quantities, such as the specific heat or the susceptibility, are
discontinuous or display some singular behavior at continuous phase transitions.
Strictly speaking, phase transitions exist only in the thermodynamic limit. The
reason is clear: In systems such as the Ising model in zero field, where the energy
of any configuration is an integer multiple of a fundamental energy scale ¢, the
partition function for a finite number of lattice sites is a polynomial inz = exp — Be.
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For instance, in the Ising model, one can choose ¢ = —J, and the configuration
of highest energy has E = 2Ne¢. Each configuration contributes a power of zZ to
the partition function, with unit coefficient. Therefore Z is a polynomial of degree
2N in z, whose roots lie away from the positive real axis, and occur as complex
conjugated pairs. Singularities of the free energy or of its derivatives can occur
only at those roots, which all lie outside of the physical domain of interest as long
as N is finite. As N — oo, the number of these roots becomes infinite, and they
tend to form various arcs, some of them touching the real positive axis. It is at these
locations on the positive real axis that the behavior of thermodynamic quantities
becomes singular in the thermodynamic limit.

Continuous phase transitions will be of central interest to us because of their
relation to conformal invariance. The two-dimensional Ising model, of which the
exact solution is known, exhibits such a transition. Let us describe this transition
before commenting on the general case: The critical temperature T, is related to
the coupling J by

sinh(2J/T,) = 1 (3.28)

Above T, the magnetization at zero field (or spontaneous magnetization) vanishes,
whereas below T, it takes a nonzero value, tending toward 1 at T = 0 and toward
0 as T — T, according to the power law

M~ (T, -1 (3.29)

The system is then in its ferromagnetic phase. The two directions of spontaneous
magnetization (up and down) are energetically equivalent, and which one is actu-
ally realized depends on how the external field /2 was brought to zero. Although
the magnetization is continuous at T, its derivative with respect to the magnetic
field—the susceptibility x—diverges as T — T, according to

oM

x=—2-~ T~ T,) " (3.30)

Away from T, the correlations I'.(i) decay exponentially with distance, with
a temperature-dependent characteristic length £ called the correlation length,
expressed here in units of the lattice spacing:

(5:5;)c ~ exp—li — jI/E(T) i =l > 1 (3.31)

As T approaches its critical value, the correlation length increases toward infinity,
like the inverse power of T — T _:

1
T —-T_|

As we shall see, this divergence of the correlation length is the most fundamental
characteristic of continuous phase transitions. Such transitions are termed critical
phenomena and occur at so-called critical points of the phase diagram.

The importance of the correlation length in the behavior of thermodynamic
quantities near the critical point is intuitively clear. Near a critical point, a spin

&(T) ~ (3.32)
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system such as the Ising model is an aggregate of domains (or droplets) of different
magnetizations. At first thought, the typical size of such droplets should be &,
roughly the maximum scale over which the spins should be correlated. But in fact,
droplets of all sizes up to the correlation length must be present, and droplets within
droplets, etc. Otherwise the connected correlation functions I' (1) would have a
peak near n ~ £ but would be small below that scale, which is not true: This can
be seen from the observed divergence of the susceptibility x as T — T, and the
expression (3.11) for x. In other words, the spins fluctuate over all length scales
between the lattice spacing and £. The free energy F will receive contributions from
the domain walls separating spin droplets, integrated from the lattice spacing up
to £, and it is plausible that its singular behavior (or, rather, that of its derivatives)
be governed by the “upper integration bound”, which is £.

At T, or sufficiently close to it, the correlation length exceeds the physical
dimension L of the system (we suppose, for the sake of argument, that the system
lives in a square box of side L). At this point the free energy no longer depends
on the correlation length but is limited by the box volume.? The pair correlation
function does not have enough room to decay exponentially within the box, and
its spatial dependence is algebraic (d is the dimension of space):

1

L) ~

(3.33)
The behavior of thermodynamic functions near or at the critical point is charac-
terized by critical exponents defining power laws as T — T ... The most common
exponents are defined in Table 3.1.

Table 3.1. Definitions of the most common
critical exponents and their exact value within
the two-dimensional Ising model. Here d is the
dimension of space.

Exponent Definition Ising Value
a C «(I-T,)* 0
B M «(T,-T)* 1/8
y x o«(T-T)" 7/4
) M och'® 15
v ¢ «(T-T) 1
n I'(n)ox |n|2=4-7 1/4

2 In real systems, the correlation length is limited not by the physical size of the sample, but by the
presence of sample inhomogeneities. It rarely goes beyond a thousand lattice sites, even in very pure
samples.
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We conclude this section by a remark on the relevance of classical statistical
mechanics in aquantum world. Classical statistical mechanics is an approximation
to quantum statistical mechanics, valid in the context of critical phenomena when
the statistical coherence length &£ exceeds the characteristic de Broglie wavelength
of the system. For a system with a characteristic velocity v (e.g., the speed of
light, the Fermi velocity or the speed of some other excitation), the de Broglie
wavelength at temperature T is A = VAi/kgT o< B. Classical statistics takes over
at large enough temperatures, or close to a finite-temperature critical point, where
the classical correlation length £ exceeds A,.. This justifies the extensive use of
classical models in a realistic study of critical phenomena. The exception to this
rule occurs when T, = 0, which happens in a large class of low-dimensional
systems.

3.2.2. Scaling

The critical exponents of Table 3.1 can be related to each other by use of the scaling
hypothesis, which stipulates that the free energy density (or the free energy per
site, in the discrete case) near the critical point is a homogeneous function of its
parameters, the external field 4, and the reduced temperature t = T/T, — 1. In
other words, there should be exponents a and b such that

f(A%, A%h) = Af(t,h) (3.34)

This hypothesis will be justified below, but for now let us derive its consequences
on critical exponents.

