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The localisation of commutative rings is a central part of commutative geometry. The localisa-
tion of noncommutative rings is more difficult, since the noncommutativity introduces numerous
technical difficulties into the process of formally inverting ring elements. A more elegant way to
treat localisation is by using additive grothendieck topologies. In this note we give a proof of the
Gabriel-Popescu theorem, which is widely used in algebra.
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1 Additive Topologies

Throughout we use the notation of our notes on Rings with Several Objects. In particular a ringoid
A is a small preadditive category. In this note we fix a nonempty ringoid A, and all modules are
right A-modules. Recall that a sieve at an object C ∈ A is a subfunctor of the set-valued functor
HC : Aop −→ Sets.

Definition 1. Let A be a ringoid. A right ideal at an object C is a submodule of the right
A-module HC : Aop −→ Ab. Equivalently, a right ideal at C is a collection a of morphisms with
codomain C, which satisfies

(i) For all D ∈ A the zero morphism 0 : D −→ C is in a.

(ii) If f, g : D −→ C are in a, so is f − g.

(iii) If f : D −→ C is in a, and h : X −→ D is any other morphism, then fh is in a.

A right ideal a at A is proper if it is not equal to HA and is maximal if it is proper and is not
properly contained in any other proper right ideal at A. These definitions restrict to the usual
ones when the preadditive category is a ring. By analogy with the single-object case, ideals are
typically labelled a, b, etc.
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Definition 2. Let A be a ringoid. A left ideal at an object C is a submodule of the left A-module
HC : Aop −→ Ab. Equivalently, a left ideal at C is a collection a of morphisms with domain C,
which satisfies

(i) For all D ∈ A the zero morphism 0 : C −→ D is in a.

(ii) If f, g : C −→ D are in a, so is f − g.

(iii) If f : C −→ D is in a, and h : D −→ X is any other morphism, then hf is in a.

A left ideal a at A is proper if it is not equal to HA and is maximal if it is proper and is not
properly contained in any other proper left ideal at A. These definitions restrict to the usual ones
when the preadditive category is a ring. Note that a is a left ideal in A iff. it is a right ideal in
Aop, so without loss of generality we can restrict our attention to right ideals.

Example 1. The following are examples of right ideals in a ringoid:

1. Let F be a right A-module, with x ∈ F (A) for some A ∈ A. We define the following right
ideal at A, called the annihilator of x:

Ann(x) = {α : D −→ A |xα = 0}

Corresponding to x ∈ F (A) is a morphism HA −→ F , and Ann(x) is precisely the kernel of
this morphism.

2. The collection of all zero morphisms with codomain A is a right ideal at A, called the zero
ideal and denoted 0A or just 0.

3. Let f : B −→ A be a morphism of A, and let a be the submodule of HA defined by

a(C) = {fh |h : C −→ B}

That is, a consists of all the morphisms in A which factor through f . It is easily checked
that this is a right ideal at A, which we call the principal ideal generated by f , and denote
fHB or (f).

It is helpful to keep in mind that in the category ModA any subobject of a module F is
isomorphic (as a subobject) to a submodule of F . Subfunctors precede each other as subobjects
iff. pointwise they are contained in each other. In particular, when talking about subobjects of
representable functors HA it suffices to talk about the right ideals at A.

Definition 3. Let A be a ringoid and a a right ideal at C. For a morphism h : D −→ C, we
define the pullback of a to be the following right ideal at D

h∗a = {f : X −→ D |hf ∈ a}

In the category of right A-modules, h∗a is the pullback of the submodule a of HC . In the case
where A is a ring, this ideal is more commonly denoted by (a : h). If b is a left ideal at D then
we define the pushout of b to be the following left ideal at C

h∗b = {f : C −→ X | fh ∈ b}

Under the equality AMod = ModAop left ideals at C are identified with right ideals at C, and
h∗b is identified with h∗b.

We now define additive grothendieck topologies on A. These topologies are different to the
normal grothendieck topologies on A, but the only difference is in the so-called “transitivity”
axiom, where only right ideals are eligible for consideration.

Definition 4. Let A be a ringoid. A right additive topology on A is a function J assigning to
each object C a set J(C) of right ideals at C, which satisfies
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(i) The maximal right ideal HC is always in J(C).

(ii) If a ∈ J(C) and h : D −→ C, then h∗a ∈ J(D).

(iii) If a ∈ J(C) and b is any right ideal at C, and if f∗b ∈ J(D) for every f : D −→ C ∈ a, then
b ∈ J(C).

If a ∈ J(A) then we say that a is an additive cover of A. If J,K are two right additive topologies
such that J(C) ⊆ K(C) for all C ∈ A, then we write J ≤ K. This defines the partially ordered
set of right additive topologies on A.

Definition 5. Let A be a ringoid. A left additive topology on A is a function J assigning to each
object C a set J(C) of left ideals at C, which satisfies

(i) The maximal left ideal HC is always in J(C).

(ii) If a ∈ J(C) and h : C −→ D, then h∗a ∈ J(D).

(iii) If a ∈ J(C) and b is any left ideal at C, and if f∗b ∈ J(D) for every f : C −→ D ∈ a, then
b ∈ J(C).

If a ∈ J(A) then we say that a is an additive cover of A. If J,K are two left additive topologies
such that J(C) ⊆ K(C) for all C ∈ A, then we write J ≤ K. This defines the partially ordered
set of left additive topologies on A.

Definition 6. A pair (A, J) consisting of a ringoid and a right additive topology is called a small
additive site. Since an assignment of left ideals J is a left additive topology iff. it is a right
additive topology on Aop, without loss of generality we can restrict our attention to right additive
topologies. In the rest of this note, an additive topology (or sometimes just topology) is a right
additive topology unless specified otherwise.

If A is a (not necessarily commutative) nonzero ring and A the corresponding ringoid, there
is a bijection between right ideals of A and right ideals at the single object of A. A collection of
right ideals is a topology in the above sense if and only if it is a gabriel topology on the ring A as
defined in [33], [14].

Example 2. The smallest possible topology on A is the topology J0 defined by J0(C) = {HC},
and the largest topology is the topology J1 defined by letting J1(C) be the collection of all right
ideals at C. Clearly every topology on A contains J0 and is contained in J1, so that J0 and J1

are respectively the initial and terminal objects of the poset of additive topologies on A.

One of the simplest classes of additive topologies are those determined by a multiplicatively
closed subset:

Definition 7. A multiplicatively closed subset of a ringoid A is a collection S of morphisms in A
with the property that if f, g ∈ S and the composition makes sense, then also fg ∈ S. We say
that S is an Ore set if it is multiplicatively closed, and satisfies the following two conditions:

(i) For s : A −→ B in S and any morphism a : C −→ B of A, we can find t : Z −→ C in S and
b : Z −→ A such that the following diagram commutes:

B

A

s

??~~~~~~~
C

a

__@@@@@@@

Z

b

__@@@@@@@ t

??~~~~~~~

(ii) For any A ∈ A there is a morphism in S with codomain A.
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Lemma 1. If S is an Ore set, then

JS(A) = {a | a ∩ S 6= ∅}

defines an additive topology on A.

Proof. The fact that HA ∈ JS(A) for all A ∈ A is the purpose of condition (ii) above. For the
stability axiom, if a : C −→ B is any morphism and a ∈ JS(B), say s : A −→ B belongs to a ∩ S,
then apply (i) above to find t, z such that t ∈ S and sb = at. Certainly t ∈ a∗a ∩ S, as required.

The transitivity axiom follows directly from the fact that S is multiplicatively closed.

If a is an additive cover of C ∈ A and F : Aop −→ Ab is any functor (not necessarily additive),
a natural transformation φ : a −→ F of Ab-valued functors is a family of elements xf ∈ F (D)
indexed by the f : D −→ C ∈ a, with the following properties:

(i) xf+g = xf + xg for every pair f, g : D −→ C in a.

(ii) xf · g = xfg whenever f ∈ a and g is composable with f .

Notice that (i) implies x0 = 0 for any zero morphism with codomain C. We call such collections
{xf | f ∈ a} (equivalently, morphisms a −→ F ) additive matching families for a in F . We only
consider additive matching families defined for additive covers a ∈ J(C). An amalgamation for
such an additive matching family is an element x ∈ F (C) such that x · f = xf for all f ∈ a.

Lemma 2. Let A be a ringoid with additive topology J . Then

(i) If a, b ∈ J(C) then a ∩ b ∈ J(C).

(ii) If f : D −→ C is in a ∈ J(C) then f∗a = HC .

(iii) If a ∈ J(C) then any larger right ideal b ⊇ a is also in J(C).

(iv) If f : D −→ C and b is a right ideal at D, then

fb = {fb | b ∈ b}

is a right ideal at C.

(v) If a ∈ J(C) and for each f : D −→ C ∈ a we have bf ∈ J(D) then the ideal
∑
fbf belongs

to J(C).

Proof. The proofs of (i)− (iv) are trivial. In (v),
∑
fbf denotes the sum of the submodules fbf

of HC . That is,
∑
fbf consists of morphisms g : X −→ C of the form

g =
∑
f∈a

fγf γf ∈ bf

For f : Df −→ C in a,

f∗(
∑

fbf ) = {g : X −→ Df | fg ∈
∑

fbf} ⊇ bf

Hence f∗(
∑
fbf ) ∈ J(Df ), and so by the transitivity axiom we have

∑
fbf ∈ J(C).

Lemma 3. Let (A, J) be an additive site. For a right A-module M we define

tJ(M)(C) = {x ∈M(C) | ∃a ∈ J(C) x · a = 0}
= {x ∈M(C) |Ann(x) ∈ J(C)}

Thus defined tJ(M) is a submodule of M .
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Proof. First we show that for each C ∈ A, tJ(M)(C) is a subgroup of M(C). Clearly 0 ∈
tJ(M)(C). Suppose that x, y ∈ tJ(M)(C) and say a, b ∈ J(C) with x · a = 0 and y · b = 0. Then
a ∩ b ∈ J(C) and (x− y) · a ∩ b = 0. Hence x− y ∈ tJ(M)(C).

