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Notation

Notation Meaning Reference

N Natural numbers {1, 2, . . . }.

ReLU(x) The ReLU function max(0, x). Eq. (2.1)

w ∈W A parameter in parameter space W defining a model,

where W is a compact subset of RD.
Definition 2.1

[d] The set of nodes of a network {1, . . . , d}. Definition 2.1

f(x,w), fw(x) A feedforward ReLU neural network. Definition 2.1

f0(x)
A feedforward ReLU network defining a true distribu-

tion.
Hypothesis 4.1

(wi, bi), (qi, c)
The weights and biases of the first and second layer re-

spectively, of a two layer network for a node i ∈ [d].
Eq. (2.2)

(p(y|x,w), q(y|x), ϕ(w)) The (model, truth, prior) triple. Hypothesis 2.1

q(x) The known distribution of inputs. Hypothesis 2.1

pβ(w|Dn), Zβn
The tempered posterior distribution and its partition

function at inverse temperature β.
Definition 2.11

EX , EβW
Expectation with respect to q(y, x) and the truncated

posterior respectively.

Definition 2.3

Definition 3.5

Ln(w), Sn
The negative log likelihood of a model, and the entropy

of the true distribution.
Definition 2.9

K(w)
The Kullback-Leibler divergence from the model to the

truth.
Definition 2.7

W0 The set of true parameters {w ∈W |K(w) = 0}. Definition 2.8

F βn , F
β
n (W)

The free energy, and the free energy of a compact set

W ⊆W .
Definition 3.6

λ The RLCT of a (model, truth, prior) triple. Definition 3.7
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Chapter 1

Introduction

In this thesis we provide accessible examples of singular statistical models in the form of simple

feedforward ReLU neural networks, in order to illustrate the central message of Sumio Watanabe’s

Singular Learning Theory : singularities lie at the heart of statistical learning [Wat09]. In doing so,

we demonstrate why the theory of deep learning should shift from analysing points in the space of

parameters W to considering singularities of the Kullback-Leibler divergence K(w).

Deep learning is a part of Artificial Intelligence (AI) that uses statistical models called neural

networks to model tasks such as computer vision, voice recognition, machine translation and many

more [LBH15]. These models have recently been shown to be highly effective [Bro+20] [Nak+19].

The number of parameters D in modern deep learning models is typically orders of magnitude more

than the number of datapoints n that they are trained on [Zha+16]. Because of this, standard

results for regular statistical models predict that neural networks should overfit the training data

and thus have high generalisation error. Understanding why this is not the case, and understanding

other observed phenomena such as scaling laws [Kap+20], are important open problems.

We begin by casting deep learning as a Bayesian statistical learning model in Chapter 2. Here

the Kullback-Leibler divergence K(w) from a model to the truth is presented as the fundamental

object of study, alongside the set of true parameters W0 = {w ∈W |K(w) = 0}. We then explain

how one can draw an analogy between neural networks as Bayesian models and the Gibbs ensemble

of statistical physics, hinting at objects and phenomena that arise naturally such as the free energy

and phase transitions.

Based on the work of [Wat07] and [Mur+20] we then show that feedforward ReLU neural

networks are not regular but rather singular models, which is to say, have degenerate Fisher infor-

mation matrices. Thus points on W0 are singularities of K in the sense of algebraic geometry. It is

then argued that minimising the free energy is the central goal of statistical learning since it mea-

sures the posterior density associated to different regions of W , and is related to the generalisation

error.

The key result of Singular Learning Theory is then stated, that being the correct asymptotic

expansion of the free energy for singular models. By desingularising K(w) using Hironaka’s Reso-

lution of Singularities, Watanabe shows that the correct measure of model complexity in singular

models is the RLCT λ ≤ D
2 which represents the effective number of parameters associated to a

singularity. We interpret this result in the context of Occam’s Razor, in line with the approach of

[Bal97] which considers only regular models. Thus the model selection process is cast as a trade-off

between accuracy and complexity.

Perhaps Watanabe’s most profound realisation is that “knowledge to be discovered corresponds to

a singularity,” [Wat09]. Put differently, “if a statistical model is devised so that it extracts hidden

structure from a random phenomenon, then it naturally becomes singular,” [Wat13]. This offers

a groundbreaking shift in perspective of statistical thought from points to singularities. However,
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this message has been underappreciated by practitioners of deep learning, perhaps owing to the

heavy algebraic geometry machinery at the heart of the theory, as well as the lack of accessible

mental models that exhibit the phenomena it describes. We aim to provide such models.

To this end, in Chapter 4 we set about classifying the symmetries of W0 for two layer ReLU

networks of arbitrary width. We consider the realisable case where the true distribution is defined

by such a network, for which the problem then becomes classifying functional equivalence of ReLU

networks. This is done in two stages. We first analyse the case where the truth and model have the

same number of nodes, m = d, where we establish that W0 exhibits scaling symmetry, permutation

symmetry and orientation reversing symmetry. The latter is non-generic, occurring only under the

particular condition that weight vectors of the true network sum to zero (weight annihilation).