First, the homogeneity relation (3.34) implies that the function ~V4f is invariant
under the scalings ¢ — A%t and & — APh. Therefore it must depend only on the
scale-invariant variable y = //t”4, and the free energy density may be expressed
as

f(t, h) = tYg(y) y = hit?” (3.35)
where g is some function. The spontaneous magnetization near criticality is then

M= ——|h_ £1-bVag/(q) (3.36)

One more derivative yields the magnetic susceptibility:

*f

_97 _ p(1-2b)a 3
x= 5| = 7"(0) (337)
Similarly, the specific heat (heat capacity per unit volume) is
aZf 1 Va-2_»n
c=-T— |h L= 2"(0) (3.38)

Finally, in the limit # — O, the behavior of M as a function of 4 is M ~ h'%,
which implies the asymptotic behavior g(y) ~ y'” as y — oo, and imposes the
constraint 1 — b — b/§ = 0, if the limit # — 0 is to be finite and nonzero. We
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have therefore obtained a set of four constraints on some of the critical exponents
introduced in Table 3.1:

a=2-1/a

B=(1—->b)la

y=—(1—-2b)a (3.39)
8 =b/(1 -b)

We now justify the scaling hypothesis, and at the same time express a and b in
terms of the remaining exponents v and 7, both pertaining to the pair correlation
function. Following Kadanoff, we focus our attention on the Ising model on a
hypercubic lattice, with the Hamiltonian

H= —JZ:GiO"- —-h Zai (3.40)

(if) i

We now reduce the number of degrees of freedom of the system by grouping spins
into blocks of side r (in units of lattice spacings), as indicated in Fig. 3.1. If d is
the dimension of space there are 7 elementary spins within a block and the sum
of spins therein can take values ranging from —< to 4. Accordingly, we define a
block spin variable X, as

T, = é}:a,. (3.41)

iel

where the sum is taken over the sites i within the block / and where R is some
normalization factor introduced so that X, can effectively take the values +1. For
instance, R would be equal to 7 if the spins within the block were always perfectly
aligned (since this is not true, R will be lower than that).

[
L]
Figure 3.1. Block spins: an illustration of how four spins may be combired into a single
site variable.

We will assume that the cooperative phenomena observed near the critical point
can be accounted for equally well by a description in terms of block spins with a



72 3. Statistical Mechanics

nearest-block Hamiltonian of the same form as the original Ising Hamiltonian,
H=-I'Y'55,-W) % (3.42)
) i

but with different parameters J' and %’. This is plausible since near criticality the
correlation length £ is much larger than the block side r. The correlation length of
the blocks (the number of blocks over which the block spins are correlated) is, of
course, &/r, which means that the effective reduced temperature ¢ is different from
the original reduced temperature by a factor /:

¢ =r"t (3.43)

The two Hamiltonians H and H’ should involve the same interaction energy with
an external field, and therefore

hY o=k TE,
i 1
=Hh'R™! Zai

which implies 2’ = Rh. Since our grouping procedure should in no way affect
the total free energy of the system, the free energy per block should be 7 times
the original free energy per site, and should moreover have the same functional
dependence because H and H’ have the same form:

fi¢ 1) =rfit,h) or
fiz, k) = r4f(r'"t, Rh)

It remains to find R as a function of 7 in order to recover the scaling hypothesis
(3.34). This is done by looking at the pair correlation function at criticality: The
block-spin correlation function is then

'n) = (%,%,) — (T, 1(Z;)
=R2Y > o0 — (oo}
iel jel
=R 24 1(m)
R—2 rzi
e
R-2 rd+2—r7
= Tz

(3.44)

(3.45)

(3.46)

which implies
R=r4+2m2 sgthat k' = r@d+2-02p (3.47)

Looking back at the scaling hypothesis (3.34) and letting 7 = A4, we conclude
that

a=1(wd) and b=(d+2-n)(2d) (3.48)
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The critical exponents « through § can thus be expressed in terms of 7 and v:

a=2—wd
1
p=3vd-2+n) (3.49)
y=v(2-n)
S=Wd+2—n/d—-2+1n)
We have succeeded in expressing all six critical exponents in terms of two of them
(n and v) pertaining more directly to the correlation functions. Of course, these

relations can be written with a different set of “independent exponents.” Table 3.2
gives the four scaling relations in their original form, with their accepted names.

Table 3.2. Summary of the scaling laws.

Rushbrooke’s law a+28+y=2

Widom’s law y=p86-1)
Fisher’s law y=v(2—n)
Josephson’s law =2«

3.2.3. Broken Symmetry

Phase transitions are generally associated with broken symmetries. By broken
symmetry, we mean a symmetry of the configuration energy (or the action, in the
quantum case) that is no longer reflected in the macrostate of the statistical system
(or the ground state of the quantum system). For instance, the configuration energy
of the two-dimensional Ising model at zero field is invariant with respect to the
reversal of spins o; — —o;. We say that this symmetry is broken if quantities that
are not invariant under this symmetry operation have a nonvanishing expectation
value. The magnetization (o;) is nonzero in the low temperature phase of the Ising
model in the limit of zero external field, and the spin reversal symmetry is then
broken. The simplest quantity that is not invariant under the symmetry considered
and has a nonzero expectation value, such as the magnetization here, is called an
order parameter. The phase with broken symmetry is often called the ordered
phase. On the other hand, the high-temperature phase, in which the symmetry in
unbroken, is often called the symmetric phase. We notice that in field theories,
the analogue of temperature, after a rescaling of the fields, is some nonlinear
coupling constant. Phase transitions in this case occur as a function of coupling;
the interpretation is different, but the underlying physics is identical.

The spin-reversal symmetry of the Ising model has a discrete character. On
the other hand, the O(12) model (3.15) is endowed with a continuous symme-
try: Its configuration energy is invariant under a rotation of its order parameter
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n by a uniform O(n) matrix. The average (n) would be nonzero in the ordered
phase, except that a slow, continuous change of (r) throughout the system would
cost very little energy. The consequence of this is the impossibility to break a
continuous symmetry in a classical statistical system in one or two dimensions:
this is the Mermin-Wagner-Coleman theorem. Simply put, long-wavelength ther-
mal fluctuations of the order parameter take too much place in the phase space
of low-dimensional systems (infrared divergence), and these fluctuations always
succeed in destroying the order. The implications of this theorem to quantum sta-
tistical systems follow from the analogy between a quantum system in d spatial
dimensions and a classical system in d + 1 dimensions, where the extra (imag-
inary time) dimension is limited in extent by the inverse temperature 8. At any
nonzero temperature, a certain class of fluctuations of the continuous order pa-
rameter occurs on a length scale greater than v8 (v is the characteristic velocity),
and these long-wavelength fluctuations are thus governed by classical statisti-
cal mechanics. The Mermin-Wagner-Coleman theorem then implies that no con-
tinuous symmetry can be broken in two dimensions except at zero temperature.
In a one-dimensional quantum system, such breaking is impossible even at zero
temperature.