To show that tJ(M) is a submodule of M , we need to show that it is closed under the action
of an arbitrary morphism f : C −→ D. Let x ∈ tJ(M)(D), so there is a ∈ J(D) with x · a = 0.
Then (x · f) · f∗a = 0, so x · f ∈ tJ(M)(C), as required.

Definition 8. We call tJ(M) the J-torsion submodule of M , and say x ∈ M(A) is a J-torsion
element if x ∈ tJ(M). A module M is J-torsion if tJ(M) = M and J-torsion-free if tJ(M) = 0.

Example 3. If R is a commutative domain and S = R \ {0}, then an element x of an R-module
M is torsion for the topology JS defined in Lemma 1 iff. it is torsion in the usual sense. If J,K are
two additive topologies with J ≤ K it is clear that tJ(M) ≤ tK(M). In the case of the improper
topologies J0, J1 defined above, we have

tJ0(M) = 0
tJ1(M) = M

Note that for any module M over a ringoid A, the module M/tJ(M) is J-torsion-free.

In the notation of topos theory, a presheaf P is separated if whenever a matching family has
an amalgamation it is unique, and is a sheaf if every matching family has a unique amalgamation.
Let (A, J) be an additive site and notice that a module M is “separated” for additive matching
families and an additive topology J precisely when it is J-torsion-free. For an additive cover
a ∈ J(A) the morphism of modules a −→ HA gives rise to a morphism of groups

M(A) ∼= HomA(HA,M) −→ HomA(a,M) (1)

This maps an element x ∈M(A) to the additive matching family for a in M given by xf = x · f .
Injectivity of this morphism for all a ∈ J(A) and A ∈ A is also equivalent to M being J-torsion-
free.

Definition 9. Let (A, J) be an additive site. A right A-module M is J-injective if the morphism
in (1) is an epimorphism for each a ∈ J(A) and A ∈ A. This is equivalent to the condition that
every matching family in M has an amalgamation.

Finally, we define the additive version of a sheaf:

Definition 10. Let (A, J) be an additive site. A right A-moduleM is J-closed if one the following
equivalent conditions hold:

• The morphism in (1) is an isomorphism for each a ∈ J(A) and A ∈ A;

• M is J-injective and J-torsion-free;

• Every additive matching family in M has a unique amalgamation.

If J is a left additive topology on A and M is a left A-module, then we say M is J-injective or
J-closed if M as this property considered as a right Aop-module with right additive topology J
on Aop.

Example 4. Let R be a right Ore domain. This is a ring without zero-divisors such that the set
S of all nonzero elements is an Ore set, in the sense of Definition 7. For example, R could be any
right noetherian ring without zero-divisors ([33], II 1.7). If JS is the topology described in Lemma
1, then the right ideal (s) is an additive cover for any regular element s ∈ R. Since s is regular,
it is not hard to check that xsa = a defines an additive matching family for the cover (s) in the
R-module R.

If R is JS-closed, there must be an amalgamation s′ ∈ R such that xsa = s′sa for all sa ∈ (s).
In particular s′s = 1. It follows that if R is JS-closed all the elements of S must be invertible.
In this way “sheafifying” a ring with respect to an additive topology generalises the process of
adding inverses.
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Example 5. Every module M is trivially closed for the topology J0, and M is closed for the
topology J1 iff. M = 0. If J,K are two additive topologies such that J ≤ K, then it is clear that
any K-closed module is also J-closed.

2 Additive Sheafification

In this section we investigate the process of turning a module into a closed module by adding
unique amalgamations for additive matching families. In the non-additive case this goes under
the name of the “plus construction” or “sheafification”, so we will refer to the following process
as the additive plus construction or additive sheafification. Throughout this section (A, J) will be
a fixed additive site.

The plus construction associates with every right A-module F another right A-module F+.
As we will show, applying this construction twice gives a J-closed module. For an object C of A
the ideals a ∈ J(C) correspond to distinct submodules of HC , and the abelian groups Hom(a, F )
form a directed family of abelian groups. For a right A-module F we define

F+(C) = lim−→
a∈J(C)

HomA(a, F )

We realise this direct limit in the following way: an element x ∈ F+(C) is an equivalence class
of morphisms ξ : a −→ F , where ξ and φ : b −→ F are equal iff. they agree on some c ⊆ a ∩ b,
with c ∈ J(C). Equivalently, elements of F+(C) are additive matching families {xf | f ∈ a} with
a ∈ J(C) under the equivalence relation which says that {xf | f ∈ a} ∼ {yg | g ∈ b} iff. there is
c ⊆ a ∩ b belonging to J(C) such that xh = yh for all h ∈ c.

This is an abelian group under the operation given by ξ + φ : a ∩ b −→ F , (ξ + φ)D(f) =
ξD(f)+φD(f), or equivalently {xf | f ∈ a}+ {yg | g ∈ b} = {xh + yh |h ∈ a∩ b}. To define F+ on
morphisms, let h : C −→ C ′ be given together with an element {xf | f ∈ a} of F+(C ′). We define

{xf | f ∈ a} · h = {xhf ′ | f ′ ∈ h∗a} ∈ F+(C)

To see this is well-defined, suppose that {xf | f ∈ a} ∼ {yg | g ∈ b}, so that there is c ⊆ a ∩ b
belonging to J(C ′) such that for n ∈ c, xn = yn. Then h∗c ⊆ h∗a ∩ h∗b and for m ∈ h∗c we have
hm ∈ c so xhm = yhm and therefore {xf | f ∈ a} · h ∼ {yg | g ∈ b} · h, as required. It is easy to
check that this makes F+(h) = − · h into a morphism of groups.

In terms of morphisms a −→ F , acting on ξ with h : C −→ C ′ is carried out by composing ξ
with the morphism of right ideals h∗a −→ a which fits into the pullback diagram of modules:

HC
Hh // HC′

h∗a

OO

// a

OO

This defines a functor F+ : Aop −→ Ab, which we will now show is additive.. If h, g : D −→ C
then for any additive matching family {xf | f ∈ a} ∈ F+(C) we have

{xf | f ∈ a} · (h+ g) = {x(h+g)f ′ | f ′ ∈ (h+ g)∗a}
∼ {xhf ′ + xgf ′ | f ′ ∈ h∗a ∩ g∗a}
= {xf | f ∈ a} · h+ {xf | f ∈ a} · g

where we have used the fact that h∗a ∩ g∗a ⊆ (h+ g)∗a.

Definition 11. Associated to every right A-module M is a canonical right A-module M+. If
ϕ : M −→ N is a morphism of modules, then we define a morphism of modules

ϕ+ : M+ −→ N+

(ϕ+)C({xf | f ∈ a}) = {ϕ(xf ) | f ∈ a}
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This defines an additive functor (−)+ : ModA −→ ModA. There is a canonical morphism
φM : M −→M+ of modules defined by φM,A(x) = {x · g | g ∈ HA}, which is clearly natural in M .
For an object A of A the morphism of abelian groups φM,A is the composite

M(A) ∼= Hom(HA,M) −→ lim−→
a∈J(C)

Hom(a,M)

It is clear that for any right A-module M we have φM+ = φ+
M .

Lemma 4. If M is a right A-module then KerφM = tJ(M).

Lemma 5. Let M be a right A-module. Then M is J-torsion-free iff. φ : M −→ M+ is a
monomorphism, and is J-closed iff. φ : M −→M+ is an isomorphism.

Proof. Using the previous Lemma the first statement is obvious. To prove the second statement,
suppose that M is J-closed. Since it is then J-torsion-free, the morphism φ is monic, and to show
that it is an isomorphism it suffices to show that it is pointwise epimorphic. Let a ∈ J(A) be
an additive cover of A ∈ A and suppose ξ : a −→ M represents an element of M+(A). Since M
is J-closed we can amalgamate this matching family to an element x ∈ M(A) with φA(x) = ξ.
Hence φ is an isomorphism.

Conversely suppose that φ is an isomorphism. Since M is then J-torsion-free it suffices to
show that every additive matching family {xf | f ∈ a} at A has an amalgamation. Since φA is an
epimorphism, let x ∈M(A) be such that {x · g | g ∈ HA} ∼ {xf | f ∈ a} in M+(A). Then there is
b ∈ J(A) with b ⊆ a and x · g = xg for all g : D −→ A in b. To show that M is closed, we have
to show that x · f = xf for all f ∈ a which are not in b.

But if f : D −→ C is in a then f∗b covers D and M is separated so it would suffice to show
that (x · f) ·h = xf ·h for all h : X −→ D in f∗b. But (x · f) ·h = x · (fh) and xf ·h = xfh. Since
fh ∈ b, the proof is complete.

Lemma 6. A right A-module module M is J-torsion if and only if M+ = 0.

Proof. If M+ = 0 then φ : M −→ M+ has kernel tJ(M) = M , so M is J-torsion by Lemma
4. Conversely suppose that M is J-torsion, and let {xf | f ∈ a} represent an element of M+(A),
a ∈ J(A). For each f : D −→ A in a, xf ∈M(D) is J-torsion. That is, there is an additive cover
af ∈ J(D) such that xf · af = 0. By Lemma 2 (v) the right ideal

∑
faf is in J(A).

To prove that the family {xf | f ∈ a} represents the zero element in M+(A), it suffices to show
that it restricts to the zero family on some cover of A. But for

∑
fγf ∈

∑
faf we have

xP
fγf

=
∑

xfγf
=
∑

xf · γf = 0

since γf ∈ af and xf · af = 0.

