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Before proceeding, one should consult our notes on Hensel’s Lemma, where some subtle differ-
ences in definitions between Zariski & Samuel and Atiyah & Macdonald are discussed. In these
notes, a local ring is not assumed to be Noetherian and a ring is complete if every Cauchy se-
quence converges and the intersection N, m” is zero (these follow A&M, not Z&S). However, with
the conventions of Z&S the same statements with the same proofs are true. In Z&S local rings
are Noetherian but completeness does not include the intersection requirement. But all we need
is that A has one maximal ideal, limits for Cauchy sequences and N, m"™ = 0 - so either set of
hypothesis will do.

Definition 1. Let A be a local ring A with maximal ideal m. We call A an equicharacteristic
local ring if A has the same characteristic as its residue field A/m. A field of representatives for A
is a subfield L of A which is mapped onto A/m by the canonical mapping of A onto A/m. Since
L is a field, the restriction of this mapping to L gives an isomorphism of fields L = A/m.

Lemma 1. Let A be an equicharacteristic local Ting with mazimal ideal m and characteristic
p#0. If mP = (0) then A admits a field of representatives.

Proof. Let AP be the set of all elements a? where a ranges over A. Then AP is obviously a subring
of A. If a? is any nonzero element of A, then since mP = (0) we must have ¢ ¢ m and consequently
a is a unit in A. If ay = 1 then y? is an inverse for xP in AP, and therefore AP is a subfield of A.
Among all the subfields of A containing AP, Zorn’s Lemma produces a maximal subfield L. Let
@ : A— A/m be canonical. We claim that ¢(L) = A/m.

Assume to the contrary that there is « € A/m with a ¢ ¢(L). Since a? € p(AP) C (L) the
minimal polynomial of a over ¢(L) is 2P — o (see our notes on purely inseparable extensions).
Let a € A be a representative of a, ¢(a) = a. Then a ¢ L and the isomorphism L 2 ¢(L) induces
a chain of ring isomorphisms

Lla] = Llz]/(a? — a”) = p(L)[x]/ (2" — o) = o(L)(a)

Hence L[a] is a subfield of A, contradiciting the maximality of L. We conclude that (L) = A/m,
completing the proof. O

Theorem 2. An equicharacteristic complete local ring A admits a field of representatives.

Proof. In the case in which A and A/m both have characteristic 0 the Theorem has already been
proved in a Corollary to Hensel’s Lemma. So we may assume that the characteristic of A and
A/m is a prime p # 0.

Since p > 2 the maximal ideal m = m/m? of the local ring A/m? satisfies the condition
m? = (0). Clearly A/m? satisfies the other conditions of the Lemma, so A/m? admits a field of
representatives Ko. For n > 1 let 1, denote the canonical map A/m"*! — A/m" and notice
that

G (m/m") = m /! (1)

For n > 2 the ring A/m™ is an equicharacteristic local ring. We now construct by induction on
n > 2, a representative field K,, of A/m™ such that v,, induces an isomorphism of K, 1 onto K.

Suppose that K, has already been constructed. The inverse image 1, *(K,) is a subring R
of A/m™*! which contains the kernel p = m™/m"*! of ¢,,. Let & be any element of R not in a.



Then the image £’ of € under 1, is a nonzero element of K,,, and consequently is a unit in A/m™.
Hence & ¢ m/m™, and it follows from (1) that £ ¢ m/m"™*1 so £ is a unit in A/m™*L. If 5 is the
inverse of £ in A/m"*! then 1,,(n) € K,, and so by definition € R. Thus ¢ is invertible in R and
we have proved that R is a local ring with maximal ideal p. Since p = m"/m"*! and m?” C m"+!
we have p? = (0). Clearly both R and R/p = K,, have characteristic p, so the Lemma shows the
existence of a representative field K, 11 of R. Since R/p = K, it is easy to see that 1, induces an
isomorphism of K, ;1 onto K,,, and the canonical morphism A/m"*! — A/m is the composition
of ¢, and A/m™ — A/m, so the fact that K, is a representative field of A/m™ implies that K, 1
is a representative field of 4/m"*1,

Since A is complete we have ring isomorphisms A = A liLnA/m”. So given any sequence
of elements (1,)n>1 with 7, € A/m” there is precisely one element y € A admitting 7, as an
m™-residue for all n. Set K1 = A/m and let n = n; be any element of K;. Consider the elements

ne =11 (m), ms=v3 ), .o M1 =0, (),

with n; € K; for all i > 1. Denote by u(n) the unique element of A defined by this sequence. It is
readily verified that u(0) = 0,u(1) =1 and u(n+n') = u(n) + u(n’),ul(nny’) = u(n)u(n’), so u(K;)
is a subring of A. Furthermore, for every n # 0 in K; there exists an element 7’ in K; such that
nn’ = 1 whence u(n’) is the inverse of u(n) in u(K7). Therefore u(K;) is a subfield of A, and
by construction p(u(K1)) = K1 = A/m where ¢ : A — A/m is canonical, so we have found a
representative field of A. O

The following is Proposition 10.24 of A&M and Theorem 7 in Section 3 of Ch. VIII in Z&S.

Lemma 3. Let B be a ring, a an ideal of B, M an B-module, (M,,) an a-filtration of M. Suppose
that B is complete in the a-topology and that M is Hausdorff in its filtration topology. Suppose
also that G(M) is generated over G(B) by a finite set of homogenous elements &1, ..., &, of degrees
n(i). If x5 € My is equal to & in My ;) /My then the elements xy,...,x, generate M over
B.

Corollary 4. An equicharacteristic complete reqular local ring A is either a field or has dimension
d > 1 and is isomorphic to a formal power series ring over a field in d variables.

Proof. A regular local ring of dimension zero is a field, so assume d > 1, let m be the maximal
ideal of A and let aj,...,aq be a regular system of parameters with m = (a1,...,aq). By the
previous Theorem, A admits a representative field K. From our notes on Analytic Independence
there is a morphism of rings

v K[[z1,...,24)]] — A

which is injective by Corollary 2 to Theorem 21, Section 9 (see our Regular local ring notes). The
subring B = K|[[ay, ..., aq]] of A is a complete regular local ring with maximal ideal n generated by
ai,...,aq (in B), so we have mN B = n. Considering A as a B-module, we are in the situation of
the preceeding Lemma. We claim that Gy, (A) is generated as a G, (B)-module by the homogenous
element 1 of order zero. We have

Gu(B)=B/non/n*@...
Gu(A)=A/mom/m*a ...

It is standard that Gn(A) = (A/m)[a1,...,aq]. So it suffices to show that any monomial
kai'...a;* in the a; (which is a homogenous element of order >"n; in Gw(A)) belongs to the
submodule generated by 1. But the a; all belong to n and since K is a representative field
B/n > K 2 A/m, so we can manufacture such a monomial in G,(B) and simply multiply it by
1 € G (A) to produce the desired result. The preceeding Lemma now implies that A is generated
over B by 1, that is, A = B. So A is isomorphic to a formal power series ring over a field in d
variables, as required. O



