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A quiver is a nonempty directed graph (all our quivers and graphs are finite). We refer to
edges in a quiver as arrows. A composite arrow is a nonempty sequence of arrows in @ in which
every arrow begins at the end of the arrow preceeding it. A cycle is a composite arrow which
beings and ends at the same vertex. The length of a composite arrow is the number of involved
arrows. In a quiver without cycles, a composite arrow involves no repeated vertices. If @ is a
quiver, a root is a vertex r with no arrows ending at r. The set of root vertices is denoted 7(Q).

Lemma 1. Let Q be a quiver without cycles. Then r(Q) is nonempty.

Proof. Associate to every vertex the integer which gives the maximum length of a composite arrow
beginning at the vertex, which is finite since @ has no cycles (choose 0 if no such composite arrows
exist). We can assume that some vertex is assigned a nonzero integer, since otherwise the result
is trivial. If r is a vertex which maximises this integer, then r is a root vertex. O

Given any arrow a : v — w there is a composite arrow beginning at a root vertex and ending
at w whose last arrow is a. So if v is any vertex which is not a root, there is a composite arrow
beginning at a root vertex and ending at v. Thus the set P(v) of all composite arrows beginning
at a root vertex and ending at v is nonempty. The distance of a vertex v is the maximum of the
lengths of composite arrows in P(v).

Throughout @ will denote a quiver without cycles and C the path category of Q). For vertices
v, w let Q(v, w) be the set of arrows v — w in Q and C(v,w) the morphism set (so if v = w this
consists of the empty path, and otherwise it is the set of all composite arrows beginning at v and
ending at w). Since @ has no cycles, the category C has a finite number of morphisms.

Definition 1. A function J which assigns to every vertex v a sieve J(v) at v in C is called
consistent if for every vertex w either J(w) = t,, or

J(v) = U aJ(v) (1)
aege(gw)

Here aJ(v) denotes the sieve {af | f € J(v)} and t,, is the set of all morphisms in C with codomain
w. If the index set in (1) is empty then the union is the empty set.

Proposition 2. Let Q) be a quiver without cycles. If Q has m vertices, then there are 2™ consistent
assignments of sieves to vertices in Q.

Proof. We set up a bijection between functions @ — {0, 1} and consistent assignments of sieves.
Let g : @ — {0, 1} be given. For each root vertex r define

Jor) = {{m if g(r)

0
{y  ifglr) =1

If w is a vertex of distance 1, then the only arrows ending at w are of the form a : r — w where
r is a root vertex, so we can define

BWI=AU o adyv) i gw) = ®



Once we have defined J, on the vertices of distance n, we use (2) to extend J, to the vertices of
distance n + 1, and in this way we define J,; on all of Q). It is clear that .J, is consistent.
Conversely, given a consistent assignment J define

oy () = {o if J(w) =ty

1 otherwise

Next we show that J,, = J and g;, = g. Firstly, if r is a root vertex then there are only two
sieves at r: the empty sieve {} and ,. = {1,.}. So it is clear that J,,(r) = J(r). Then by induction
on the distance of vertices we see that J,, (w) = J(w) for all vertices w.

Notice that in (2) if g(w) = 1 then J,(w) is a proper sieve. So g(w) = 0 iff. Jy(w) = ¢, iff.
97,(w) =0, so g = g;,, completing the proof. O

Theorem 3. There is a bijection between Grothendieck topologies on C and consistent assignments
of sieves to vertices.

Proof. Let G be a Grothendieck topology on C. For every vertex v the covers at v are closed under
finite intersections, so

Gv)={T|T is asieve and T D Jz(v)}

where Jg(v) is the intersection of all covers at v. We show that Jg is a consistent assignment of
sieves. If r is a root vertex then either G(r) = {t,} in which case Jg(r) = t,, or G(r) = {{},t+}
in which case Jg(r) = {}, so the consistency condition is satisfied for root vertices. Let w be any
non-root vertex. If G(w) = {t,,} then Jg(w) = t,, and there is no problem. Otherwise, denote
the sieve U, ¢ aeq(v,u) @Jc(v) by T', and notice that since J(w) is a cover the pullback property
gives Jg(w) 2 T. So to show the consistency condition holds for w, it suffices to show that T
is a cover at w. For this we use the transitivity condition, and show that for all f € Jg(w) the
pullback f*T is a cover.

Since Jg(w) is proper, we can assume that f is a composite arrow ending in b : v — w. If
a:q — w is any other arrow ending at w then f*(aJa(q)) = {}, so

= fae() =1 0Ja) = (f —b)*Jav)

q€Q
a€Q(gq,w)

where f — b denotes the composite arrow obtained by deleting b off the end (with f —b = 1, if
f =10). Hence f*T is a cover and Jg is a consistent assignment of sieves.
In the other direction, suppose we are given a consistent assignment of sieves J, and define

Gy(v)={T|T is asieve and T D J(v)}

Clearly G j(v) contains the improper sieve for all v. Notice that since J is consistent, for any arrow
a:v — w we have a*J(w) D J(v). It follows that f*J(w) D J(v) for any morphism f:v — w
of C, which establishes the pullback property for G ;.

To check transitivity, let a vertex w be given, T 2 J(w) and S a sieve at J(w) such that f*S
is a cover for all f € T. If J(w) = t,, or J(w) = {} then S is trivially a cover. So we may assume
J(w) is proper and nonempty (hence w is not a root vertex) in which case by the consistency

condition

Jw)= |J aJ(v) (3)

VEQ
acQ(v,w)

To show that S is a cover, we must show that S O J(w). Let f € J(w) be given. It suffices to
show that f = hg for some h : v — w € T and g € J(v), since then h*S DO J(v) implies that
f € S. Using (3) there is an arrow a; : v7 — w and g1 € J(v1) with f = a1g1. If J(v1) = to,
then by consistency a; € J(w) € T and we are done. So we can assume that the equation (1)
holds for J(v1), and there is an arrow as : v2 — v1 and go € J(vg) with g1 = azge. Once again
we are done if J(ve) = t,,.



Proceeding in this way, we must eventually end up with g, = 1, , since there are only a finite
number of arrows in f. But then 1, € J(v,) C f*S implies f € S, as required. Hence G is a
Grothendieck topology. It is easily checked that G;, = J and Jg, = J, so we have established
the required bijection. O

Corollary 4. Let Q be a quiver without cycles with m vertices. If C is the path category of @Q,
then there are 2™ Grothendieck topologies on C. Explicitly, there is a bijection between topologies
G and subsets of the vertices of Q, given by

Sa ={veQ[G(v) = {t.}}



