
Hensel’s Lemma

Daniel Murfet

April 8, 2005

Let A be a ring which is complete for its a topology, where a is an ideal. We show how certain
relations occurring in the ring A/a (i.e., congruences mod a) may be “lifted” to analogous relations
occurring in the ring A itself. The completeness of A is essential for this purpose. If f ∈ A[x]
then we denote by f the image of f in (A/m)[x] under the canonical map A[x] −→ (A/m)[x].

Important 1. In Zariski & Samuel complete means that every Cauchy sequence converges, and
local means a Notherian ring with one maximal ideal. The only place where the Noetherian
hypothesis is used in the following Theorem is to show that ∩sm

s = 0, which is true for any
Noetherian local ring (see Atiyah & Macdonald Corollary 10.19).

Alternatively, in Atiyah & Macdonald complete means that the morphism A −→ Â is an
isomorphism, which is equivalent to every Cauchy sequence converging and ∩sm

s = 0, and local
means any ring with one maximal ideal.

The hypothesis necessary for the proof of the Theorem are: A must have one maximal ideal
m, admit a limit for every Cauchy sequence in the m-adic topology, and have ∩sm

s = 0. So in
anybody’s terminology, we require that A be a complete local ring.

Theorem 1 (Hensel’s Lemma). Let A be a complete local ring, m its maximal ideal, and
f ∈ A[x] a monic polynomial of degree n ≥ 1. Suppose there are coprime monic polynomials
G, H ∈ (A/m)[x] of respective degrees r, n− r (r ≥ 0) such that

f = GH

Then there exist monic polynomials g, h ∈ A[x] of degrees r, n− r with

g = G, h = H, f = gh

Proof. We recursively construct monic polynomials gi, hi ∈ A[x] such that f ≡ gihi (mod mi[x])
for all i ≥ 1, where gi = G and hi = H. Moreover we will show that the residues of gi, hi are
unique in the sense that if g′ = G, h′ = H and f ≡ g′h′ (mod mi[x]) then gi ≡ g′ and hi ≡ h′

(mod mi[x]).
Given G, H choose representatives for the nonzero coefficients (making sure to choose 1 for

1 + m). This defines two monic polynomials g1, h1 ∈ A[x] of degrees r, n − r with g1 = G and
h1 = H. Since

f = GH = g1h1

We have f ≡ g1h1 (mod m[x]). Now assume that gk and hk have been constructed and shown
unique for a certain k ≥ 1. We must construct gk+1, hk+1 and show they are unique. Our approach
is to find δ, ε ∈ mk[x] of degrees < r, n − r such that gk+1 = gk + δ, hk+1 = hk + ε satisfy the
necessary properties.

Since G, H are coprime they generate the unit ideal in (A/m)[x], so we can find polynomials
α, β ∈ A[x] with

1 ≡ αgk + βhk mod m[x] (1)

We have ∆ = f − gkhk ∈ mk[x] by the inductive hypothesis. Multiplying by ∆ we find that
∆ ≡ ∆αgk + ∆βhk (mod mk+1[x]). We want to replace ∆α, ∆β by polynomials with degrees
< r, n − r. Since hk is monic we may apply the division algorithm to produce γ, ε ∈ A[x] with
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deg(ε) < n − r and ∆α = γhk + ε. Since ∆α ∈ mk[x] we have 0 ≡ γhk + ε (mod mk[x]). Since
hk is monic it has degree n − r in (A/mk)[x] and so the uniqueness of the division algorithm in
(A/mk)[x] implies that γ, ε ∈ mk[x]. Then

∆ ≡ εgk + δhk mod mk+1[x] (2)

where δ = γgk + ∆β ∈ mk[x]. Since ∆ and εgk both have degree < n, so does δhk, which implies
that the degree of δ is < r. Considering the degrees of δ, ε we see that the polynomials gk+1 = gk+δ
and hk+1 = hk + ε are monic of degrees r, n− r. Further (calculating mod mk+1[x])

gk+1hk+1 ≡ gkhk + εgk + δhk + δε

≡ gkhk + ∆
≡ f

Since δε ∈ m2k[x] and 2k ≥ k+1. The fact that δ, ε ∈ mk[x] implies that gk+1 = G and hk+1 = H.
So it only remains to prove uniqueness.