Proposition 7. Let M,N be right A-modules and suppose that M is J-closed. Then any mor-
phism of modules θ : N −→M factors uniquely through φ : N −→ N+, as in the diagram

N
φ //

θ !!CC
CC

CC
CC

N+

��
M

Proof. An element of N+(C) is represented by an additive matching family {xf | f ∈ a} for
a ∈ J(C). For h : D −→ C in a we have

φD(xh) = {xh · k | k ∈ HD}

Of course, we also have {xf | f ∈ a} ·h = {xhf ′ | f ′ ∈ h∗a}. But h∗a = HD, so since the xf match,

φD(xh) = {xf | f ∈ a} · h
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It follows that if a factorisation θ̂ : N+ −→ M existed, then θ̂C({xf | f ∈ a}) would have to be
the unique y ∈M(C) such that for all h : D −→ A ∈ a,

y · h = θ̂C({xf | f ∈ a}) · h = θ̂D({xf | f ∈ a} · h)

= θ̂DφD(xh) = θD(xh)
(2)

This implies that θ̂ will be unique, once we have defined it. To define θ̂C : N+(C) −→M(C), we
note that for an additive matching family {xf | f ∈ a}, the collection {θ(xf ) | f ∈ a} is an additive
matching family for the closed module M , and thus has unique amalgamation y ∈ M(C). To
show that this assignment {xf | f ∈ a} 7→ y is well-defined, suppose we had an additive matching
family {x′g | g ∈ b} equivalent to {xf | f ∈ a}: say they agree on c ⊆ a∩b. If z is the amalgamation
in M(C) of the family {θD(x′g) | g ∈ b}, then for s : X −→ C ∈ c we have

y · s = θX(xs) = θX(x′s) = z · s

Since c is a cover and M is J-injective, this implies that y = z. Hence, as a morphism of sets, our
map θ̂C is well-defined. It is straightforward to check that each of these maps is a morphism of
groups. So it only remains to show naturality.

For h : D −→ C in A we need to show that the following diagram commutes:

N+(C) //

bθC

��

N+(D)

bθD

��
M(C) // M(D)

For {xf | f ∈ a} representing an element of N+(C) we have

θ̂D({xf | f ∈ a} · h) = θ̂D({xhf ′ | f ′ ∈ h∗a})
= y ∈M(D) s.t. y · f ′ = θ(xhf ′) ∀f ′ ∈ h∗a

But θ̂C({xf | f ∈ a}) · h is y′ · h where y′ is the unique element of M(C) with y′ · f = θ(xf ) for all
f ∈ a. Hence for f ′ ∈ h∗a

(y′ · h) · f ′ = y′ · (hf ′) = θ(xhf ′)

Since y and y′ ·h agree on an additive cover of D and M is closed, they must be equal. This shows
that θ̂ is natural.

Lemma 8. For any right A-module M , M+ is J-torsion-free.

Proof. Suppose {xf | f ∈ a} represents a torsion element of M+(C). That is, there is an additive
cover b ∈ J(C) with {xf | f ∈ a} · g = 0 for all g ∈ b. Since

{xf | f ∈ a} · g = {xgf ′ | f ′ ∈ g∗a}

the fact that this element is torsion means that for each g : D −→ C ∈ b there is cg ∈ J(D) with
cg ⊆ g∗a and xgf ′ = 0 for all f ′ ∈ cg. By Lemma 2 (v) the right ideal

∑
g∈a gcg is a cover of C. If

h is any morphism in this cover, say

h =
∑

gγg γg ∈ cg

Then we have
xh = xP

gγg
=
∑

xgγg
= 0

Hence {xf | f ∈ a} represents the zero element, and so M+ is J-torsion-free.

Proposition 9. If a right A-module M is J-torsion-free, then M+ is J-closed.
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Proof. By the previous Lemma M+ is J-torsion-free, so it suffices to show that M+ is J-injective.
Let {xf | f ∈ a} be an additive matching family for a cover a ∈ J(C), with xf ∈ M+(D) for
f : D −→ C in a. That is, there is an additive cover af ∈ J(D) with

xf = {xf,g | g ∈ af} xf,g ∈M(E), g : E −→ D

Since {xf}f is a matching family xf · h = xfh for any h : D′ −→ D. Thus there is an equivalence
of matching families

{xf,hg′ | g′ ∈ h∗af} ∼ {xfh,g | g ∈ afh}

Which implies that there is an additive cover af,h ⊆ h∗af ∩ afh with

xf,hg′′ = xfh,g′′ ∀g′′ ∈ af,h

The fact that the xf form an additive matching family means that xf + xg = xf+g for any
f, g : D −→ C in a. That is, there is an equivalence of matching families

{xf,h + xg,h |h ∈ af ∩ ag} ∼ {xf+g,h |h ∈ af+g}

which means that there is an additive cover cf,g ⊆ af ∩ ag ∩ af+g such that xf,h + xg,h = xf+g,h

for all h ∈ cf,g.
We define an amalgamation y ∈M+(C) of the family {xf | f ∈ a} as follows: let y be defined

on the additive cover
∑
f∈a faf ∈ J(C) by

y = {yh |h ∈
∑

faf}

yP
fγf

=
∑

xf,γf

(3)

It is necessary to demonstrate that for h ∈
∑
faf the element yh is independent of how we write

h as a sum
∑
fγf . So suppose that two such sums are equal:

n∑
i=1

fiγi =
m∑
i=1

f ′iγ
′
i

Define three additive covers of C:

c = cf1γ1,f2γ2 ∩ cf1γ1+f2γ2,f3γ3 ∩ . . . ∩ cPn−1
i=1 fiγi,fnγn

c′ = cf ′1γ′1,f ′2γ′2 ∩ cf ′1γ′1+f ′2γ′2,f ′3γ′3 ∩ . . . ∩ cPn−1
i=1 f ′iγ

′
i,f

′
nγ

′
n

d = c ∩ c′
n⋂
i=1

afi,γi

m⋂
i=1

af ′i ,γ′i

Then for any k ∈ d (
n∑
i=1

xfi,γi

)
· k =

∑
i

xfi,γi
· k =

∑
i

xfi,γik

=
∑
i

xfiγi,k = xP
i fiγi,k

= xP
i f

′
iγ
′
i,k

=
∑
i

xf ′iγ′i,k

=
∑
i

xf ′i ,γ′ik =
∑
i

xf ′i ,γ′i · k

=

(
m∑
i=1

xf ′i ,γ′i

)
· k

9



Since d is a cover, this implies that
∑
i xfi,γi

=
∑
i xf ′i ,γ′i and so the definition (3) is independent

of how we write the morphism h.
It remains to show that y is an additive matching family and that it amalgamates the xf .

Suppose h =
∑
fγf : D −→ C is an element of

∑
faf . Then for any z : D′ −→ D

yh · z =
(∑

xf,γf

)
· z

=
∑

xf,γf
· z =

∑
xf,γfz

But yhz =
∑
xf,γfz since hz =

∑
f(γfz) is a valid expansion of hz as an element of

∑
faf . It is

now easy to see that y is an additive matching family. It only remains to show that it amalgamates
the family {xf | f ∈ a}. But for g : D −→ C in a

y · g = {yh |h ∈
∑

faf} · g = {ygh′ |h′ ∈ g∗
∑

faf}

Now ag ⊆ g∗
∑
faf by definition, and for h′ ∈ ag it is clear that ygh′ = xg,h′ . This shows that

the matching family y · g ∈M+(D) is equivalent to the family xg, as required.

Corollary 10. For any right A-module M , (M+)+ is J-closed.

Definition 12. If (A, J) is a small additive site then Mod(A, J) denotes the full subcategory
of ModA consisting of all the J-closed modules, referred to as the localisation of ModA with
respect to J . This is a replete subcategory of ModA. If M is a right A-module then we denote
the J-closed module (M+)+ by MJ and refer to it as the localisation of M with respect to J . If
ϕ : M −→ N is a morphism of modules, then we have the following morphism of J-closed modules

ϕJ = (ϕ+)+ : MJ −→ NJ

(ϕJ)C({xf | f ∈ a}) = {ϕ+(xf ) | f ∈ a} = {{ϕ(xf,g) | g ∈ bf} | f ∈ a}

where xf = {xf,g | g ∈ bf} for f ∈ a. This defines an additive functor

a = (−)J : ModA −→ Mod(A, J)

Let i : Mod(A, J) −→ ModA be the inclusion. Then there is a canonical natural transformation
ψ : 1 −→ ia given for a module M by the composite φM+φM : M −→M+ −→ (M+)+. That is,

ψM : M −→MJ

ψM,C(x) = {{x · hg | g ∈ HD} |h : D −→ C}

Remark 1. Let M,N be distinct A-modules. Then the A-modules M+ and N+ are also distinct,
since if A ∈ A the set M+(A) consists of equivalence classes of maps in ModA with codomain
M , while N+(A) is a set of equivalence classes of maps with codomain N . It follows that if M,N
are distinct so are the modules aM and aN .

Lemma 11. Let A be a ringoid and J,K additive topologies on A. Then J ≤ K implies
Mod(A,K) ⊆ Mod(A, J).

Proposition 12. Let M,N be right A-modules and suppose that M is J-closed. Then any mor-
phism of modules θ : N −→M factors uniquely through ψN : N −→ NJ .

Proof. By Proposition 7 there is a unique factorisation θ′ : N+ −→ M of θ through N −→ N+.
Applying the Proposition again, we obtain a unique factorisation θ′′ : NJ −→ M of θ′ through
N+ −→ NJ , as in the diagram

N
θ //

��

M

N+

θ′
<<zzzzzzzz

!!DD
DD

DD
DD

NJ

θ′′

OO

The morphism θ′′ is then a unique factorisation of θ through ψN .
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Corollary 13. If (A, J) is an additive site, then we have a pair of adjoint functors

Mod(A, J)
i --

ModA
a

mm a � i

The unit is the natural transformation ψ : 1 −→ ia defined above.