We point out that the Mermin-Wagner-Coleman theorem does not forbid all
transitions implying a continuous order parameter. Such transitions are possible,
provided they do not imply an expectation value of the order parameter. The best-
known example is the Kosterlitz-Thouless transition in the O(2) model defined
on a plane (the two-dimensional XY model). In this model, the local order pa-
rameter is a planar, fixed-length vector n, and topological defects (vortices) play
an important role. These vortices are bound in pairs below some critical temper-
ature and are deconfined above that temperature. In both phases the average (n)
vanishes.

§3.3. The Renormalization Group: Lattice Models

The scaling hypothesis of Sect. 3.2.2 has been motivated by the introduction of
block spins with an effective Hamiltonian having the same form as the original
Hamiltonian, albeit with different values of the couplings (this last step has not
been demonstrated, but seems plausible; in fact it is only approximately valid).
This procedure is called block-spin renormalization or real-space renormalization
and defines a map between an original Hamiltonian H and a new scaled Hamilto-
nian H'. This map and its iterations form what we call the renormalization group,
the most powerful tool at our disposal in the analysis of critical phenomena. In
this section we present a survey of the basic concepts, along with a more detailed
calculation within the Ising model on a triangular lattice. An exhaustive presenta-
tion of the renormalization group lies outside the scope of this review chapter and
may be found in many good texts.
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3.3.1. Generalities

We consider a general d-dimensional lattice model with N spins o; and Hamiltonian

(1) (2)
i (i) (i)
J represents the collection of couplings J,,,J,, - - - and the symbol Zgl)) means a

summation over nearest neighbors, while Z% means a summation over next-to-

nearest neighbors, etc. Other couplings can possibly be included, with three-spin
couplings and so on. We then define block spins Z,, along with a set of indepen-
dent variables collectively denoted by &, and describing the remaining degrees of
freedom within each block. The Hamiltonian can in principle be rewritten in terms
of these variables, and the partition function is

Z(J,N) = ) exp—H(J, [Z], [£],N) (3.51)
[£]18)
The inverse temperature 8 has been absorbed in the couplings J;. Each block is of
size r in units of the lattice spacing, and the number of blocks is therefore Nr—,
The block Hamiltonian H’(J, [£], Nr~9) is obtained by tracing over the internal
variables &:

exp—H'(J,[Z],Nr™%) = ) " exp~H(J,[E], [£, N) (3.52)
(€]
We have assumed that H’ has the same functional form as H, and this fixes the
value of the effective coupling J'. This assumption is only approximately valid, but
the closer we are to the critical point, the better this approximation is. Its validity
can also be improved with the inclusion of a more complete set of couplings in the
theory. The partition function is then

Z(J,N) =) exp—H'(J,[E],Nr™)

(£] (3.53)
= Z(J,Nr™)
The free energy per site is therefore mapped as
Q) =) (3.54)

The map J — J’ from the original set of couplings to the set of effective block
couplings generates the renormalization group.’ We write

J =TQ) (3.55)

Iterations of this map generate a sequence of points in the space of couplings, which
we call a renormalization group (RG) trajectory. Since the correlation length is

3 In fact, some information is lost during the process of tracing over the internal variables o. Thus
the map J — J' is not reversible and the renormalization group is only a semi-group.
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reduced by a factor r at each step, a typical renormalization-group trajectory tends
to take the system away from criticality. Because the correlation length is infinite
at the critical point, it takes an infinite number of iterations to leave that point.
In general, a system is critical not only at a given point in coupling space but
on a whole “hypersurface”, which we call the critical surface, or sometimes the
critical line. Under renormalization-group flow, a point on the critical surface
stays on the critical surface. A point J_ on the critical surface that is stationary
under renormalization-group flow is called a fixed point of the renormalization

group:
J. =TQ,) (3.56)

In general, the map (3.55) is nonlinear and its exact analysis is difficult. What is
most important, however, is its behavior near a fixed point, which can be obtained
by linearizing the renormalization-group map around J_. This is done by defining
the difference 6J = J — J,. and expanding T to first order in a multivariable Taylor
series. The resulting truncation is a linear map of the differences 4J:

oT;
85y = Ad8) A=

]

3.57)

The matrix A may be diagonalized, with eigenvalues A; and eigenvectors u,. These
eigenvectors form a basis of coupling space, that is,

J=1J + D ty (3.58)

with the ¢;’s playing the role of “proper couplings.” In terms of these, the
renormalization-group linearized action is diagonal:

;= At;

3.59
o (3.59)

The exponents y; are precisely the scaling exponents* a and b (times d) of
Eq. (3.34), since the singular part of the free energy density transforms like

fit,.t,,--2) = r‘df(ry'tl, t,,-+) (3.60)

Therefore all critical exponents can be obtained from the eigenvalues of the lin-
earized renormalization-group transformation at the fixed point. To find these
eigenvalues is the prime objective of renormalization-group calculations.

The character of a fixed point is determined by whether the eigenvalues A; are
greater or smaller than 1, or equivalently whether the exponents y, are positive or
negative. A fixed point with positive and negative exponents is called hyperbolic be-
cause of the shape of renormalization-group trajectories near J.. A two-parameter
example is illustrated in Fig. 3.2. The critical surface (which is a line on the figure)

4 The reduced temperature may undergo a sign change, since J; oc 1/T, but this does not affect the
critical exponents.
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is the set of points in coupling space whose renormalization-group trajectories end
up at the fixed point:

lim T"(J) =], (3.61)
n—0o0
The critical surface near J_ is a vector space spanned by the eigenvectors u; such

that A; < 1. Off the critical surface, the system is taken away from it by the
renormalization-group flow.