This is then generalised to the case where the model is overparamaterised compared to the truth,

m < d. Here we prove that each of the d − m excess nodes is either degenerate, meaning it

is never meaningfully active, or has the same activation boundary as another model node. It is

then shown that suitably adjusted scaling, permutation and orientation reversing symmetries must

also hold. A more general result from [PL19] that considers networks of arbitrary depth under

particular conditions is then discussed. We conclude the chapter by introducing a class of networks,

m-symmetric networks, whose associated W0 exhibit non-generic symmetries.

Armed with a full classification of all points on W0 in these models, we then set about analysing

these points as singularities of K in Chapter 5. The primary goal here is to show that not all points

on W0 are equally good minimisers of the free energy. In line with the statistical physics analogy,

we argue that a phase of a neural network corresponds to a small compact subset of W containing a

particular singularity of interest. Phase transitions thus arise naturally from variations in the true

distribution due to symmetry breaking of W0, which causes a meaningful change in the free energy.

We demonstrate the existence and differences of such phases in two layer ReLU networks through

a posterior estimation procedure using Markov Chain Monte Carlo methods. The key result of the

work is showing that a point not on W0 can nonetheless be preferred by the posterior. We first

show experimentally that the complexity of a degenerate-node phase is lower than that of a non-

degenerate node phase, and demonstrate both first and second order phase transitions associated

to this due to changes in the accuracy of both phases. We then show that the complexity of non-

weight-annihilation phases is lower than that of weight-annihilation phases, and again demonstrate

a second order phase transition accordingly.

5



Chapter 2

Preliminaries

2.1 Feedforward ReLU Neural Networks

Artificial neural networks, which we will refer to simply as neural networks or networks, are the

fundamental mathematical objects of deep learning. They consist of an input layer, a number of

hidden layers, and an output layer. Each layer consists of a finite number of nodes. We call the

number of layers the depth of the network, and the number of nodes in a given layer the width of

the layer. In general, the architecture of the network is the data consisting of:

• The depth L of the network, implying there are L− 1 hidden layers. 1

• The widths of each layer (d0, . . . , dL) ∈ NL+1.

• The graph describing the connectivity of the layers. Each layer l connects to layer l + 1.

In the simplest case the collection of neurons form a directed acyclic graph where the subgraph

generated by successive layers is fully connected, that is, there exist edges connecting each node

from layer l to every node of layer l+ 1. Such a network is called a feedforward network. A typical

schematic of a feedforward neural network is seen in Fig. 2.1.

Architectures with different graph structures have been recently used with great success, includ-

ing graphs with the presence of loops (e.g. recurrent neural networks), or layers that are not fully

connected (e.g. convolutional neural networks). We refer the reader to [GBC16] for elaboration on

such architectures. In this thesis our study will be restricted to feedforward neural networks.

To each edge between a node i ∈ [dl−1] := {1, . . . , dl−1} in layer l−1 to a node j ∈ [dl] in layer l

is a weight wli,j ∈ R, and to each node j there is a bias blj ∈ R. This gives rise to an affine function

Al : Rdl−1 → Rdl , Al(x) = (wl)Tx+ bl, where the first term is matrix multiplication. Neurons are

then “activated” via composition of the affine function with a vectorised activation function σ(x),

thus the output al from each layer 1 ≤ l ∈ L− 1 can be expressed recursively as

al = σ(wlal−1 + bl) .

Interestingly, there is no widely accepted definition of an activation function, and indeed when

one examines the plethora of such functions that are used in practice it is clear that there are no

common traits other than the fact that they are non-zero somewhere. In the early literature the

activation function was typically the step function

σH(x) =

1 if x ≥ 0

0 if x < 0
,

1In a quirk of terminology, the depth ignores the input layer. For example, a two-layer network has an input

layer, one hidden layer and output layer.
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Figure 2.1: Five layer feedforward neural network with widths (N, d1, d2, d3, d4,M) =

(4, 5, 4, 5, 3, 4).

which thus elucidates the use of the term “activation” [Ros62]. Neural networks with σH(x) as

the activation function are called perceptron networks. Other common activation functions include

the sigmoid function σs(x) = 1
1+e−x and hyperbolic tangent σt(x) = tanh(x), but the one we will

almost exclusively discuss throughout this thesis is the Rectified Linear Unit (ReLU) defined by

σR(x) = ReLU(x) = max{0, x} =

x if x ≥ 0

0 if x < 0
. (2.1)

Note that for λ ∈ R, ReLU(λx) = λReLU(x), however ReLU(−x) 6= −ReLU(x).

We may extend the definition of any of these activation functions to be vectorised by writing

σ : Rn → Rn for some n such that σ(x1, . . . , xn) = (σ(x1), . . . , σ(xn)). From here on we assume

that any activation function mentioned has naturally been vectorised.