Lemma 14. Let (A, J) be a small additive site and M a right A-module. Then

(i) M is J-torsion if and only if MJ = 0.

(ii) M is J-closed if and only if ψM : M −→MJ is an isomorphism.

(iii) KerψM = tJ(M).

Proof. (i) If M is J-torsion then by Lemma 6, M+ = 0 and so MJ = 0. Conversely, if MJ = 0
then again by Lemma 6, M+ must be J-torsion. Since M+ is always J-torsion-free by Lemma
8 we must have M+ = 0, which implies that M is J-torsion. (ii) is clear from Lemma 5. (iii)
follows immediately from Lemma 4 and Lemma 5.

Lemma 15. If (A, J) is a small additive site and M a right A-module then ψMJ
= (ψM )J and

this morphism is an isomorphism.

Proof. The equality follows directly from the fact that ψ : 1 −→ ia is a natural transformation.
By Lemma 14 the morphism ψMJ

is an isomorphism, so the proof is complete.

Proposition 16. If (A, J) is an additive site, then the functor a : ModA −→ Mod(A, J)
preserves finite limits.

Proof. By Mitchell II 6.5 it suffices to show that a preserves kernels. Let ϕ : M −→ N be
a morphism of A-modules with kernel i : K −→ M and suppose that there is C ∈ A and
x ∈ MJ(C) such that (ϕJ)C(x) = 0, where x = {xf | f ∈ a} and xf = {xf,g | g ∈ bf} for every
f ∈ a. Therefore

{{ϕ(xf,g) | g ∈ bf} | f ∈ a} = 0

Let c ⊆ a be such that c ∈ J(C) and {ϕ(xf,g) | g ∈ bf} = 0 in N+(D) for every f : D −→ C
in c. Then there is cf ⊆ bf with cf ∈ J(D) and ϕ(xf,g) = 0 for all g ∈ cf . It is not difficult
to check that y = {{xf,g | g ∈ cf} | f ∈ c} defines an element of KJ(C) with (iJ)C(y) = x. In
particular if ϕ is a monomorphism then KJ = 0 so ϕJ must be a monomorphism of A-modules.
In particular iJ : KJ −→ MJ is a monomorphism, and further we have just shown that iJ is the
kernel (in ModA) of the morphism MJ −→ NJ . It is therefore trivially the kernel in Mod(A, J),
as required.

Corollary 17. If (A, J) is an additive site then Mod(A, J) is a giraud subcategory of ModA,
and is therefore a complete grothendieck abelian category.

Proof. The first claim is immediate from Proposition 16, and it then follows from (AC,Corollary
65) and (AC,Proposition 62) that Mod(A, J) is a complete grothendieck abelian category.

Definition 13. Let A be a ringoid and J a left additive topology. Then (A, J)Mod denotes the
full subcategory of AMod consisting of the J-closed modules. It corresponds to Mod(Aop, J)
under the equality AMod = ModAop. Therefore (A, J)Mod is a complete grothendieck abelian
category, which is a giraud subcategory of AMod.
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2.1 Alternative Approach

One problem with the functor a is that the module aM is difficult to work with explicitly -
elements of aM(A) are matching families of matching families! Fortunately there is another way
to express this localisation. For any A-module M there is an exact sequence

0 // tJ(M) // M
µM // M/tJ(M) // 0

Since tJ(M) is J-torsion, by applying the exact functor a to this exact sequence we see that aµM
is an isomorphism aM ∼= a(M/tJ(M)). As M/tJ(M) is J-torsion-free (M/tJ(M))+ is J-closed
by Proposition 9. Hence the canonical morphism

(M/tJ(M))+ −→ (M/tJ(M))++

is an isomorphism by Lemma 5. We define a functor c : ModA −→ Mod(A, J) by c(M) =
(M/tJ(M))+. For α : M −→ N we induce α′ : M/tJ(M) −→ N/tJ(N) and then by Proposition
7 a unique morphism cα making the following diagram commute

M //

α

��

M/tJ(M)

α′

��

// (M/tJ(M))+

cα

��
N // N/tJ(N) // (N/tJ(N))+

It is easily checked that thus defined c is a functor. Moreover, the isomorphism aµM gives
rise to a natural equivalence a ∼= c. Hence c is an additive, exact left adjoint to the inclusion
i : Mod(A, J) −→ ModA. The unit of this adjunction is the canonical map M −→ (M/tJ(M))+.

3 The Gabriel-Popescu Theorem

To each additive topology J on a ringoid A we have associated a giraud subcategory Mod(A, J)
of ModA. Conversely, we may show that any giraud subcategory of ModA is the localisation of
ModA at an additive topology.

LetA be a ringoid and let D ⊆ ModA be a giraud subcategory, with inclusion i : D −→ ModA
and reflection a : ModA −→ D. Let θ : 1 −→ ia be the unit of the adjunction. As usual
(AC,Section 3) we may assume that aD = D and θD = 1D for D ∈ D. Also recall that the zero
module belongs to any reflective subcategory. We define the following function of the objects of
A:

J(A) = {a | a is a right ideal at A, and a(A/a) = 0} (4)

The next result says that if a module is J-torsion (in the obvious sense), its reflection is zero.

Lemma 18. Let M be a right A-module. If Ann(x) ∈ J(A) for every A ∈ A and x ∈ M(A),
then aM = 0.

Proof. For x ∈M(A) the submodule (x) of M is the image of the canonical morphism x : HA −→
M , and by definition the following sequence is exact:

0 // Ann(x) // HA
x // (x) // 0

It follows that a(x) = 0 whenever Ann(x) ∈ J(A). The inclusions (x) −→ M for x ∈ M(A) and
A ∈ A induce an epimorphism

φ :
⊕

x∈M(A)
A∈A

(x) −→M

Since a has a right adjoint it preserves colimits and epimorphisms, implying that aφ is an epimor-
phism and that a(

⊕
x(x)) =

⊕
x a(x) = 0. Hence aM = 0, as required.
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Proposition 19. The function J defined by (4) is an additive topology on A.

Proof. It is clear that HA ∈ J(A) for all A ∈ A. To check the stability condition, let h : D −→ C
be a morphism of A, and a ∈ J(D). By definition h∗a is the pullback of the module a along
h : HD −→ HC . Hence in the following commutative diagram the rows are exact and the left
square is a pullback:

0 // a //

��

HD
//

h

��

HD/a //

��

0

0 // h∗a // HC
// HC/h

∗a // 0

Since a is exact it preserves finite limits and in particular pullbacks, so applying a to the above
diagram and using (AC,Proposition 37) we see that a(HC/h

∗a) = 0. Thus h∗a ∈ J(C), as
required.

To check the transitivity axiom, let b ∈ J(A) and a be a right ideal at A, such that h∗a ∈ J(D)
for all h : D −→ A in b. Then there is an exact sequence

0 // (a + b)/a // HA/a // HA/(a + b) // 0

Since HA/(a+b) is also a quotient of HA/b and a preserves epis, it follows that a(HA/(a+b)) = 0.
By (AC,Proposition 40), (a + b)/a ∼= b/(a∩ b). Lemma 18 implies that a(b/(a∩ b)) = 0, since for
h : D −→ A ∈ b

Ann(h) = {g : D′ −→ D |hg ∈ a ∩ b} = h∗(a ∩ b) = h∗a ∈ J(D)

Hence also a((a+b)/a) = 0, and by applying a to the above exact sequence we find that a(HA/a) =
0, as required.

Recall from Lemma 14 that in the case where D is the localisation of ModA at a topology J ,
the kernel of the unit ψM : M −→MJ = aM is the J-torsion submodule of M .

Proposition 20. Let D be a giraud subcategory of ModA with inclusion i, reflection a and
associated topology J . If θ : 1 −→ ia is the unit of the adjunction, then for any module M

KerθM = tJ(M)

Consequently, M is J-torsion if and only if aM = 0.

Proof. For x ∈ M(A) set a = Ann(x) = Ker(HA −→ M). Then iaa −→ iaA is the kernel of
iaHA −→ iaM since both i and a are left exact. We have the following diagram with exact rows:

0 // iaa // iaHA
//

��

iaHA/a

iaM

0 // a // HA

x

��

;;wwwwwwwwwwwwwwwwwwwwww
// HA/a // 0

M

xxxxxxxx

θM

::vvvvvvvvv

If θM (x) = 0 then HA −→ iaHA factors uniquely through iaa −→ iaHA. Using the universal
property of the unit, there is a morphism aHA −→ aa such that the composite aHA −→ aa −→
aHA is the identity. Hence aa −→ aHA is an isomorphism, since it is both a retraction and a
monomorphism. It follows that a(HA/a) = 0, so Ann(x) ∈ J(A) and consequently x ∈ tJ(M)(A).
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Conversely if x ∈ tJ(M)(A) and a = Ann(x) ∈ J(A), then a(HA/a) = 0 and so aa −→ aHA

are iaa −→ iaHA isomorphisms, implying that iaHA −→ iaM is the zero morphism and so
θM (x) = 0. This proves that tJ(M) = KerθM .

If M is J-torsion, then KerθM = tJ(M) = M so θM = 0. Since aθM = 1aM , this implies that
aM = 0. Conversely if aM = 0 then iaM = 0, so θM = 0 and consequently tJ(M) = M , so M is
J-torsion.

The following Theorem generalises a well-known result for modules over a ring, originally due
to Gabriel [14] (see also [33], Theorem 2.1).

Theorem 21. For a ringoid A there is a bijective correspondence between additive topologies on
A and Giraud subcategories of ModA:

Additive topologies
Γ ..

Giraud subcategories
Φ

nn

Γ(J) = Mod(A, J)
Φ(D,a : ModA −→ D)(A) = {a |a(HA/a) = 0}

In particular, the collection of Giraud subcategories of ModA is a set.