J2

J1

Figure 3.2. Schematic renormalization-group flow around a generic hyperbolic fixed point.

A parameter ¢; associated with a positive scaling exponent (A; > 1) is called
relevant, since it grows under renormalization-group flow (i.e., when the system
is scaled away from criticality). If, on the contrary, y; < 0 (; < 1), ¢ is said to be
irrelevant, whereas if y; = 0 (A; = 1) it is marginal. Marginal operators do not
scale with a power law behavior near a critical point, but rather logarithmically;
the linear approximation around the fixed point J, is then invalid.

The existence of critical surfaces and fixed points is thought to explain the uni-
versality of critical exponents (i.e., that many different systems are characterized
by the same critical exponents). In other words, statistical systems seem to fit into
universality classes whose members share the same critical behavior. This can be
understood if different systems live on submanifolds of one large coupling space,
and if these submanifolds intersect the same critical surface. At criticality, all of
these systems will be (presumably) driven toward the same fixed point, with the
same scaling exponents.

3.3.2. The Ising Model on a Triangular Lattice

In order to illustrate some of the previous statements we will perform an ex-
plicit real-space renormalization-group calculation for the Ising model living on a
triangular lattice.
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The block structure is indicated on Fig. 3.3. The Ising Hamiltonian is written
as

(1)
H(k,h) = -k Y o,0,—h) o, (3.62)
(i) i
Each lattice site has 6 nearest neighbors. A block I is made of three spins, which
we call of, ol and of . We define the block spin Z; as

T, = sgn(o] + 0} +03) (3.63)

In other words, X, adopts the sign of the majority. The three spins within a block
lead to 23 = 8 different states, which makes four different states for the internal
variable §; and two for the block spin X,. The four states are chosen to be

E] . (+r +; _) » (+1 > +) ’ (_7 +: +) » (+r +’ +) (3'64)
and the actual state of the spins o; is obtained by multiplying by £, = £1.

AAA’/_\AA/—\'
A
A

S D p
S O p D n
A A A A

Figure 3.3. Block spins on the triangular lattice.

We decompose the Hamiltonian into the sum of a “free” part H;, containing
only the interaction within blocks, plus an “interaction” part V containing the
interaction between blocks and with the external field:

H,= —kz Z 0;0;
1

(i)
(ijel)

=k D o0 —h) > 0

an G 1 el
iel jeJ

(3.65)

We also define the following expectation values in which only the variables internal
to a block are summed:

(FIS) = Z7' ) FIZ, Elexp —H,([Z], [€]) (3.66)
t3]

Z; =) " exp—H,([Z], [§]) (3.67)
£3]



§3.3. The Renormalization Group: Lattice Models 79

According to (3.53), the block Hamiltonian H(k’, %’) is defined by
exp—HK', W) = Zc(e") (3.68)

The “free” partition function Zf is easily calculated, since different blocks do not
interact within H ;:

z, =27}
where Z,, is the sum over states within a given block:
Z,= Y exp (=} 2} + 2+ D)
o1 (3.69)
=3¢k 4 %
This last step follows from Eq. (3.64), wherein three states have energy k and one

state has energy —3k.
The expectation value (e¥) can be expressed as a cumulant expansion:

€’y = exp{<V> + %(<V2> - <V>2)+-»-} (3.70)

At this point we will make the approximation of keeping only the first term of
this expansion. This amounts to neglecting the fluctuations of the interaction term
within each block. The expectation value (V) is relatively easy to calculate. We
start with the block-block interaction V;. There are two elementary links between
a pair of nearest-neighbor blocks and, as shown in Fig. 3.4, the interaction V, is

vV, = —kZi(=! + ) (3.71)
Since the expectation value within different blocks factorizes, we have
(V) = —2k(Z))(Z5) (3.72)

where (2’ ) is the same for all i = 1, 2, 3. The expectation value (2 ) is readily
calculated:

(T =Z5' ) Ehexp—k(Z1T] + B} T4 + B %))
& (3.73)
=Z;'(e* + ez,
where we have used the definition (3.63) for the block spin X,. Consequently, the
mean interaction term between blocks is

e3k +e—k

Since the average interaction with the external field involves only the expectation
value (E ), we find

e3k +e——k 3k +e—k
(V) = —2k (e3k - 3e—k) Y 53, ( )h Yz, (375

)
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To first order in the cumulant expansion, the block-spin Hamiltonian is therefore
HK ,hW) =3 InZ, + (V) (3.76)

The first term is independent of X, and may be ignored (except if one is interested
in the value of the free energy F). We therefore end up with the following map
between the block-spin couplings and the original ones:

2
k/ — 2k(e;<k+e-k)
e3k 4 3eg—k

3k —k
W= (__L_)
e3k + 3ek

2 2
3
1 1
Figure 3.4. Interaction between block spins in the nearest-neighbor Ising model on the
triangular lattice.

3.7

The renormalization-group (RG) flow associated with the above map is illus-
trated schematically in Fig. 3.5. There are 9 fixed points on this diagram, corre-
sponding to the possible combinations of h = 0, —o00, co andk = 0, k_, oo, where
k. is determined by the equation

1 ek ek 1
5= (W) = k.= 7InQ1 +2+/2) ~ 0.336 (3.78)

The fixed point (k, ) = (k_, 0) is unstable in both directions and corresponds to
a continuous phase transition. Near this point, the RG flow admits the following

linearization:
k'Y (162 O 8k
()= (" 23) (%) 679

with the eigenvalues A, = 1.62 and A, = 2.12. Since the scale factor for the
triangular matrix is 7 = /3, the free energy density scales as

flk, h) = r3f(r*%Bk, r-3h) (3.80)

The critical exponents can be calculated from (3.39) and from the scaling laws of
Table 3.2. We list them here, together with the exponents obtained in the exact
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solution of the same model:
o B 14 é v n

RG: —-0.27 0.72 0.84 2.17 113 1.26
exact: 0 % % 15 1 %

Notice that the simplest RG calculation described here is not very successful at
predicting the exponent 7. The difference between its predictions and the exact
exponents is attributed to the approximation made in neglecting higher-order terms
in the cumulant expansion. If these terms were considered, more couplings would
have to be included in order for the effective block Hamiltonian to have the same
form as the original Hamiltonian, but a better agreement with the exact result would
be found.