Suppose g′, h′ are monic polynomials of degrees r, n− r such that g′ = G, h′ = H and f ≡ g′h′

(mod mk+1[x]). Then ε′ = h′ − hk, δ′ = g′ − gk have degrees < n − r, r. Then by the inductive
hypothesis the residues of gk, hk are unique, so ε′, δ′ ∈ mk[x]. Hence ε′δ′ ∈ mk+1[x]. Calculating
mod mk+1[x]

0 ≡ f − g′h′ ≡ f − gkhk − δ′hk − ε′gk − ε′δ′

≡ ∆− (ε′gk + δ′hk)

Subtracting this from (??) we have

0 ≡ µgk + νhk mod mk+1[x]

Where µ = ε− ε′ and ν = δ − δ′ have degrees < n− r, r. Multiplying through by α and using the
fact that by (??), αgk + βhk − 1 = m ∈ m[x], we have

µ ≡ (µβ − αν)hk − µm mod mk+1[x]

But µ ∈ mk[x] and m ∈ m[x], so it follows that µ is a multiple of hk in (A/mk+1)[x]. But in
(A/mk+1)[x] the polynomial µ has degree < n − r and hk has degree n − r. Hence µ ≡ 0 (mod
mk+1[x]). Similarly ν ≡ 0. Hence, calculating mod mk+1[x]

h′ ≡ hk + ε′ ≡ hk + ε ≡ hk+1

And similarly g′ ≡ gk+1, which completes the proof of uniqueness.

If 1 ≤ i < j then f − gjhj ∈ mj [x] ⊆ mi[x] so f ≡ gjhj (mod mi[x]). Hence by uniqueness
gi ≡ gj and hi ≡ hj (mod mi[x]). This implies that the sequences of coefficients are Cauchy in A
and hence converge to coefficients a0, . . . , ar−1 (for the gi) and b0, . . . , bn−r−1 (for the hi). Set

g = a0 + a1x + . . . + ar−1x
r−1 + xr

h = b0 + b1x + . . . + bn−r−1x
n−r−1 + xn−r

It is easy to see that g = G and h = H by using the convergence of the coefficients and the fact
that gk = G, hk = H for all k ≥ 1. We complete the proof by showing that f = gh.

Firstly, note that for 0 ≤ i ≤ n− 1

(gh)i − (gkhk)i =
i∑

j=0

(gjhi−j − gk,jhk,i−j)

=
i∑

j=0

(gj − gk,j)hi−j +
i∑

j=0

gk,j(hi−j − hk,i−j)
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Hence (gkhk)i −→ (gh)i for all 0 ≤ i ≤ n− 1. But

fi − (gh)i = fi − (gkhk)i + (gkhk)i − (gh)i

And fi−(gkhk)i ∈ mk by construction. Hence fi−(gh)i ∈ ∩sm
s. But ∩sm

s is zero in a Noetherian
local ring (see Atiyah & Macdonald Corollary 10.19), and consequenty f = gh, as required.

Recall that for a polynomial f(x) ∈ A[x] over an arbitrary ring, an element a ∈ A[x] is a simple
root of f if x− a divides f(x) but (x− a)2 does not divide f(x).

Corollary 2. Let A be a complete local ring, m its maximal ideal, and f(x) a monic polynomial
over A. Suppose that f(x) admits a simple root α ∈ A/m. Then there exists an element a of A,
having α as m-residue, and such that f(a) = 0. Moreover, a is a simple root of f(x).

Proof. Write f(x) = (x − α)G(x) where G(x) is prime to x − α. Then the Theorem shows
the existence of monic polynomials x − a, g(x) with a = α and g(x) = G(x) such that f(x) =
(x − a)g(x). If a were a multiple root of f(x) then we could write f(x) = (x − a)2h(x) for some
polynomial h(x). But then f(x) = (x − α)2h(x) would imply that α is a multiple root of f(x),
contradicting our assumption.

Example 1. There are many applications of Hensel’s Lemma. We highlight a few simple ones:

(1) Let m be the maximal ideal (5) in Z, and let A be the m-adic completion of Z. Then A is
a complete local ring whose maximal ideal m̂ consists of all Cauchy sequences (ai)i≥1 with
each ai a multiple of 5. The residue field of A is GF (5) since

A/m̂ ∼= Z/m = Z5

The polynomial x2 + 1 has two simple roots in GF (5), namely the classes of 2 and 3. Thus
it has two simple roots in the 5-adic integers.

(2) Let A be the m-adic completion of C[z] where m = (z). Then A is the complete local ring
C[[z]] with maximal ideal (z). Consider the polynomial f(x) = x2 − (1 + z) ∈ A[x]. Note
that

C[[z]]/(z) ∼= C[z]/(z) ∼= C

Since f(x) = (x− 1)(x+1) in (A/m)[x], Hensel’s Lemma implies that there are power series
α(z), β(z) ∈ C[[z]] with x2 − (1 + z) = (x − α(z))(x − β(z)) and α(z) = 1, β(z) = −1.
Reducing coefficients modulo (z) amounts to looking at only the constant term, so that
α(z) = 1+ . . . and β(z) = −1+ . . .. So Hensel’s Lemma implies the existence of power series
square roots for 1 + z.
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