Proof. Corollary 17 shows that Mod(A, J) is a giraud subcategory of ModA. Conversely, we
have just seen that a giraud subcategory of ModA determines an additive topology J on A where
the additive covers are those ideals a for which the reflection of HA/a is zero. It only remains to
verify that these two maps are inverse. If J is an additive topology then ΦΓ(J) = J , since

ΦΓ(J)(A) = {a |a(HA/a) = 0}
= {a |HA/a is J-torsion }
= {a | ∀f : D −→ A, f∗a ∈ J(D)} = J(A)

Conversely, let D be a giraud subcategory of ModA. Let i : D −→ ModA be the inclusion with
exact left adjoint a : ModA −→ D, and unit θ : 1 −→ ia. Let J be the induced topology Φ(D)

J(A) = {a |a(HA/a) = 0}

Let iJ : Mod(A, J) −→ ModA be the inclusion of the localisation at J , with exact left adjoint
aJ , and unit ψ : 1 −→ iJaJ . We have to show that D = Mod(A, J). We establish the inclusion
D ⊆ Mod(A, J) by showing that each M ∈ D is J-closed. Indeed if a ∈ J(A) then a(HA/a) = 0,
and since a is exact the following sequence is exact:

0 −→ aa −→ aHA −→ a(HA/a) −→ 0

It follows that aa ∼= aA. Using the commutative square

a //

��

HA

��
iaa +3 iaHA

and the universal property of the unit 1 −→ ia, it is straightforward to check thatHomA(HA,M) ∼=
HomA(a,M) and hence that D ∈ Mod(A, J).

We now have to establish the reverse inclusion Mod(A, J) ⊆ D. So suppose that M is a
J-closed A-module. Consider the following exact sequence:

0 // KerθM // M
θM // iaM // CokerθM // 0
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Since aθM is the identity, aKerθM and aCokerθM are both zero. The previous Proposition implies
that KerθM , CokerθM are J-torsion. Using Lemma 6 it follows that aJKerθM and aJCokerθM
are both zero, and thus aJθM : aJM −→ aJ iaM is an isomorphism.

Since M and iaM are both J-closed (since we already know D ⊆ Mod(A, J)) this is an
isomorphism of M with iaM . Using the fact that D is replete, we have M ∈ D. This establishes
the required equality Mod(A, J) = D.

Corollary 22. Let A be a ringoid and J,K additive topologies on A. Then J ≤ K if and only if
Mod(A,K) ⊆ Mod(A, J).

Proof. We proved one implication in Lemma 11. Suppose Mod(A,K) ⊆ Mod(A, J) and a ∈
J(C) for some object C of A. It is not hard to see that Mod(A,K) is a giraud subcategory of
Mod(A, J), with reflection r given by the restriction of aK . So we have a diagram of functors

ModA
aJ

}}

aK

""
Mod(A, J)

==

r
11 Mod(A,K)

aa

qq

(5)

By composing adjoints and using the uniqueness of left adjoints, we see that there is a natural
equivalence raJ ∼= aK . By Theorem 21 we have aJ(HC/a) = 0, and therefore aK(HC/a) ∼=
raJ(HC/a) = 0. This shows that a ∈ K(C), as required.

Corollary 23. Let A be a ringoid and J ≤ K additive topologies. For an A-module M there is
a canonical isomorphism of modules (MJ)K ∼= MK natural in M .

Proof. This follows immediately from commutativity of (5) up to canonical natural equivalence.

Next we generalise a theorem originally due to Gabriel and Popescu [18], which classifies
grothendieck categories as localisations of module categories. A proof for modules over a ring can
be found in Stenström’s book [33]. Our generalisation is based on an alternative proof, which
combines a suggestion of Barry Mitchell [27] together with (RSO,Theorem 11).

Let C be a grothendieck abelian category C with a family of generators {Ui}I . Let A be the
small, full, additive subcategory of C consisting of the objects Ui and the morphisms between
them. As usual, we may define the additive functor HA : C −→ ModA by

HA(C)(U) = HomC(U,C)

HA(f)U (φ) = fφ

The following Lemma gives the connection between morphisms HA(B) −→ HA(C) of A-modules
and morphisms B −→ C in C. It is motivated by a Lemma from [27], which deals with the case
of a ring.

Lemma 24. Let B,C be objects of C and M a submodule of the right A-module HA(B). Let
f : HA(B) −→ HA(C) be a morphism of A-modules. The elements m : U −→ B ∈ M(U) and
fU (m) : U −→ C for U ∈ A induce morphisms out of the coproduct in C:

⊕
U
M(U)U

ψ //

φ

��

B

C

ψuUm = m, φuUm = fU (m)

We claim that φ factors through Imψ.
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Proof. Let µ : K −→
⊕

U
M(U)U be the kernel of ψ. The assertion is equivalent to φµ = 0. Picking

a finite subcoproduct consists of picking a subset F (U) (possibly empty) of M(U) for each U , such
that

⋃
U F (U) is a finite set. We denote such a collection simply by F . The coproduct

⊕
U
M(U)U

is the union of the direct family of subobjects consisting of the finite subcoproducts. Since C is
grothendieck abelian inverse images commute with unions, so it suffices to show φµλF = 0 for all
the finite F , where λF is the morphism in the following pullback diagram:

K ′ µ′ //

λF

��

⊕
U
F (U)U

P
U,m∈F (U) u

U
m bpU

m

��
K µ

// ⊕
U
M (U)U

Here p̂Um denotes the projection from the finite coproduct. Since the objects of A form a generating
family, we only have to show that φµλFα = 0 for any V ∈ A and α : V −→ K ′. But this follows
from the fact that f is a morphism of A-modules:

φµλFα = φ
∑
U,m

uUmp̂
U
mµ

′α =
∑
U,m

fU (m)p̂Umµ
′α =

∑
U,m

fV (mp̂Umµ
′α)

= fV (
∑
U,m

mp̂Umµ
′α) = fV (

∑
U,m

ψuUmp̂
U
mµ

′α) = fV (ψµλFα)

= fV (0) = 0

Theorem 25 (Gabriel-Popescu). Let C be a grothendieck abelian category with a family of
generators A. Let HA : C −→ ModA be HA(C)(U) = HomC(U,C). Then HA is a full embedding
and has an exact left adjoint.

Proof. Since the objects of A form a family of generators it is easy to see that HA is faithful, and
similarly that HA is distinct on objects. To see that HA is full, let f : HA(B) −→ HA(C) be
any morphism of A-modules. Put M = HA(B) in the Lemma. Then ψ is an epimorphism, so φ
factors through ψ, say φ = θψ, and f = HA(θ). This proves that T is full.

By (RSO,Theorem 12), HA has a left adjoint − ⊗ A : ModA −→ C. Since a grothendieck
abelian category has enough injectives, to show that this left adjoint is exact it suffices by
(AC,Theorem 26) to show that HA preserves injectives. So let E be injective in C, and sup-
pose that a is a submodule of HA(U) for U ∈ A. Let f : a −→ HA(E) be any morphism. Put
B = HA(U),M = a and use the Lemma and injectivity of E to see that φ factors through ψ, say
φ = θψ. Then it is easily checked that the following diagram commutes:

a //

f

��

HA(U)

HA(θ)zzttttttttt

HA(E)

Since by definition {HA(U)}U∈A is a family of generators for ModA, it follows from (AC,Proposition
50) that HA(E) is injective. Hence HA has an exact left adjoint −⊗A, as required.

We denote by θ : 1 −→ HA(− ⊗ A) the unit of the above adjunction. The functor HA gives
an isomorphism of C with the following full subcategory of ModA:

D′ = {HA(C) |C ∈ C}

Let i′ : D′ −→ ModA be the inclusion, and a′ = HA(−⊗A) : ModA −→ D′ the reflection, where
HA is considered as a functor into D′. The morphisms θF : F −→ HA(F ⊗ A) for F ∈ ModA
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establish that i′ is left adjoint to a′, since if γ : F −→ HA(C) then there is a unique µ : F⊗A −→ C
in C making the following diagram commute:

F
γ //

θF

��

HA(C)

HA(µ)xxqqqqqqqqqq

HA(F ⊗A)

Since HA is fully faithful HA(µ) is also the unique morphism in D making this diagram commute,
implying that a′ a i′. The functor a′ is exact since HA and − ⊗ A are both left exact, and if a
morphism is monic in ModA then it is certainly monic in any subcategory.

Let D be the replete closure of D′ (this is defined in our Abelian Category notes). Denote the
inclusion by i : D −→ ModA, and let a be the composite of a′ with the inclusion D −→ D′. Then
as noted in (AC,Lemma 66) a is left adjoint to i and a is exact. Hence D is a giraud subcategory
of ModA.

Corollary 26. Let C be a grothendieck abelian category with a family of generators A. Define
HA : C −→ ModA and − ⊗ A : ModA −→ C as above, and let J be the following additive
topology on A:

J(A) = {a |HA/a⊗A = 0}
Then HA gives an equivalence of C with the giraud subcategory Mod(A, J) of ModA.

Proof. The above discussion shows that HA defines an equivalence of C with the giraud subcate-
gory D of ModA. By Theorem 21, D is Mod(A, J) for the topology

J(A) = {a |a(HA/a) = 0}

But
a(HA/a)(U) = HomC(U,HA/a⊗A)

So the A-module a(HA/a) is zero iff. for every U in A the only morphism U −→ HA/a ⊗ A is
the zero morphism. But the objects of A form a generating family, so this can only happen if
HA/a⊗A is zero in C.

Corollary 27. Any grothendieck abelian category is complete.

The result (RSO,Theorem 13) describes explicitly any additive colimit preserving functor
ModA −→ ModB for ringoids A,B. We now extend this result to Giraud subcategories of
ModB.