Remark 2.1. The ReLU function is not analytic at x = 0, which we will see is problematic when

discussing such networks in the context of Singular Learning Theory in Chapter 3. An analytic

alternative to ReLU is the swish function given by

σγ(x) =
x

1 + e−γx

for some γ ∈ R, which satisfies limγ→∞ σγ(x) = ReLU(x) (see [RZL17]).

We now have all of the pieces to define the neural networks we will examine in this thesis.

Definition 2.1. Let W ⊆ RD denote the weight space, where D is the total number of weights

and biases. A feedforward ReLU neural network of depth L with widths (d0, . . . , dL) ∈ NL+1 such

that there are d0 = N inputs and dL = M outputs, is a feedforward neural network with activation

function σ(x) = ReLU(x). That is, it is a function

f : RN ×W −→ RM

f(x,w) = (AL ◦ ReLU ◦AL−1 ◦ ReLU ◦ · · · ◦ ReLU ◦A1)(x)

such that for each layer 1 ≤ l ≤ L there is an affine function Al : Rdl−1 → Rdl , parameterised by

weights wl ∈ Rdl−1×dl(R) and biases bl ∈ Rdl×1(R), given by

Al(x) = (wl)Tx+ bl .

In the case where wl is a column vector we may write this as Al(x) = 〈wl, x〉+bl where 〈 , 〉 denotes

the dot product. When w is assumed fixed we will often denote fw := f(·, w) : RN → RM .
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Figure 2.2: ReLU(x) versus σγ(x) for γ = 1.

Feedforward ReLU networks are, by the definition of ReLU, piecewise affine functions, mean-

ing networks of relatively low depth and widths are quite simple functions. However, this class of

networks has been shown to be arbitrarily expressive in the sense that, under suitable conditions,

they are universal approximators of arbitrary Lebesgue integrable functions. The following Uni-

versal Approximation Theorem of [Lu+17], which we shall not prove here but is included here for

completeness, describes this:

Theorem. Let g : RN → R be a Lebesgue-integrable function and let ε > 0 be arbitrary. Then

there exists a feedforward ReLU neural network fw : RN → R of some depth L with bounded widths

dl ≤ N + 4 such that ∫
RN
|g(x)− f(x,w)|dx < ε .

This theorem thus demonstrates the potential of feedforward ReLU neural networks in modern

deep learning: they are simple functions to compute, yet they are able to express complicated

functions to arbitrary precision. The popularity of such networks lies in this expressivity, together

with the fact that in practice good approximations can be found on modern hardware for large

datasets via stochastic gradient descent (SGD).

Nearly all networks we will consider in this thesis will have two layers and one output. For

readability we make a slight notational adjustment. Let fw : RN → R be such a feedforward ReLU

neural network with d hidden nodes. For each i ∈ [d] we let wi ∈ RN and bi ∈ R denote the

weights and biases associated to the first layer, and let qi, c ∈ R be the weights and bias of the

second layer. Thus fw has the form

fw(x) = (A2 ◦ ReLU ◦A1)(x) (2.2)

=
〈
w2, ReLU((w1)Tx+ b1)

〉
+ b2

= c+

d∑
i=1

qiReLU(〈wi, x〉+ bi)

where w = (w1, . . . , wd, b1, . . . , bd, q1, . . . , qd, c) ∈W ⊆ R4d+1.

We will return to topological properties of two-layer networks in Section 4.1, but for now we

present a single example of such a function for ease of understanding.

Example 2.1. Let fw : R2 → R1 be a two-layer neural network with two inputs, one output and

d = 4 hidden nodes, so

fw(x) = q1 ReLU(w1,1x1 + w2,1x2 + b1) + q2 ReLU(w1,2x1 + w2,2x2 + b2)

+ q3 ReLU(w1,3x1 + w2,3x2 + b3) + q4 ReLU(w1,4x1 + w2,4x2 + b4) + c ,

whose network architecture is seen in Fig. 2.3a. Consider w ∈W such that

fw(x) = ReLU(x1 − 1) + ReLU(x2 − 1) + ReLU(−x1 − 1) + ReLU(−x2 − 1) .
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(a) Neural network graph of fw(x) (b) Contour plot of fw(x) and its activation bound-

aries.

Figure 2.3: The data of fw(x) in Example 2.1.

A depiction of fw is seen in Fig. 2.3b, alongside the activation boundaries 〈wi, x〉 + bi = 0 that

show where each node is activated. Note that the corresponding weight vector wi, which is normal

to its respective activation boundary, points towards the regions of activation when anchored on

the activation boundary it defines.

2.2 The Objects of Statistical Learning Theory

Given a dataset Dn of inputs x ∈ RN and outputs y ∈ RM drawn from some true distribution

q(y, x), the objective of statistical learning is to train a model (or learning machine) p(y|x,w)

to predict an output for a given input from the true distribution. This amounts to estimating

parameters w that minimise a loss metric K(w).

Due to computational benefits such as training parallelisation and scalability, it is standard

practice within modern deep learning to view this estimation procedure within a frequentist frame-

work, where w is viewed as being unknown yet fixed [CB02]. Training is then performed using

the Stochastic Gradient Descent (SGD) algorithm, which is achieved at scale via the famous back-

propagation algorithm [GBC16].