(0,00) (oo’oo)
h
(0,0) - 50 (00,0)
(0,—00) [ 2 -

Figure 3.5. Schematic renormalization-group flow for the Ising model on a triangular lattice.
The k and h axes have been contracted to display the points at infinity. The completely
unstable fixed point (k.,0) corresponds to the continuous phase transition, whereas the
other fixed points are associated with phases (with or without an external field).

The other fixed points in Fig. 3.5 do not have the interpretation of phase tran-
sitions governed by temperature. Recall that the physical inverse temperature
B = UT is included in the definitions of the coupling k and of the field /. The
“physical” field is rather # = Th. Thus, the fixed point (k, /) = (0, 0) corresponds
to infinite temperature and small field 2 and describes a disordered phase. This
point is unstable when an “infinite” field /4 is turned on and a nonzero magnetiza-
tion then appears, in one direction or the other. These ordered states are described
by the points (0, +00). At the other extreme, the fixed point (k,2) = (00,0)
corresponds to zero temperature and describes an ordered phase in the absence
of a field. It is unstable against an infinitesimal field /2, which drives the system
into a state of nonzero magnetization, described by the points (0o, 00). In gen-
eral, stable fixed points describe stable phases of the system. This interpretation
is natural since the correlation length decreases along the RG trajectory and the
statistical mechanics of the system becomes simpler, since more and more degrees
of freedom have been eliminated. The unstable fixed points located between the
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basins of attraction of stable fixed points are, on the contrary, associated with phase
transitions governed by temperature (e.g., (k, #) = (k_, 0)) or by other parameters
(e.g., (k,h) =(0,0)).

§3.4. The Renormalization Group: Continuum
Models

Block-spin—or real-space—renormalization is an intuitive procedure designed for
lattice models. If we want to apply renormalization ideas to continuum models, be
it in the context of statistical mechanics or that of quantum field theory, a different
procedure is needed, namely momentum-space renormalization. In what follows,
the term action functional is used instead of energy functional, as it should be in
statistical mechanics, since we have quantum field theory in mind and will refer
to scale transformations as defined in Chap. 2.

3.4.1. Introduction

For the sake of introduction, we consider a statistical model defined in terms of a
single scalar field ¢(x) in d-dimensional space (boldface letters denote vectors).
The field ¢(x) may be Fourier decomposed as follows:

d?k
2nyH
The action functional S[¢] may be expressed in terms of the Fourier components
@(k). For instance, the action for the ¢* theory in Eq. (3.19) becomes

Stgir,ul = [ (@) 3P0 +7)

o(x) = f (dk) 3(k) e (dk) = (3.81)

+ g [ (@l )y Dk, — by Ryl )k
(3.82)
In general, we write the action as S[¢; u;], where u; stands for the collection of
parameters multiplying the various terms of the Lagrangian density.

Naturally, the continuum theory is defined only through some regularization
procedure, which we take here as a cutoff A, meaning that the integration is
restricted to the region of momentum space such that all arguments k of @(k)
lie within the cutoff: |k| < A. The Fourier decomposition (3.81) amounts to a
unitary transformation of the degrees of freedom, as could easily be seen in a
discrete version of the Fourier transform for a finite lattice of points. Therefore,
the functional integration measure may be formally written as

[dol, = [[de) = [ detk) (3.83)

kl<A

since no Jacobian arises from the change of integration variables ¢(x) — (k).
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The first step of the renormalization procedure’ consists in integrating out the
Fourier components @(k) such that A/s < |k| < A (the so-called fast modes),
where s is some dilation factor (s > 1). The number of degrees of freedom is
then effectively reduced, with a new cutoff equal to A/s. The remaining degrees
of freedom (the slow modes) are governed by a modified action S'[¢; ;]

exp—Stpiui= [ T[] k) expStgiu] (3.84)
Als<lk|<A
As long as we are interested in correlation functions of slow modes only, the
effective action S’ is entirely equivalent to the original action S which includes
fast modes.
The second step of the renormalization procedure is a scale transformation on
the slow-mode action, as defined in Eq. (2.121):

k—>k'=sk or x—>x' =x/Is (3.85)

Here the scaling factor A is 1/s. In general such a transformation also affects the
field:

o(x) —> ¢'(xls) = s2p(x) or §(sk)=s>"4p(k) (3.86)

The exponent A is the scaling dimension of the field ¢ and is related to the exponent
n: A = /2. Such a transformation of the field affects the functional integration
measure only through a multiplication factor. After this rescaling, the modified
action S’ can be rightfully compared with the initial action S, because they now
have the same cutoff A, that is, the same set of degrees of freedom (this was not
true before rescaling). As said above, the two actions S and S’ are equivalent as far
as the slow modes are concerned: they describe the same long-distance properties.
However, the parameters u; defining these two action functionals are different in
general: S'[p] = S[y; u/].5 We thus generate a curve u,(s) in parameter space (s is
the rescaling factor), and each point on this curve defines an action functional with
the same long-distance properties. The outcome of the renormalization procedure
can be expressed in a set of coupled flow equations in parameter space:
du;

Tins — B;(u;) (3.87)

where g, is commonly referred to as the beta function associated with the parameter
u;. Like before, a fixed point u; of the renormalization group is a point in parameter
space that is unaffected by the renormalization procedure. In other words, it is
characterized by a vanishing beta function:

B, =0 (3.88)

5 This procedure is known as the Wilson-Kadanoff renormalization scheme.

6 This equation supposes that the scaling dimension A has been chosen appropriately; otherwise,
the two actions are not equal, but differ by a multiplicative constant. Also, the number of parameters
needed for the new action to be of the same form as the old action is in principle infinite. In practice,
however, one keeps only a finite subset of parameters: relevant and marginal ones. Irrelevant parameters
(in the RG sense) rapidly decrease under RG flow.
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To summarize, arenormalization-group transformation amounts to a scale trans-
formation applied both to the action and to the integration measure (i.¢., the Fourier
modes that would be scaled beyond the cutoff A are integrated out). A fixed point
of the renormalization-group transformation thus defines a theory that has scale
invariance at the quantum level.