Lemma 28. Let A,B be ringoids, K an additive topology on B and Q an A-B-bimodule. Let
−⊗A Q : ModA −→ ModB be the induced functor. For an A-module M let

ΩQ(M) = M ⊗A Q/tK(M ⊗A Q)

Then for B ∈ B, ΩQ(M)(B) is generated as an abelian group by elements

x⊗ f A ∈ A, x ∈M(A), f ∈ Q(A)(B)

which satisfy the relations

(x+ x′)⊗ f = x⊗ f + x⊗ f x, x′ ∈ F (A), f ∈ Q(A)(B)
x⊗ (f + f ′) = x⊗ f + x⊗ f ′ x ∈ F (A), f, f ′ ∈ Q(A)(B)

(x · α)⊗ f = x⊗Q(α)B(f) α : A′ −→ A, x ∈ F (A), f ∈ Q(A′)(B)
x⊗ f = 0 x ∈ F (A), f ∈ Q(A)(B) with f torsion

For β : B −→ B′ and x⊗ f ∈ Ω(M)(B′) we have (x⊗ f) · β = x⊗ (β · f) = x⊗Q(A)(β)(f). If
φ : M −→M ′ is a morphism of A-modules, there is a morphism of B-modules ΩQ(φ) : ΩQ(M) −→
ΩQ(M ′) defined by

ΩQ(φ)B(x⊗ f) = φA(x)⊗ f x ∈M(A), f ∈ Q(A)(B)

17
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Proof. By (RSO,Theorem 13) the abelian group (M ⊗A Q)(B) is the free abelian group on the
symbols x⊗ f modulo the first four classes of relations above. The torsion submodule of M ⊗AQ
does not seem to be generated by any nice class of relations, so when we quotient out by it, the
best we can say is that the resulting abelian group is generated by the x ⊗ f , which satisfy the
fifth type of relation since clearly if f is torsion, x⊗ f ∈ tK(M ⊗A Q)(B).

Proposition 29. Let A,B be ringoids and let K be an additive topology on B. Let Q : A −→
Mod(B,K) be an additive covariant functor and let

−⊗A Q : ModA −→ Mod(B,K)

be the unique additive, colimit preserving functor extending Q. If

i : Mod(B,K) −→ ModB

is the canonical inclusion, then for an A-module M , M ⊗AQ is the B-module ΩiQ(M)+. That is,
for B ∈ B, (M⊗AQ)(B) is the abelian group of all matching families {xg | g ∈ a} where a ∈ K(B)
and for g : D −→ B ∈ a, xg ∈ ΩiQ(D). For β : B −→ B′ we have

{xg | g ∈ a} · β = {xβh |h ∈ β∗a}

And for a morphism of A-modules φ : M −→M ′

(φ⊗A Q)B({xg | g ∈ a}) = {ΩiQ(φ)(xg) | g ∈ a}

Proof. The functor iQ : A −→ ModB is additive and extends uniquely to an additive, colimit
preserving functor − ⊗A iQ. Composing this functor with c : ModB −→ Mod(B,K) leaves us
with an additive, colimit preserving functor

c(−⊗A iQ) : ModA −→ Mod(B,K)

On A this functor is naturally equivalent to ciQ ∼= Q (since ci ∼= 1). But it follows by uniqueness
that −⊗A Q is naturally equivalent to c(−⊗A iQ). For an A-module M ,

c(M ⊗A iQ) = (M ⊗A iQ/tK(M ⊗A iQ))+ = ΩiQ(M)+

as required.

Theorem 30. Let C,D be grothendieck abelian categories with families of generators A,B respec-
tively. Then there is an additive topology K on B with the property that any additive, colimit
preserving functor θ : C −→ D is characterised up to natural equivalence by its values on A, as
follows:

Objects For any M ∈ C and B ∈ B consider the free abelian group on the symbols

x⊗ f A ∈ A, x ∈ HomC(A,M), f ∈ HomD(B, θ(A))

subject to the relations

(x+ x′)⊗ f = x⊗ f + x⊗ f

x⊗ (f + f ′) = x⊗ f + x⊗ f ′

xα⊗ f = x⊗ θ(α)f

Let TM,B be this group modulo those
∑
xi ⊗ fi for which there is a cover a ∈ K(B) with∑

xi ⊗ fig = 0 for all g ∈ a. Then HomD(B, θ(M)) is isomorphic to the group of matching
families {xg | g ∈ a} with

xg =
∑
i

xg,i ⊗ fg,i ∈ TM,D for g : D −→ B ∈ a.

Moreover for β : B′ −→ B and {xg | g ∈ a} : B −→ θ(M)

{xg | g ∈ a} ◦ β = {xβh |h ∈ β∗a}

18
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Morphisms For φ : M −→M ′ and B ∈ B the morphism θ(φ) : θ(M) −→ θ(M ′) is defined by

θ(φ) ◦ {xg | g ∈ a} =
{∑

i

φxg,i ⊗ fg,i | g ∈ a
}

Proof. Let
Φ : C −→ Mod(A, J), Ψ : D −→ Mod(B,K)

be the equivalences provided by Theorem 25. Let i : Mod(A, J) −→ ModA and i′ : Mod(B,K) −→
ModB be the inclusions with a left adjoint to i. Note that ai = 1. Let Q : A −→ Mod(B,K) be
the additive functor Ψθ|A. The composition

ΨθΦ−1a : ModA −→ Mod(B,K)

is additive, colimit preserving, and restricts to a functor on A naturally equivalent to Q. By
uniqueness ΨθΦ−1a is naturally equivalent to the functor −⊗A Q of Proposition 29. Hence

Ψθ ∼= ΨθΦ−1aiΦ ∼= (−⊗A Q)iΦ

Let M ∈ C. Then for B ∈ B

HomD(B, θ(M)) = Ψθ(M)(B) ∼= (iΦ(M)⊗A Q)(B)

Applying Proposition 29 and the naturality of this isomorphism in M , we establish the various
assertions of the Theorem.

4 The Submodule Classifier

Let C be a small category (not necessarily additive). The topos of presheaves SetsC
op

on C has a
subobject classifier which is given by

Ω(A) = {S |S is a sieve at C} (6)

Where Ω acts on sieves by pullback along morphisms of A. We think of the elements of Ω as being
“truth values”.

For a subobject φ : P −→ F in SetsC
op

and x ∈ F (C), we can ask the question “does x belong
to P”? For sets P, F the answer is “yes” or “no”. In this more general context, the answer is all
of those f : D −→ C for which x · f ∈ P (D), so in particular the answer is the improper sieve HC

iff. x belongs to P (C).
Each subobject P determines a collection of such answers as x varies over F (C) and C varies

over C (this collection is a natural transformation F −→ Ω). Any “suitable” collection of answers
determines a subobject of F by letting an element into the subobject iff. the corresponding answer
is “completely true” (the improper sieve). Here “suitable” means that if you use f : D −→ C to
restrict x ∈ F (C) to x ∈ F (D), the answer for x · f is the pullback of the answer for x along f
(i.e. naturality). This defines the bijection between subobjects of F and morphisms F −→ Ω in
SetsC

op
.

The above has an obvious analogue for modules. If M is a module over a ring R with a sub-
module L, then we can think of the elements r ∈ R with x ·r ∈ L as being answers to the question
“does x belong to L”? The answer is only completely true if x = x · 1 ∈ L and only completely
false if 0 is the only element of R sending x into L. We now develop this notion of a submodule
classifier in detail. These ideas are explored for algebraic in theories in [5] and [6], and we adopt
the notation used there.

Let A be a ringoid. Then in particular A is a small category, so we can consider the presheaf
topos SetsA

op
of contravariant functors Aop −→ Sets. Any additive functor F : Aop −→ Ab
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becomes an element of SetsA
op

once we compose it with the forgetful functor Ab −→ Sets, and
this defines a functor

f : AbA
op
−→ SetsA

op

Note that this functor may identify two distinct modules by forgetting about the distinction
between two different abelian groups on the same set. Rather than write fF all the time, we
adopt the convention that whenever we talk about a morphism F −→ G where F is a right A-
module and G is just a presheaf of sets, we really mean a morphism fF −→ G. Since A is additive,
we can define a subfunctor of Ω ∈ SetsA

op
by

Ωa(A) = {S |S is an right ideal at A}

The pullback of a right ideal is a right ideal, so Ωa really is a subfunctor of Ω. Notice in particular
that the pullback of any right ideal at A along a zero morphism 0 : A′ −→ A is the improper right
ideal HA′ . We also need the contravariant functor

Sub : ModA −→ Sets

Here Sub(F ) is the set of submodules of F in ModA. For a morphism of modules µ : F −→ F ′,
Sub(µ) : Sub(F ′) −→ Sub(F ) acts by pullback.

We introduce additivity into our subobject classifiers in the following way. Suppose that F is a
right A-module with a submodule G. If x ∈ F (A) then the answer to the question “does x belong
to G” should be all those f : D −→ A for which x · f ∈ G(D). These answers define a natural
transformation θ : F −→ Ω given by θA(x) = {f : D −→ A |x · f ∈ G(D)}. Beyond naturality,
the collection of answers θ has the following properties:

(i) If for x ∈ F (A) the answer to “does x belong to G” includes two morphisms f, g : D −→ A,
then it includes their sum f + g.

(ii) If for x, y ∈ F (A) the answers to “does x belong to G” and “does y belong to G” both
include f : D −→ A, then so does the answer to “does x+ y belong to G”.

In terms of θ, property (i) says that θ factors through Ωa −→ Ω, and property (ii) says that
θA(x)∩ θA(y) ⊆ φA(x+ y). Hence in the additive situation we redefine our notion of a “suitable”
collection of answers in the following way.

Definition 14. Let F be a right A-module. A morphism θ : F −→ Ωa of presheaves of sets is a
characteristic morphism if, for all A ∈ A and x, y ∈ F (A)

θA(x) ∩ θA(y) ⊆ θA(x+ y)

The set of all characteristic morphisms F −→ Ωa is denoted Homchar(F,Ωa).