However, as in Algebraic Geometry and Statistical Learning Theory [Wat09], our view of the

learning procedure will be within the Bayesian framework, whereby the model parameters w ∈W
are assumed to be drawn from a probability distribution, and the learning goal thus becomes

estimating the posterior distribution p(w|Dn).

Remark 2.2. An assumption within the deep learning literature is that training via SGD is

approximately equivalent to sampling from a Bayesian posterior, with evidence mounting that

this is indeed the case (see [Min+20] and [MHB18]). If true, this justifies our use of Bayesian

statistics in drawing conclusions about deep learning, but keep in mind that this connection is not

yet rigorous.

The following exposition of Bayesian statistics and related definitions is largely drawn from

[Wat18; Wat09] and [CB02].

2.2.1 Bayesian statistics

Let (Ω,B,P) be a probability space and (X,Y ) : Ω→ RN ×RM a jointly random variable subject

to the probability density q(y, x) = q(y|x)q(x), where X is the input to the model and Y is the

output. Recall that the objective of statistical learning is to estimate the true distribution q(y, x)
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given a collection of random samples Dn of the form

Dn = {(X1, Y1), . . . , (Xn, Yn)}

where each (Xi, Yi) is independent and identically distributed, thus leading to a probability density

of the form

q((x1, y1), . . . , (xn, yn)) = q(x1, y1) · · · q(xn, yn) .

We then assume that the data is drawn according to a joint probability distribution p(y, x|w) =

p(y|x,w)q(x) which we call the model, paramaterised by some parameter w ∈W . Since the samples

are independent and identically distributed, we may define the likelihood function as

l(w|x, y) := p(y1, . . . , yn, x1, . . . , xn|w) =

n∏
i=1

p(yi, xi|w) =

n∏
i=1

p(yi|xi, w)q(xi) . (2.3)

The statistical learning goal is thus to estimate the posterior density p(w|x, y) subject to a

dataset Dn. Let ϕ(w) denote the prior probability density of w ∈ W , which is a “subjective

distribution based on the experimenter’s belief and is formulated before the data is seen” [CB02].

By Bayes’ rule, the posterior probability density is given by

p(w|Dn) :=
p(Dn|w)ϕ(w)

p(Dn)
=

1

p(Dn)
ϕ(w)

n∏
i=1

p(yi, xi|w) =
1

p(Dn)
ϕ(w)

n∏
i=1

p(yi|xi, w)q(xi) ,

where the evidence p(Dn) (also called the marginal likelihood) is given by

p(Dn) =

∫
W

p(Dn|w)ϕ(w)dw =

∫
W

n∏
i=1

q(xi)p(yi|xi, w)ϕ(w)dw ,

which ensures the posterior is normalised and thus a well defined probability density. But since∏n
i=1 q(xi), which is independent of w, is a factor of both p(Dn|w) and p(Dn), we may simplify

this to give a more concise definition:

Definition 2.2. The posterior probability density p(w|Dn) is given by

p(w|Dn) =
1

Zn
ϕ(w)

n∏
i=1

p(yi|xi, w) , where Zn =

∫
W

ϕ(w)

n∏
i=1

p(yi|xi, w)dw . (2.4)

We call Zn the partition function.

Remark 2.3. Clearly the partition function and evidence are related via p(Dn) = Zn
∏n
i=1 q(xi).

Within our setup we are considering the random variable Dn (associated to the random inputs

Xi and random outputs Yi), and the random variable w (which we do not denote with a capital

for notational clarity). As such, we define the following expectations:

Definition 2.3. Let g(X,Y ) be a function of one sample (X,Y ) drawn from the true distribution.

Then we write

EX [g(X,Y )] =

∫∫
RN+M

g(x, y)q(y, x)dxdy .

In the case where we have a dataset Dn of samples drawn from the true distribution, supposing

g(Dn) = g((X1, Y1), . . . , (Xn, Yn)), we write

EDn [g(Dn)] =

∫∫
Rn(N+M)

g(Dn)

n∏
i=1

q(xi, yi)dxidyi .
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Let f(w) be a function of the random weights, then the posterior expectation is given by

Ew[f(w)] =

∫
W

f(w)p(w|Dn)dw .

Note that due to its dependence on the random variable Dn, Ew[f(w)] itself is a random variable.

For any of these expectations the variance is defined in the usual way,

V(f(x)) = E[f(x)2]− E[f(x)]2 .

For this thesis we will restrict our attention to the following setup:

Hypothesis 2.1. We consider a (model, truth, prior) triple (p(y|x,w), q(y|x), ϕ(w)) associated to

the class of feedforward ReLU neural networks f : RN ×W → RM . We assume that:

• The true conditional distribution q(y|x) is unknown and to be modelled.

• The distribution of inputs, q(x), is known (i.e. not modelled or estimated).

• The prior on parameters, ϕ(w), is a known distribution on a compact space W ⊆ RD that

contains the origin.