THE GAUSSIAN MODEL

The simplest example of a continuum model for which the renormalization pro-
cedure can be carried out exactly is the free boson, or Gaussian model, obtained
from Eq. (3.82) by setting u = O:

Slg; ] = fA (@8) 5 RFRE +7) (3.89)

In this model the fast and slow modes are decoupled, since different values of the
wavevector do not mix in the action. Therefore, integrating the fast modes produces
only an irrelevant multiplicative constant in front of the partition function. The
effective slow-mode action is then

Stol= [ (@) S6(-RFRE +1)

Als

=s f (dx’) %(Z(——k’/s)(p(k’/s)(k'z/sz +7) (3.90)
A

= 1282 [ (@) RV EE? +5%)
N 2

We immediately see that S’, in terms of ¢’, has the same form as S[¢], provided
r =0and A = 1d — 1. This we knew already from Eq. (2.124). In this particular
case, the scale transformation on the path-integral measure brings nothing new and
the scaling properties all follow from the action alone. Thus, the massless (r = 0)
Gaussian model is a fixed point of the renormalization group—in fact, the simplest
of all fixed points from the present point of view.

3.4.2. Dimensional Analysis

We consider a field ¢ (not necessarily a scalar field) governed by an action func-
tional S[¢] and let us assume that there exists a fixed-point action S,[¢] (not
necessarily Gaussian) at some point in parameter space, which we take, for con-
venience, as the origin. In the vicinity of this fixed point, the generic action S[¢]
may be expressed as

S[#] = Solpl + D f dx O,(x) (3.91)

where the O;(x)’s are some local operators, expressible in terms of the field
¢. The couplings u; must be small if we are close to the fixed point. Un-
der a renormalization-group (scale) transformation, the field ¢ transforms like
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@' (x) = s®@(sx) and only S [¢] is invariant. The other terms are modified through
their couplings:

S'81 = oo+ Y uits) [ dx 0,60 (3.92)

In principle, the series on the r.h.s. may be infinite, and the transformed couplings
u; may depend on s in a complicated way, because of the functional integration of
the fast modes. We assume, however, that the couplings «; are so small that they
have a negligible effect on the fast mode integration. In this approximation, the
new couplings «; may be obtained simply from the behavior of the operators O,
under a scale transformation, which follows from the expression of O; in terms of

o:
Oi(x) = s*O;,(sx)

393
uifdeQ(x)zu,-sA"‘dfdei(x) 399

Therefore

u, = u;s4N (3.94)
In other words, in this zeroth-order approximation, the dimensions of couplings
are obtained from the scaling dimension A of ¢ by applying dimensional analysis.

Adopting the terminology of the previous section, a coupling is said to be
relevant if A; < d: It will grow as the fast modes are integrated. An irrelevant
coupling is such that A; > d, and will shrink as the fast modes are integrated. At
last, a marginal coupling will stay the same, or rather vary logarithmically near
the fixed point.”

For instance, we now look at some operators within the Gaussian model. The
first operator that comes to mind is the mass term O, = %(pz, with coupling r. With
Gaussian scaling (i.e., A = %d —1) we find that A, —d = —2,and hencer’ = s?r.
This, of course, was already known from Eq. (3.90). Thus, the mass term is relevant
at the Gaussian fixed point, in all dimensions. This is a trivial statement since we
know from Chap. 2 that the mass is the inverse correlation length (1 ~ £~') and
that £ decreases under scaling (£ = &/s). The quartic coupling of the ¢* theory
is associated with the operator O, = ¢*, with A, — d = d — 4. Thus the quartic
coupling u is relevant in dimensions smaller than four, irrelevant in d > 4, and
marginal in d = 4 (still at zeroth order). At this order, it looks as if any (positive)
value of u yields a fixed point ind = 4.

7 It is important to keep in mind that the scaling dimensions of operators, or the relevance or irrele-
vance of couplings, depends not only on the form of these operators in terms of ¢, but also on the fixed
point considered.
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3.4.3. Beyond Dimensional Analysis: The ¢* Theory

To go beyond dimensional analysis, we generally use perturbation theory: We
expands the exponential exp —S in powers of the perturbing coupling. The problem
is then reduced to the calculation of Gaussian correlators, which can be done using
Wick’s theorem. Since we will make little use of perturbation theory in this work,
this method is not reviewed in these introductory chapters; again we refer the reader
to the standard texts on quantum field theory. Here we simply cite known results.

To first order in u and r, perturbation theory leads to the following
renormalization-group transformation of the couplings:

Y =s¥(r + ub(l — s29))

u =5

(3.95)
with
b=K,A"Y2d—-4) , K;'=@m¥rdnr)2 (3.96)

In matrix form this becomes

! 2 2 _ 4—d
(-6 ) @) em

We recall that the proper couplings ¢; of Eq. (3.58) are obtained by diagonalizing
this matrix. The eigenvalues and eigenvectors are

A’l =32 ul =(1:0)

(3.98)
A=s*4  uy=(=b,1)
Since by definition (r, u) = t,u, + t,u,, we have the proper couplings
t,=r+bu t,=u (3.99)

At this order, there is a critical line in d > 4 specified by the equation ¢, = 0, or
r = —bu.Ind = 4, it still looks as if any value of z, = u constitutes a fixed point.

