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Let A be a ring which is complete for its a topology, where a is an ideal. We show how certain
relations occurring in the ring A/a (i.e., congruences mod a) may be “lifted” to analogous relations
occurring in the ring A itself. The completeness of A is essential for this purpose. If f € Alx]
then we denote by f the image of f in (A4/m)[z] under the canonical map A[z] — (A/m)[x].

Important 1. In Zariski & Samuel complete means that every Cauchy sequence converges, and
local means a Notherian ring with one maximal ideal. The only place where the Noetherian
hypothesis is used in the following Theorem is to show that Ny;m® = 0, which is true for any
Noetherian local ring (see Atiyah & Macdonald Corollary 10.19).

Alternatively, in Atiyah & Macdonald complete means that the morphism A — A is an
isomorphism, which is equivalent to every Cauchy sequence converging and Nysm® = 0, and local
means any ring with one maximal ideal.

The hypothesis necessary for the proof of the Theorem are: A must have one maximal ideal
m, admit a limit for every Cauchy sequence in the m-adic topology, and have Ngm® = 0. So in
anybody’s terminology, we require that A be a complete local ring.

Theorem 1 (Hensel’s Lemma). Let A be a complete local ring, m its mazimal ideal, and
f € Alz] a monic polynomial of degree n > 1. Suppose there are coprime monic polynomials
G, H € (A/m)[x] of respective degrees r,n —r (r > 0) such that

f=GH
Then there exist monic polynomials g, h € Alz] of degrees r,n — r with
g= Ga E = H7 f = gh

Proof. We recursively construct monic polynomials g;, h; € A[z] such that f = g;h; (mod m‘[z])
for all i > 1, where g; = G and h; = H. Moreover we will show that the residues of g;, h; are
unique in the sense that if ¢/ = G,h' = H and f = ¢’h/ (mod mi[z]) then g; = ¢’ and h; = I/
(mod mi[x]).

Given G, H choose representatives for the nonzero coefficients (making sure to choose 1 for
14+ m). This defines two monic polynomials g1, h; € Alz] of degrees r,n — r with g7 = G and
hy = H. Since

J=GH =gl

We have f = g1hy (mod m[z]). Now assume that gx and hj; have been constructed and shown
unique for a certain £ > 1. We must construct giy1, hr+1 and show they are unique. Our approach
is to find 6,¢ € mF[z] of degrees < 7,n — r such that gry 1 = gr + 6, hpr1 = hg + € satisfy the
necessary properties.
Since G, H are coprime they generate the unit ideal in (A/m)[z], so we can find polynomials
a, f € Alz] with
1 = agy + Bhy mod m[z] (1)

We have A = f — gphr € mF[z] by the inductive hypothesis. Multiplying by A we find that
A = Aagy + ABhi, (mod mFT1[z]). We want to replace Aa, AS by polynomials with degrees
< r,n —r. Since hy is monic we may apply the division algorithm to produce v,e € A[x] with



deg(e) < n —r and Aa = yhy + €. Since Aa € m*[z] we have 0 = vhy, + € (mod m*[z]). Since
hj is monic it has degree n — 7 in (A/m*)[z] and so the uniqueness of the division algorithm in
(A/mF)[z] implies that v, e € m*[z]. Then

A =egp+0h,  mod m*[z] (2)

where § = vgi, + AB € mF[z]. Since A and egp both have degree < n, so does 6hy, which implies
that the degree of § is < r. Considering the degrees of J, € we see that the polynomials gx1+1 = g +9
and hy. 1 = hj, + € are monic of degrees r,n — r. Further (calculating mod mF*1[z])

G111 = grhi + egr + Ohy, + ¢
= grhe + A
=f

Since de € m?*[z] and 2k > k+ 1. The fact that 6, e € m*[z] implies that gz11 = G and hyy = H.
So it only remains to prove uniqueness.