• The model is a standard regression model on f ; that is, p is multivariate normally dis-

tributed of dimension M with mean f(x,w) and identity covariance matrix, so p(y|x,w) ∼
N (f(x,w),1M ) with model density given by

p(y|x,w) =
1

(2π)
M
2

exp

(
−1

2
‖y − f(x,w)‖2

)
,

where ‖.‖2 is the standard Euclidean norm on the output space RM .

Thus we can express the joint densities in terms of conditional densities,

q(y, x) = q(y|x)q(x) , and p(y, x|w) = p(y|x,w)q(x) .

Remark 2.4. The case in which q(x) is to be modelled is of great interest in many real world

settings such as natural language processing or image generation. In such situations, generative

models are used, where the objective is to train a network to generate data similar to its inputs

(see [Ope16] for more examples and explanation). Our hypothesis on q(x) is valid for the purposes

of this thesis due to the nature of our experiments in Chapter 5.

In Bayesian statistics there are two main ways of estimating a distribution on outputs y given

an input x to the learning machine.

Definition 2.4. The Bayes predictive distribution is given by

p(y|x,Dn) = Ew[p(y|x,w)] =

∫
W

p(y|x,w)p(w|Dn)dw .

Definition 2.5. A Gibbs estimator is the model p(y|x,w) evaluated for a single sample drawn

from the posterior, w ∼ p(w|Dn).

2.2.2 The Kullback-Leibler divergence K(w)

The starting point of all supervised2 statistical learning is to train a given model to minimum

loss. In the Bayesian setting it is standard practice to take this loss function to be the Kullback-

Leibler divergence K(w). Watanabe shows that the geometry of K(w) strongly affects the learning

process, thus it is a central object of our study.

2A statistical learning setting is supervised if the predictive model is trained via knowledge of the labels (outputs)

for each input. This is true of our setting.
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Definition 2.6. The entropy S of the true conditional distribution q(y|x) is

S = EX [− log q(y|x)] = −
∫∫

RN+M

q(y, x) log q(y|x)dxdy .

The negative log loss (or negative log likelihood) L(w) of a model for a given w ∈W is

L(w) = EX [− log p(y|x,w)] = −
∫∫

RN+M

q(y, x) log p(y|x,w)dxdy .

Remark 2.5. We can also define the joint entropy SJ = −
∫∫

q(y, x) log q(y, x)dydx and the input

entropy Sx = −
∫∫

q(y, x) log q(x)dxdy, thus SJ = S + Sx. But since q(x) is assumed known and

does not depend on w we are really only interested in the quantity S.

Given arbitrary probability distributions p(z) and q(z), one typically defines the Kullback-

Leibler divergence, or relative entropy, from p(z) to q(z) to be

K(q||p) =

∫
q(z) log

q(z)

p(z)
dz .

Since our q(y, x) and p(y, x|w) both have the known q(x) as factors, we may refine this definition

for our purposes as follows:

Definition 2.7. The Kullback-Leibler (KL) divergence of the true distribution q(y, x) from the

model p(y, x|w) is a function K : W → R defined by

K(w) := EX
[
log

q(y|x)

p(y|x,w)

]
=

∫∫
RN+M

q(y|x)q(x) log
q(y|x)

p(y|x,w)
dxdy . (2.5)

It satisfies K(w) = L(w)− S.

Though it is often thought of as being a distance, K(w) is not a true metric as it is not

symmetric in p and q, nor does it satisfy the triangle inequality. It is, however, a loss metric, as

the next lemma shows.

Lemma 2.1. Let q(y, x) and p(y, x|w) > 0 be continuous probability density functions. Then:

• K(w) ≥ 0 for all w ∈W .

• K(w) = 0 if and only if p(y|x,w) = q(y|x) for almost all x ∈ RN , y ∈ RM .

Proof. See Lemma A.1.

Our statistical learning objective to minimise K(w) thus becomes finding the zero-sets:

Definition 2.8. The set of true parameters is defined as

W0 :=
{
w ∈W |K(w) = 0

}
=
{
w ∈W | p(y|x,w) = q(y|x)

}
, (2.6)

where the second equality follows from Lemma 2.1. We say that the true distribution q(y|x) is

realisable by the model p(y|x,w) if W0 is non-empty. That is, there exists a w ∈ W such that

q(y|x) = p(y|x,w). When q(y|x) is realisable by a true network f0(x) = f(x,w(0)) for some

w(0) ∈W we will write W0(f0).

The definition of realisability should be interpreted as saying that the chosen model is suffi-

ciently expressive to perfectly capture the true distribution in question. This is, of course, unlikely

to occur in real world distributions (especially at the scale of datasets at which most deep learning

occurs), but the non-realisable case is significantly more technically challenging to deal with, and

many of the key results of Singular Learning Theory do not hold under this hypothesis.