However, this picture breaks down once we take into account higher orders of
u in the perturbation expansion. At second order, we find that

&2 u 1.9 =2y
r=s [r+—16712 (2A (1—-57%) rlns)]

3u?
! _ o4—d
u=s [u—- 16”21113]

The quartic coupling then receives logarithmic corrections in d = 4. This RG
mapping is better expressed by the corresponding beta functions:

(3.100)

dr g YT uA?
— —'—'—2 —

d;;s 167 ;6::2 (3.101)
(4 _ _ 2

dins ~ 4~ Du— g 5u
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This shows the emergence of a new (non-Gaussian) fixed point at 7, u # 0, whose
location is readily found from the above beta functions:

1672 , d—4
= (4—-4d) r=—
It is a straightforward exercise to linearize the flow (3.101) around this new fixed
point and to find the critical exponents. For reasons that will not be explained
here, the critical exponents of the ¢* theory (and of other Gaussian-like models)
are calculated in the form of a series in powers of ¢ = 4 — d (the so-called
e-expansion). Each additional order in perturbation theory leads to the correct
evaluation of a new term of this expansion. To order &2, the exponents of the *
theory are calculated to be

1 1 2 2
v=5+]"2“8+0(€) 17=0+O(8) (3.103)
The ¢* model in d = 4 clearly illustrates that scale invariance of the action (here
on the line r = 0) does not guarantee scale invariance at the quantum level (i.e.,
a renormalization-group fixed point). This breakdown of dimensional analysis is
due to interactions.

*

u A2 (3.102)

§3.5. The Transfer Matrix

A powerful way to solve the Ising model and other related statistical models is
the transfer matrix method, which is the analogue in statistical mechanics of the
operator formalism in quantum field theory. In this section we will describe this
formalism and indicate how it can lead to an analogy between quantum field
theories and statistical systems near criticality.

Again, we turn to the Ising model on a square lattice with 72 rows and » columns.
A spin is here indexed by two integers® for the row number and column number,
respectively, and we will impose periodic boundary conditions

o;; Oitmj = Ojj (3.104)

(o £} ij

ij+n — i

thereby defining the lattice on a torus. Let us denote by u; the configuration of
spins on the i-th row:

MH; = {Uilr Oi2r° " Gin} (3.105)

There are 2" such configurations. The row configuration u; has an energy of its
own:

n
k=1

8 The two indices will be separated by a comma only when necessary to avoid confusion.
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as well as an interaction energy with the neighboring rows:
n
Elp, ml =) _oy0, (3.107)
k=1

We next define a formal vector space V' of row configurations spanned by the |w,),
for which we introduce a “bra-ket” notation in analogy with quantum mechanics.
On this space, we define the action of the transfer matrix T by its matrix elements:

! 1 1 ’
(uIT|w') = exp—B(Eln, u'] + Elul + SElu 1) (3.108)
In terms of the operator T, the partition function has the following simple form:

Z= ) ()ITlu) (i) Tlts) - - | Tlty)
K1y bm (3.109)
=T T"

The transfer matrix defined in (3.108) is manifestly symmetric, and therefore diag-
onalizable. The partition function may be expressed in terms of the 2" eigenvalues
A of T:

271
Z=>) A} (3.110)
k=0

The thermodynamic limit is obtained when 72,72 — oo. In this limit, the free
energy can be extracted by keeping only the largest eigenvalue of 7', assuming, for
the sake of argument, that it is nondegenerate. Indeed, the free energy per site f is
given by

) 1
—fIT = lim —In(A7+ AT +--)

m,n—00 Mmmn

1
= lim —{mA,+ In(1+ (A /A" +--1)} (3.111)

m,n—>00 Mn

InA
= lim 0
n—00 n

since A,/A, < 1. The calculation of more complicated thermodynamic quantities
requires the knowledge of more eigenvalues.

In order to express correlation functions in terms of the transfer matrix, we
introduce a spin operator 6; acting on V and giving the value of the spin on the
i-th column when acting on basis vector |u):

Gl = o;l) (3.112)



§3.5. The Transfer Matrix 89
Then

1 ~
(040iri) = 7 > (g Tlg) - (16T gy ) - -+
n

15 Mm

A 18 T 1) - (| T2y (3.113)
T (17T &)
- Tr T

This should be reminiscent of the passage from the operator formalism to the path
integral formalism in Euclidian quantum field theory. The transfer matrix here
plays the role of the evolution operator U(a) over a “distance of time” equal to the
lattice spacing a. In other words, one can define a Hamiltonian operator H as

T = exp—aH (3.114)

The eigenstates of T are the analogue of the energy eigenstates of quantum
mechanics, the eigenvalues E, of H (the energy levels) being expressed as

1
E =——InA, (3.115)

in terms of the eigenvalues of 7. Therefore, the free energy density f/a? is propor-
tional to the vacuum energy per site, or the vacuum energy density in field theoretic
language:

E
fla? = lim —2° (3.116)
n—>oo na

The magnetization (aij) in the thermodynamic limit is
(o)) = lim (Tr 7)1 Tr (6 T™)
nm-—o00

= lim e EE) N (015, |1) (3.117)
1

where we have inserted a complete set of 7 eigenstates, which reduces to [0) (0] in
the limit m2 — oo because of the exponential factor. The statistical average of the
spin is therefore given by the “vacuum expectation value” of the corresponding
operator S. This applies to any local quantity and its operator.
Likewise, the pair correlation function can be expressed in the thermodynamic
limit:
511S14r1) = 'Ji_r’nm( Tt T™) 'Te T™"S, T'S,)

= lim &m0y (0™ BS 11l HS,10)  (3.118)

n—>00 7

= (57,0 + 0[S, |1} > exp —ra(E, — E;) + - - -
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The connected correlation function in the long distance limit (r > 1) is therefore
(S11514r.1) ~ [{0IS,11)1? exp —ra(E, — E,) (3.119)

The energy gap E, — E, is the mass m of the field quantum: It is the energy of
a particle at rest. The relation between the correlation length and the mass of the
associated Euclidian quantum field theory is therefore

E= 1 (3.120)

ma

Near a critical point the correlation length grows without bounds and correspond-
ingly the mass goes to zero (for fixed a). In other words, the largest eigenvalues
of the transfer matrix coalesce at the critical point.