Suppose ¢’, b/ are monic polynomials of degrees ,n —r such that ¢’ = G, b’ = H and f = ¢'h’
(mod m**1[z]). Then ¢ = h' — h, &' = ¢’ — gr have degrees < n — r,r. Then by the inductive
hypothesis the residues of gx,hx are unique, so €, € m*[z]. Hence ¢/§’ € mF*![z]. Calculating
mod m*+1[z]

0= f - g/hl = f - gkhk - (5/hk - Elgk; — €y
=A-— (Elgk + 5lhk)

Subtracting this from (??) we have

0 = pgr + vhy mod m**1[z]

Where = € — ¢ and v = § — ¢’ have degrees < n — r,r. Multiplying through by « and using the
fact that by (??), agir + Bhr — 1 = m € m[z], we have

w=(ub — av)hy — pm mod m* 1 [z]

But ¢ € m*[z] and m € m[z], so it follows that u is a multiple of Ay in (A/mF+1)[z]. But in
(A/mF+1)[z] the polynomial p has degree < n —r and hy has degree n — r. Hence = 0 (mod
mF*+1[z]). Similarly v = 0. Hence, calculating mod m**1[z]

h/Ehk+€lEhk+€Ehk+1

And similarly ¢’ = gr.1, which completes the proof of uniqueness.

If 1 <4< jthen f— g;h; € m/[z] C m'[z] so f = gjh; (mod m‘[z]). Hence by uniqueness
gi = g; and h; = h; (mod m*[z]). This implies that the sequences of coefficients are Cauchy in A
and hence converge to coefficients aq, . ..,a,—; (for the g;) and by, ...,b,_,—1 (for the h;). Set

g=ap+ax+...+a_ 12"+ "

h=bo+biz+...4+bpp_1a™ "Ly

It is easy to see that g = G and h = H by using the convergence of the coefficients and the fact
that gy = G, hy, = H for all kK > 1. We complete the proof by showing that f = gh.
Firstly, note that for 0 <i<n—1

(gh)i — (grhn)i = > (g5hi—j = gr.jhu.i—s)

§=0
= (g =i+ Y grg(hij = heiy)
j=0 §=0



Hence (gxhi); — (gh); for all 0 <i <n —1. But

fi—(gh)i = fi — (gkhw)i + (gxhi)i — (gh)i

And f; —(grhk): € m” by construction. Hence f; — (gh); € Ngm®. But Ngm? is zero in a Noetherian
local ring (see Atiyah & Macdonald Corollary 10.19), and consequenty f = gh, as required. [

Recall that for a polynomial f(z) € Alx] over an arbitrary ring, an element a € A[z] is a simple
root of f if x — a divides f(x) but (x — a)? does not divide f(z).

Corollary 2. Let A be a complete local ring, m its mazimal ideal, and f(x) a monic polynomial
over A. Suppose that f(x) admits a simple root « € A/m. Then there exists an element a of A,
having o as m-residue, and such that f(a) = 0. Moreover, a is a simple root of f(x).

Proof. Write f(z) = (r — a)G(z) where G(z) is prime to * — o. Then the Theorem shows
the existence of monic polynomials = — a,¢g(z) with @ = a and g(x) = G(x) such that f(z) =
(x — a)g(x). If a were a multiple root of f(x) then we could write f(z) = (z — a)?h(z) for some
polynomial h(x). But then f(x) = (z — a)?h(x) would imply that « is a multiple root of f(z),
contradicting our assumption. O

Example 1. There are many applications of Hensel’s Lemma. We highlight a few simple ones:

(1) Let m be the maximal ideal (5) in Z, and let A be the m-adic completion of Z. Then A is
a complete local ring whose maximal ideal m consists of all Cauchy sequences (a;);>1 with
each a; a multiple of 5. The residue field of A is GF(5) since

The polynomial 22 + 1 has two simple roots in GF(5), namely the classes of 2 and 3. Thus
it has two simple roots in the 5-adic integers.

(2) Let A be the m-adic completion of C[z] where m = (z). Then A is the complete local ring
C][2]] with maximal ideal (z). Consider the polynomial f(z) = 2% — (1 + 2) € Alx]. Note
that

Cllzll/(2) = Clz]/(2) = C

Since f(z) = (x —1)(z+1) in (A/m)[z], Hensel’s Lemma implies that there are power series
a(z),8(z) € C[[z]] with 22 — (1 + 2) = (z — a(2))(x — B(2)) and a(z) = 1, B(z) = —1.
Reducing coefficients modulo (z) amounts to looking at only the constant term, so that
a(z) =1+...and f(z) = —1+.... So Hensel’s Lemma implies the existence of power series
square roots for 1 + z.