Under Hypothesis 2.1 we see that when q(y|x) is realisable, K(w) is just the mean squared

error weighted by the prior on inputs q(x):

12



Lemma 2.2. Let q(y|x) = p(y|x,w(0)) be realisable, defined by a parameter w(0) ∈W . Then

K(w) =
1

2

∫
RN
‖f(x,w)− f(x,w(0))‖2q(x) dx . (2.7)

Proof. See Lemma A.2.

In general, for ReLU neural networks, K(w) is not analytic. For the minimal counterexample

consider f(x,w) = ReLU(x − b) and truth f(x,w0) = ReLU(x) with input distribution q(x) the

uniform distribution on [−a, a] for some a > 0. Then

K(b) =

∫ a

−a

(
ReLU(x− b)− ReLU(x)

)2
dx =

− 1
3ab

3 + 1
2b

2 b ≥ 0

− 1
6ab

3 + 1
2b

2 b < 0
,

which shows that K(w) is C2 but is not C3, let alone analytic.

However, we can rectify this by instead considering the swish function σγ in Remark 2.1 as

an approximation for ReLU, which gives an analytic K(w). When reading the remainder of this

thesis, one should keep this correspondence in mind, as it allows us to exploit the properties of

either function whenever convenient throughout our analysis.

2.2.3 Empirical estimators of loss and error

In practice, we may only interact with the true distribution q(y|x) by drawing a set of samples

Dn = {(Xi, Yi)}ni=1 and calculating an estimator of K(w) based on the observed samples. For

notational aesthetics, we let (xi, yi) denote the random variables (Xi, Yi) drawn from q(y|x).

Definition 2.9. Let Dn = {(xi, yi)}ni=1 be a dataset of inputs and outputs drawn from the true

distribution q(y|x) with associated model p(y|x,w). We define the empirical entropy Sn of the

true distribution to be

Sn := − 1

n

n∑
i=1

log q(yi|xi) ,

the empirical negative log likelihood Ln(w) (or empirical negative log loss) to be

Ln(w) := − 1

n

n∑
i=1

log p(yi|xi, w) ,

and the empirical Kullback-Leibler divergence to be

Kn(w) :=
1

n

n∑
i=1

log
q(yi|xi)
p(yi|xi, w)

= Ln(w)− Sn . (2.8)

The negative log likelihood is so-called due to its relation to the likelihood function (Eq. (2.3))

e−nLn(w) =

n∏
i=1

p(yi|xi, w) =
l(w|x, y)∏n
i=1 q(xi)

. (2.9)

Using this, we can redefine our posterior distribution to be

p(w|Dn) =
1

Zn
ϕ(w)e−nLn(w) , where Zn =

∫
W

ϕ(w)e−nLn(w) .

This is the form that we will use for the remainder of the thesis, and provides a clear link to the

Gibbs distribution of statistical physics in Section 2.3.

Lemma 2.3. Under Hypothesis 2.1, Ln(w) has the form

Ln(w) =
M

2
log 2π +

1

n

n∑
i=1

1

2
‖yi − f(xi, w)‖2 ,

which satisfies Ln(w) ≥ 0, and is a continuous function of w.

13



Proof. The first claim follows from a trivial calculation recalling the definition p(yi|xi, w) =
1

(2π)
M
2

exp
(
− 1

2‖yi − f(xi, w)‖2
)
. Both terms are clearly positive by definition of the Euclidean

norm. For any ReLU neural network the map w 7→ f(x,w) is continuous for a fixed x since it

is simply a composition of continuous ReLU functions. Thus, since ‖.‖2 is continuous, Ln(w) is

continuous.

Lemma 2.3 means that under Hypothesis 2.1 we can interpret the negative log likelihood as

simply being the mean-squared error plus a constant that only depends on M .

It is important to note that, as stated at the start of the section, we never have access to q(y|x).

Thus even though Kn(w) is an empirical estimator, we are prohibited from actually estimating it

since we can only ever evaluate p(y|x,w). However, the reason we continue to discuss this quantity

is because in the limit as n → ∞, Sn can be viewed as a constant that depends on neither the

model nor the prior.

Lemma 2.4. The empirical estimators satisfy

EX [Kn(w)] = K(w) , and EX [Sn] = S , and EX [Ln(w)] = L(w) .

If K(w), S, L(w) <∞ then as n→∞ we have almost sure convergence

Kn(w)
a.s.−→ K(w) , and Sn

a.s.−→ S , and Ln(w)
a.s.−→ L(w) .

Proof. We will only calculate Kn(w) as the others are identical. Let w ∈W be fixed, then

EX [Kn(w)] = EX

 1

n

n∑
i=1

log
q(yi|xi)
p(yi|xi, w)

 =
1

n

n∑
i=1

EX
[
log

q(yi|xi)
p(yi|xi, w)

]

=
1

n

n∑
i=1

∫
RN+M

q(x, y) log
q(y|x)

p(y|x,w)
dxdy =

1

n

n∑
i=1

K(w) = K(w) .

The second statement is a simple corollary of the above calculation by Kolmogorov’s Law of Large

Numbers [Res99, §7].