To summarize, we have shown how a lattice model can be described in an
operator formalism, which makes clear the very close analogy with Euclidian
quantum field theories. The free energy density is then the vacuum energy density,
the pair correlation function is the field’s propagator, and the correlation length
is proportional to the inverse mass. A system at the critical point is therefore
equivalent to a massless field theory, provided the lattice spacing a is not exactly
Zero.

Exercises

3.1 The binomial distribution

Consider a set of N particles moving almost freely in a box of volume V, with occasional
collisions among themselves. The probability that a given particle be within the left half of
the box at any moment is % . If we neglect the volume of the particles, i.e., if the density of the
gas is not too large, then the fact that a particle is in the left half of the box is independent
of the situation of other particles, and the number n of particles in the left half obeys a
binomial probability distribution:

N!
n!(N —n)!
a) Compute the expectation value of the binomial distribution, namely the quantity (n) =
Zf:o nP(n), which represents the average number of particles in the left half of the box.

P(n) = 27N

12
b) Compute the standard deviation An = ((n — (n))z) .

c) By expanding the probability P(n) around the mean value (), find the thermodynamic
limit of the distribution P(n).
Result: Writing n = g + &, and using Stirling’s formula

1
Inx! =(x+ E)lnx -x+ %ln27t+0(1/x)

N 22
P ~ / 2 _2eN-DeN
(= +¢) Ne

for large x, we find that
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Hence, in terms of the scaling variable x = 2e//N , the thermodynamic distribution
becomes the Gaussian distribution

1 .
P(X) = ﬁe

3.2 The one-dimensional Ising model
We consider the one-dimensional Ising model, with energy (3.6). We introduce the scaled
variables K = —J/kgT and H = h/kgT.

a) Show that the partition function on a chain of N sitesi = 1, .., N, with periodic boundary
conditions N 4+ 1 = 1, can be expressed as the trace

Zy(K,H) = Z exp {KZS,‘S,’-FHZS,'}

si=%1 (€67} i
SN+1=S]

- Tr(T(K, HN )
where T(K, H) is the 2 x 2 transfer matrix of the model. Show that T(K, H) is

K+H -K
6. =% Sin)

in the basis (41, —1) for s.

b) Compute the thermodynamic free energy

f(K,H) = A}méo —(1/N)InZn(K, H)

Hint: (Zy)""N is dominated by the largest eigenvalue of the transfer matrix T, namely

Amax = €5 cosh(H) + /e~2X + e2K sinh(H)
¢) Compute the magnetization M = —df/dK. Show in particular that the magnetization
is linear for  small (M ~ he*X). Deduce that the magnetic susceptibility diverges at
zero temperature. Show that there is no phase transition at finite temperature for the one-
dimensional Ising model.

d) Compute the spin-spin correlation in the thermodynamic limit.
3.3 Free energy of the one-dimensional Potts model

In the g-state Potts model, the spin variable s; takes g possible values, in the set {0, 1, ...,g —
1}. The energy of a configuration reads

E(sl 1 ooy SN) = —J Z 83,',5,’
(i)
and we use the scaled variable K = J/kgT.

a) Write the transfer matrix T of the one-dimensional model with periodic boundary
conditions in terms of the g x ¢ matrix J, with all entries equal to 1.
Result: T = (eX — 1)I + J.

b) Compute the thermodynamic free energy of the one-dimensional g-state Potts model.
Hint: Note that J?> = qJ, and use this fact to compute Tr(TN).
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3.4 Transfer matrix for the two-dimensional Ising model
The two-dimensional Ising model with spins s;; sitting at the vertices (i, j) of a square lattice
of size N x L in zero magnetic field has the energy

Els] = =J ) sisu
(@NKD)
where the sum extends over all the bonds of the lattice. We use the scaled variable K =
JikgT.
Write the row-to-row transfer matrix for this model, namely the 2% x 2¢ matrix T; (K), such
that the partition function Zy ; with periodic boundary conditions reads

Zvu(K) = Tr(TL(B))

3.5 Numerical diagonalization of transfer matrices

a) Given a symmetric indecomposable 7 x r matrix 7', show that it has a unique maximal
eigenvalue A, Let vy, denote the corresponding (normalized) eigenvector.

b) We define the sequence of vectors vy, Vv, V2, - - - Where vq is arbitrary and the other
members of the sequence are defined by recursion: v,,.; = Iv,/|Tv,| (x| denotes the
Euclidian norm of x). Show that if the scalar product v - Vpax does not vanish, then the
sequence v,, converges exponentially fast to v pax.

Hint: Decompose v in the orthonormal diagonalization basis of 7'.

¢) Using the above, write a computer program to extract the largest eigenvalue of a symmetric
matrix T.

d) Application: Evaluate numerically the thermodynamic free energy of the two-
dimensional Ising model on an infinite strip of width L, at the known critical value of
the coupling K = K, = —(1/2)In(+/2 — 1). (Use Ex. 3.4 above for the definition of the
relevant transfer matrix.) Plot the results for various widths L. Fit the results with the ansatz

T 1
fo = Lfo— BZC+O(17)

and evaluate the constants f and c. The quantity c is the central charge of the corresponding
conformal field theory. Its exact value for the two-dimensional Ising model is ¢ = 1/2.

Notes

There are many excellent texts on statistical mechanics; we cannot list them all here. The
very thorough and pedagogical text by Diu and collaborators [106] deserves special men-
tion. Texts by Ma [261], Huang [194] and Pathria [292] are widely used. Among texts
emphasizing critical phenomena are those of Amit [13], Binney et al. [47], Le Bellac [253],
Ma [260] and Parisi [287].

Some discrete statistical models are described and solved using transfer matrix tech-
niques in Baxter’s text [31]. The scaling hypothesis for the free energy was introduced
by Widom [355]. The idea of introducing block spins to calculate critical exponents is
due to Kadanoff [222). Applications of the renormalization group to critical phenomena
were initiated by Wilson and are described in Ref. [357]. The real-space renormalization
group treatment of the Ising model on a triangular lattice was done by Niemeijer and van
Leeuwen [282]. The emergence of conformal invariance at critical points was shown by
Polyakov [295].