Notice that if θ : F −→ G is any morphism in SetsA
op

and ψ : G −→ Ωa is a characteristic
morphism, then ψθ is also a characteristic morphism, so Homchar(−,Ωa) defines a subfunctor of
Hom(−,Ωa).

Theorem 31. There is a natural bijective correspondence between submodules of a right A-module
F and characteristic morphisms F −→ Ωa (of presheaves of sets). Equivalently there is a bijection
of sets

char : Sub(F ) −→ Homchar(F,Ωa)

which is natural in F , provided we understand that the naturality involves morphisms F −→ G of
ModA.

Proof. Let F be a right A-module. Given an element φ : M −→ F of Sub(F ), which we assume
is a submodule, define charφ : F −→ Ωa as the pointwise morphism of sets:

charφA : F (A) −→ Ωa(A)
x 7→ {α : D −→ A |x · α ∈M(A)}
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Intuitively, charφ answers the question “is x in M?” by responding with all those morphisms of
the ringoid that send x into M . It is easy to check that the specified set is in fact a right ideal at
A. To see that charφ is natural, let α : A′ −→ A be a morphism in A. We need to show that the
following diagram commutes:

F (A)

charφA

��

F (α) // F (A′)

charφA′

��
Ωa(A) // Ωa(A′)

But for x ∈ F (A),

Ωa(α) (charφA(x)) = {f : D −→ A′ |αf ∈ charφA(x)}
= {f : D −→ A′ |x · αf ∈M(D)}
= {f : D −→ A′ | (x · α) · f ∈M(D)}
= charφA′(x · α)

In addition, charφ is a characteristic morphism since if α : D −→ C is in charφA(x) and
charφA(y), then by definition x · α, y · α ∈ M(A). Since M(A) is a subgroup of F (A), it follows
that (x+ y) · α = x · α+ y · α ∈M(A), so α ∈ charφA(x+ y), as required.

Conversely, suppose we are given a characteristic morphism of presheaves µ : F −→ Ωa. Define
a submodule Mµ of F in ModA by

Mµ(A) = {x ∈ F (A) |µA(x) = HA}

Naturality of µ for every zero morphism 0 : A −→ A implies that

µAF (0) = Ωa(0)µA

Since Ωa(0) will give HA on any element of Ωa(A), this implies that µA(0) = HA and hence for
every A ∈ A we have 0 ∈ Mµ(A). It remains to show that for each A, Mµ(A) is closed under
addition. But if x, y ∈ Mµ(A) then by definition µA(x) = µA(y) = HA, and hence since µ is
characteristic morphism

µA(x+ y) ⊇ µA(x) ∩ µA(y) = HA

so x+ y ∈Mµ(A).
It is easy to see that these two assignments are mutually inverse, so char defines a bijection of

the claimed sets. Naturality of char for a morphism η : F −→ G in ModA means commutativity
of the following diagram

Sub(G) //

��

Homchar(G,Ωa)

��
Sub(F ) // Homchar(F,Ωa)

To check that this commutes, let φ : M −→ G be a submodule of G in ModA. Then Sub(η)(φ)
is the pullback of φ along η, and since φ is monic this is the pointwise inverse image under ηA of
M(A) ⊆ G(A). For x ∈ F (A) we have

char(Sub(η)(φ))A(x) = {α : D −→ A |xα ∈ η−1
D (M(D))}

= {α | ηD(xα) ∈M(D)}
= {α | ηA(x)α ∈M(D)}
= charφAηA(x)

which proves naturality of char in F .
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Of course, a morphism G −→ F is monic in ModA if and only if its image fG −→ fF in
SetsA

op
is monic, so that the subobjects of F in ModA form a subset of the subobjects of F in

SetsA
op

. Another way of stating the defining property of the subobject classifier Ω for SetsA
op

is
that every monic φ : P −→ F of presheaves is associated with a unique morphism charφ : F −→ Ω
making the diagram

P //

φ

��

1

��
F

charφ
// Ω

a pullback. Under this association, the subobjects of F in ModA correspond to the morphisms
F −→ Ω which factor through Ωa and have the characteristic property defined above.

Example 6. Let A be a ringoid and F a right A-module. Consider the zero subobject 0 −→ F .
The characteristic map char0 : F −→ Ωa is defined by

char0A(x) = {α : D −→ A |x · α = 0}

For x ∈ F (A) this is clearly the annihilator ideal Ann(x).

Let M be a right A-module. For every additive topology J on A there is a submodule tJ(M)
of M and a corresponding characteristic morphism φ = chartJ(M) : M −→ Ωa, defined by

φA(x) = {α : D −→ A |x · α ∈ tJ(M)}
= {α : D −→ A |Ann(x · α) ∈ J(A)}

Since Ann(x · α) = α∗Ann(x),

φA(x) = {α |α∗Ann(x) ∈ J(A)}

In the case where J = J0, we recover the previous example.

5 The Matrix Ring of a Ringoid

In the case of a ring R and its category of modules ModR, we can recover R as the ring of
endomorphisms of the small projective generator R of ModR. Moreover, if we can find a small
projective generator X in any cocomplete abelian category, by (RSO,Theorem 15) that category
is equivalent to the category modules over the endomorphism ring of X.

For a general ringoid A we have a generating family of small projectives {HA}A∈A whose
coproduct

⊕
A∈AHA is a projective generator for ModA. We say a ringoid is finite when A has

only finitely many objects, and in this case we can define:

Definition 15. Let A be a finite ringoid with n objects. The matrix ring of A, denoted R(A), is
defined to be the endomorphism ring of

⊕
AHA in ModA. This is the set of all n × n matrices

Λ where ΛBA ∈ HomA(A,B). Matrices are added and multiplied using addition and composition
in A, and in this way R(A) becomes a ring with identity.

The reason why an element in the Bth row and Ath column belongs to HomA(A,B) and
not HomA(B,A) is that we are working with right modules, where (denoting the injections and
projections resp. by uA, pB) if Λ is a matrix in R(A) corresponding to φ :

⊕
AHA −→

⊕
AHA

the element ΛBA is pBφuA : HA −→ HB which is an element of HomA(A,B). If we worked with
left modules, pBφuA : HA −→ HB would be a morphism from B to A.

There is a generalisation of this ring to the case where A is not finite, but we can no longer
take R(A) to be an endomorphism ring because the coproduct is no longer necessarily a biproduct.
The interested reader is directed to [26], Section 33.
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Example 7. For any ring R and positive integer n, define a ringoid A as follows: the objects are
the integers 1, 2, . . . , n with

Hom(i, j) =

{
0 i 6= j

R i = j

Composition and addition of morphisms is defined using the structure of the ring R. It is clear
that the ring R(A) is just the product Rn.

The following Proposition can also be found in [26], but we give a much simpler proof.

Proposition 32. If A is a finite ringoid then ModA is equivalent to the category of right modules
over the ring R(A), where the equivalence is given by

Hom(
⊕
A

HA,−) : ModA −→ ModR(A)

Proof. Since a finite coproduct of small objects is small by (AC,Lemma 88), we see that
⊕

AHA is a
small projective generator for ModA. The result now follows by applying Theorem (RSO,Theorem
15).

Under this equivalence a right A-module F is taken to the module
∏
A F (A), so the corre-

spondence turns a multi-object module into a normal module in the most trivial possible way.
From one point of view, Proposition 32 says that there is no point in talking about modules over
finite ringoids - we might as well just forget the extra generality and work with normal modules.
However, in many cases there is a real advantage to working with the ringoid A rather than the
ring R(A), as we will see in Section 7.

6 Algebroids

For a commutative ring K, an associative K-algebra R can be defined in two equivalent ways.
Firstly, as a ring which is also a K-module, so that the action of K and the multiplication are
compatible. This is equivalent to giving a morphism of rings from K to C(R), the center of the
ring R. To define “algebras with several objects” over a commutative ring K, we first define the
center of a ringoid.

Definition 16. Let A be a ringoid, and let C(A) denote the ring of endomorphisms of the identity
functor 1 : A −→ A. Then C(A) is a commutative ring with identity, which we call the center of
A.

Less abstractly, an element in the center of A consists of a sequence of endomorphisms cA ∈
End(A) in the center of End(A) for each A ∈ A, such that cA′α = αcA for any morphism
α : A −→ A′ between objects.

Lemma 33. For a ringoid A, the endomorphisms of the identity functor 1 : ModA −→ ModA
form a set, isomorphic as a ring to the opposite ring of C(A).

Of course, for normal rings C(R) is the whole ring iff. R is commutative. The fact that a ringoid
admits morphisms with distinct domain and codomain means that the obvious generalisation of
commutativity is impossible. Instead,

Definition 17. A ringoid A is commutative if each endomorphism ring End(A) is commutative
for A ∈ A, and if for distinct A,B we have HomA(A,B) = 0.

Lemma 34. For a finite ringoid A the following are equivalent:

(i) The ringoid A is commutative.

(ii) The ring R(A) is commutative.
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(iii) Every family of endomorphisms {cA : A −→ A}A∈A is an element of C(A).

Example 8. Let R be a commutative ring and n a positive integer. In Section 5 we defined a
ringoid A having the integers 1, 2, . . . , n as objects, with each endomorphism ring equal to R and
no other nonzero morphisms. This is obviously an example of a commutative ringoid, and in this
case C(A) = R(A) = Rn.

Definition 18. Let K be a commutative ring. A K-algebroid is a ringoid A together with a
ring morphism K −→ C(A). Equivalently, a K-algebroid is a small category A with a K-module
structure on each of its morphism sets so that composition is bilinear. A morphism ofK-algebroids
is a functor F : A −→ B such that the induced map

Hom(A,A′) −→ Hom(F (A), F (A′))

is a morphism of K-modules for every A,A′ ∈ A. The K-algebroids form a category, which we
denote by KAlgb.