Remark 2.6. One can define the normalised posterior and normalised partition function to be

p(w|Dn) =
1

Z0
n

ϕ(w)e−nKn(w) , where Z0
n =

∫
W

ϕ(w)e−nKn(w)dw ,

where Z0
n = eSnZn. Which version you prefer to think of is simply a matter of taste - the

inaccessible Sn term is ultimately irrelevant to the learning process in the limit n→∞.

Given a model defined by some parameters achieves a low loss, it is then natural to ask how

well it generalises beyond its training data.

Definition 2.10. Let Dn be a dataset of inputs and outputs drawn from the true distribution

q(y|x) with associated model p(y|x,w).

The Bayesian training loss is given, in terms of the predictive distribution, by

Tn = − 1

n

n∑
i=1

log p(yi|xi, Dn) ,

and the Bayesian generalisation loss is given by

Gn = EX [− log p(y|x,Dn)] = −
∫∫

RN+M

q(y, x) log p(y|x,Dn)dxdy ,

which satisfies EX [Tn] = Gn. We will typically drop the “Bayesian” prefix.
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The Gibbs training loss is given by

Gt = Ew[Ln(w)] ,

and the Gibbs generalisation loss is given by

Gg = Ew[L(w)] ,

which satisfies

Gg = Ew[EX [Ln(w)]] = EX [Ew[Ln(w)]] = Ex[Gt]

by Fubini’s theorem.

Using these definitions we can define theoretical error functions

TEn = Tn − Sn , and GEn = Gn − S .

In particular we have GEn = K(q(y, x)||p(y|x,Dn)) and a similar result for the training error

involving the empirical KL divergence. However, since Sn and S do not depend on the model

or prior, minimising loss functions is equivalent to minimising the error. Thus, almost all of our

discussions are based on these loss functions and their convergence properties.

2.2.4 Tempered posterior

In accordance with the statistical physics analogy we will present in Section 2.3, we introduce a

generalised version of the Bayesian posterior:

Definition 2.11. The tempered posterior is defined as

pβ(w|Dn) :=
1

Zβn
ϕ(w)e−nβLn(w) , where Zβn =

∫
W

ϕ(w)e−nβLn(w)dw .

We call β the inverse temperature. We denote the expectation of some function f(w) with respect

to the tempered posterior by

Eβw[f(w)] :=
1

Zβn

∫
W

f(w)ϕ(w)e−nβLn(w)dw .

Clearly when β = 1 we have pβ(w|Dn) = p(w|Dn), the standard posterior, and Ew = E1
w. As

such, we will mainly refer to the tempered posterior for the remainder of the thesis, where β = 1

can be viewed as a special case. Any other variable that we refer to with the β subscript is assumed

to be in reference to the tempered posterior, for example, Gβt = EβX [Ln(w)].

Remark 2.7. For practical purposes, when p is normally distributed as in Hypothesis 2.1, β

manifests itself as the inverse variance of the regression model.

The tempered posterior is well motivated in purely mathematical terms too. In computational

Bayesian statistics, the presence of β can be used as a tunable hyperparameter. Furthermore, it

arises naturally as the object which minimises information complexity under suitable constraints

[Zha06], as the next lemma shows.

Lemma 2.5. Let ϕ(w) > 0 be a prior on W . Suppose P (w) is the unique maximiser of the relative

entropy K(P ||ϕ(w)) subject to the constraint

Ew∼P [nLn(w)] = µβ

for some fixed µβ ∈ R. Then P (w) = pβ(w|Dn) for some β > 0 that depends on µβ.

Proof. See Lemma A.3.3

Remark 2.8. When β → ∞, the posterior is infinitely concentrated at the maximum likelihood

estimators ŵ. That is, limβ→∞ p(w|Dn) = δ(w − ŵ), where δ is the Dirac delta function [Wat09,

§1.3].
3My thanks to Matt Farrugia-Roberts for sharing this proof with me.
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2.3 Deep Learning as a Gibbs Ensemble

The use of terms from physics such as free energy, entropy and partition function can be justifed

by formalising the setting of previous sections into a statistical physics context. The goal of this

section is to explain an interpretation of our statistical learning setup as a physical canonical

ensemble, shedding light on how it can be viewed as a complex system (see [THK18] for a formal

definition of this). This analogy is by no means complete, but we hope it may serve as a useful

conceptual framework for physical intuition, and also as a direct mathematical analogy to the

widely developed literature of statistical physics.

Thermodynamics is the study of macroscopic observables, such as energy, volume, pressure and

mole numbers, associated to equilibrium states. Its central problem is to predict the equilibrium

state which eventually results after a change to the total system, for example, after a constraint is

removed from a system. We refer the reader to [Cal85] for an extensive overview of this field.