Notice that the category of K-algebras KAlg forms a full subcategory of KAlgb. If A is
a K-algebroid, then a morphism of algebroids K[x] −→ A is determined by choosing an object
A ∈ A and a morphism of normal K-algebras from K[x] to the endomorphism ring of A (which
we have agreed to also denote by A). Hence morphisms K[x] −→ A in KAlgb are in one-to-one
correspondence with endomorphisms in A.

7 Application: Triangular Matrix Rings

Let A,B be rings and M an A-B-bimodule. Then we can define a ringoid A with two objects A,B
whose endomorphism rings are the rings A and B respectively, and where HomA(B,A) = M and
HomA(A,B) = 0. The composition comes from ring multiplication and the action of A,B on M .
Then the endomorphism ring of HA ⊕HB in ModA consists of 2× 2 matrices(

a m
0 b

)
where a ∈ A, b ∈ B and m ∈M . Composition gives the following multiplication:(

a m
0 b

)(
a′ m′

0 b′

)
=
(
aa′ am′ +mb′

0 bb′

)
This ring is more commonly known as the generalised matrix ring

(
A M
0 B

)
. By Proposition 32

there is an equivalence

Φ : ModA −→ Mod
(
A M
0 B

)
Given for a right A-module F by Φ(F ) = F (A) ⊕ F (B), and for µ : F −→ F ′ by Φ(µ) :
F (A)⊕ F (B) −→ F ′(A)⊕ F ′(B),

Φ(µ)(a, b) = (µA(a), µB(b))

Proposition 35. The inclusions ϕ : A −→ A and ψ : B −→ A induce respective triples of adjoint
functors

ModA

ϕ∗

))

ϕ!

55ModA
ϕ∗oo ϕ∗ � ϕ∗ �

ϕ!

and

ModB

ψ∗

))

ψ!

55ModA
ψ∗oo ψ∗ � ψ∗

�
ψ!
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Of course, the results of (RSO,Section 4) allow us to give these functors explicitly. For a right
A-module L, a right B-module N and a right A-module F ,

ϕ∗(L)(A) = L, ϕ∗(L)(B) = L⊗AM
ϕ!(L)(A) = L, ϕ!(L)(B) = 0
ϕ∗(F ) = F (A)

and

ψ∗(N)(A) = 0, ψ∗(N)(B) = N

ψ!(N)(A) = HomB(M,N), ψ!(N)(B) = N

ψ∗(F ) = F (B)

Let F be a right A-module, and denote the right A-module F (A) by L and the right B-
module F (B) by N . These two modules capture the value of the functor F on the objects and
endomorphisms of A. The only remaining data consists of the map M −→ HomAb(N,L) given
by m 7→ F (m). This allows us to characterise the A-modules explicitly:

Lemma 36. A right A-module consists of the following data:

• A right A-module L;

• A right B-module N ;

• A morphism θ : M −→ HomAb(N,L) of A-B-bimodules, where the group HomAb(N,L) is
given its canonical module structure.

We can also characterise the ideals of A: the right ideals at the object B correspond to right
ideals of the ring B, and a right ideal at the object A is the union a ∪N of a collection of endo-
morphisms a of A and a collection N of morphisms B −→ A belonging to M . The condition that
a ∪N be an ideal says precisely that a is an ideal of A and N is a B-submodule of M such that
aM ⊆ N . Proceeding in this way, one can characterise the additive topologies on A in terms of
the gabriel topologies on the rings A,B.

The results of Section (RSO,Section 3) allow us to give explicitly the injective cogenerator of
ModA. The injective cogenerator is the product QA ×QB , where

QA(A) = HomAb(A,Q/Z), QA(B) = 0

QB(A) = HomAb(M,Q/Z), QB(B) = HomAb(B,Q/Z)

Hence the injective cogenerator for ModA is the module I defined by

I(A) = HomAb(A⊕M,Q/Z), I(B) = HomAb(B,Q/Z)

In particular, this implies that the injective cogenerator for modules over the ring
(
A M
0 B

)
is the

module
HomAb(A⊕M ⊕B,Q/Z)

In the previous section we saw an example of a commutative ringoid B whose center C(B) was
equal to the matrix ring R(B), both of which were equal to a product ring Rn. It is easy to
determine the center of the ringoid A:

Lemma 37. The ring C(A) is the following subring of A×B:

C(A) = {(a, b) ∈ A×B | a ·m = m · b ∀m ∈M}
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If M = 0, so that A is just the trivial ringoid derived from A and B, then C(A) = R(A) =
A×B. For M 6= 0 the rings C(A) and R(A) are generally distinct. In the particular case where
A = B is commutative and M is torsion-free, C(A) = {(a, a) | a ∈ A} is the diagonal.

Example 9. Take A = Z, B = Q and M = Q, and let A be the corresponding ringoid:

Z Q
Qoo

There are two ideals at B: 0 ∪ 0 and 0 ∪ Q (the first 0 denoting the single morphism A −→ B).
Apart from the trivial ideal 0 ∪ 0 at A, there is a family of ideals:

(n) ∪Q n 6= 0

The injective cogenerator for the ring
( Z Q

0 Q
)

is the module

HomAb(Z⊕Q2,Q/Z)

8 Application: Graded rings

Definition 19. A Z-graded ring is a ring A together with a decomposition of A into a direct sum
of additive subgroups A =

⊕
d∈Z Ad in such a way that AdAe ⊆ Ad+e and 1 ∈ A0. We do not

require A to be commutative. Throughout this section a graded ring will denote a Z-graded ring.

Definition 20. Let S be a graded ring. A graded left S-module is a left S-module M together
with a set of subgroups Mn, n ∈ Z such that M =

⊕
n∈Z Mn as an abelian group, and sm ∈Mn+d

for s ∈ Sd,m ∈ Mn. The preadditive category of graded left S-modules is denoted SGrMod.
A graded right S-module is a right S-module graded by subgroups Mn with ms ∈ Mn+d for
s ∈ Sd, n ∈Mn. The preadditive category of graded right S-modules is denoted GrModS.

Example 10. Let A = k[x1, . . . , xn] be the polynomial ring in n variables over a field k, then
Ai = 0 for i < 0 and for i ≥ 0 the abelian group Ai is the vector space over k spanned by all
monomials of weight i. This makes A into a commutative graded ring.

Example 11. Let A = k〈x1, . . . , xn〉 be the free k-algebra in n variables over a field k. The ring
A is the free k-algebra on the set of all sequences taken from the set {x1, . . . , xn} (including the
empty word). We define the length of a sequence to be the number of symbols occurring in it (the
length of the empty word is zero). Let Ai = 0 for i < 0 and for i ≥ 0 let Ai be the vector space
over k spanned by all sequences of length i. This makes A into a noncommutative graded ring.

Definition 21. Let A be a graded ring and define the ringoid G(A) as follows. The objects of
G(A) are the integers n ∈ Z for m,n ∈ Z we define the morphism sets by

HomG(A)(m,n) = An−m

Composition and addition of morphisms is defined using multiplication and addition in A, respec-
tively, and it is easily checked that with these definitions G(A) is a ringoid. The identity at n is
the morphism corresponding to 1 ∈ A0.

Example 12. Let Q be the quiver whose vertices are the integers and which has n arrows from i
to i+1 for all i ∈ Z and no other arrows for some n ≥ 1. In the notation of our notes on Linearised
Categories, let C(Q) be the path category of Q. For i < j the morphism set HomC(Q)(i, j) consists
of all sequences taken from the set {x1, . . . , xn} of length j − i, since a path beginning at i and
ending at j must choose one xi to get from i to i+1, another to get from i+1 to i+2, and so on.
If i < j then the morphism set HomC(Q)(j, i) is empty. For all integers i the set HomC(Q)(i, i) is
the singleton {1i}. Let k be a field and apply the ringoid construction of our Linearised Category
notes to C(Q) using k. Call this ringoid kQ. Let A = k〈x1, . . . , xn〉 be the free k-algebra in n
variables. Then G(A) is isomorphic to kQ.
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Proposition 38. Let A be a graded ring and G(A) the associated ringoid. There are canonical
equivalences of categories

Φ : ModG(A) −→ GrModA

Φ(M) =
⊕
n∈Z

M(−n)

and

Ψ : G(A)Mod −→ AGrMod

Ψ(M) =
⊕
n∈Z

M(n)

Proof. Let M be a right G(A)-module, let Φ(M) be the abelian group
⊕

n∈Z M(−n), and let
Φ(M)n denote the subgroup given by the image of M(−n). The contravariant nature of the
functor M means homogenous elements of A reduce degree instead of increasing it, so Φ(M) needs
to take the inverted grading. If a ∈ Ad is homogenous of degree d ∈ Z and n ∈ Z then a determines
a morphism (−n−d) −→ −n of G(A) and therefore M(a) is a morphism M(−n) −→M(−n−d),
or equivalently Φ(M)n −→ Φ(M)n+d. Define the A-module structure on Φ(M) by

((mn) · a)i =
∑
x+y=i

mx · ay

It is not hard to check this makes Φ(M) into a graded right A-module with Φ(M)n the subgroup
of grade n. If τ : M −→ N is a morphism of right G(A)-modules then ⊕n∈Zτ−n gives a morphism
of graded A-modules Φ(τ) : Φ(M) −→ Φ(N) and this defines the additive functor Φ. Since Φ
just repackages the information that defines a graded module, it is clear that Φ is an equivalence
which is distinct on objects.

One defines the functor Ψ in the same way, but now there is no need to invert the grading.
For a morphism τ : M −→ N of left G(A)-modules we define Ψ(τ) = ⊕n∈Zτn. It is not hard to
check this is an equivalence which is distinct on objects.

Corollary 39. For any graded ring A the categories AGrMod and GrModA are grothendieck
abelian.

References
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