We formulate the learning machine as a Gibbs ensemble, in which we imagine the learning

process as a physical system in contact with a thermal reservoir. This contact allows an exchange

in energy, which corresponds to the ability to cause statistical fluctuations of the system. In physics

literature, the Gibbs ensemble, also known as the canonical ensemble, is defined as follows:

Definition 2.12. Consider a system with d particles, in a box of volume V , weakly coupled to

and in thermal equilibrium with an infinitely large heat reservoir at absolute temperature T . The

number of particles in the system is fixed but heat is exchanged with the environment to maintain

a temperature T . Let Γ ⊆ RD denote the configuration space of the particles and their properties,

where σ ∈ Γ is viewed as a microscopic state (i.e. configuration) of the system of particles. To

each microscopic state is associated an energy given by the Hamiltonian, denoted H(σ). The

fundamental postulate of the ensemble is that the probability density of points in phase space

ρ : Γ→ R is given by the Gibbs (or Boltzmann) distribution,

ρ(σ) =
e−βH(σ)

Z
, where Z =

∫
Γ

e−βH(σ)dΓ . (2.10)

We can immediately make the identification between the phase space Γ of microscopic states

and our weight space W , whereby a microstate configuration σ ∈ Γ is identified4 with a weight

w ∈W (and we assume that the measure on Γ assigns an identical probability to each configuration,

thus dΓ = dσ = dw). Comparing the definition of ρ(σ) in (2.10) to pβ(w|Dn) in Definition 2.11,

we note that to identify the Hamiltonian of the system we should rewrite

pβ(w|Dn) =
1

Z0,β
n

exp
(
− β(nKn(w)− 1

β
logϕ(w)

)
with Z0,β

n =

∫
W

exp
(
− β(nKn(w)− 1

β
logϕ(w)

)
dw ,

which thus leads us to define:

Definition 2.13. Given a dataset Dn, the (random) Hamiltonian of our learning machine is

Hn(w) := nKn(w)− 1

β
logϕ(w) , (2.11)

where β = 1
T is the inverse temperature of the ensemble.

The Hamiltonian thus measures the violation of two different penalty terms and can be thought

of as the cost function that we wish to minimise. The first violation is the loss of the model

compared to the true distribution, nKn(w), and the second violation is imposed by the prior term

− 1
β logϕ(w). Notice that if ϕ(w) vanishes (or is negligibly small) then Hn(w) will be very large,

meaning that we can interpret ϕ(w) as analogous to walls containing a gas. The posterior will

4One may choose to view the d particles of the ensemble as nodes of the neural network with associated config-

urations given by incoming weights and biases.
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thus be concentrated in those regions of W with low Hamiltonian values, which is where nKn(w)

is small and ϕ(w) is large.

The partition function can be viewed as the sum of Boltzmann weights over all possible con-

figurations, meaning one might hope to express an “effective” Hamiltonian F such that

e−βF ≈
∑
W

e−βH(w)dw .

This F is known as the free energy. This will be a crucial part of our analysis, and we will define

it formally in Definition 3.4.

Within physics, the free energy as a function of thermodynamic quantities is of fundamental

importance, since expectation values of various functions often arise as derivatives of the free

energy. For example, consider the canonical ensemble with the number of particles N and the

temperature T fixed. Then important physical quantities include: the entropy, S = −∂F∂T ; the

specific heat capacity (at constant volume) CV = −T ∂2F
∂T 2 , and the pressure P = − ∂F

∂V .

Using this setup it is thus possible to define macroscopic thermodynamic parameters implicit

in statistical learning theory, such as the average energy U = Eβw[Hn(w)] or the entropy of the

Boltzmann distribution S = Eβw[− log pβ(w|Dn)]. Determining which such quantities are important

to statistical learning remains an open problem.
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Chapter 3

Singular Learning Theory

In this chapter we outline some of the key concepts and results of Watanabe’s Singular Learning

Theory as described in [Wat07; Wat09; Wat13; Wat18]. The basic observation of the theory is that

many statistical models, including neural networks, are strictly singular, which implies that points

on the set of true parameters W0 are degenerate singularities of K(w). This observation draws

the link between statistical learning theory and the rich field of singularity theory from algebraic

geometry. For such models, regular free energy asymptotic results do not hold. By performing a

desingularisation process of K(w) using Hironaka’s Resolution of Singularities, Watanabe derives

the correct asymptotic forms of the free energy for singular models.

In doing so, Watanabe arrives at a remarkable conjecture: complicated singularities correspond

to simpler functions with lower generalisation error. Because of this, he says, singular models are

naturally able to infer hidden structure from data. This is a profound statement with far reaching

statistical consequences.

The main purpose of the chapter is to provide a short summary of Singular Learning Theory for

the uninitiated reader and show that feedforward ReLU neural networks are singular models. The

proofs of the free energy asymptotic expansion is beyond the scope of this thesis, but we interpret

the result in line with Occam’s Razor. We shall provide a mental framework that elucidates

the mathematics underpinning the success of deep learning, and further informs our experiments

demonstrating phase transitions in Chapter 5.

3.1 Singular Models

Let us begin by outlining what defines a singular model and how the geometry of K(w) associated

to such models is fundamentally different to regular models.

Definition 3.1. LetW ⊆ RD. The elements of the Fisher information matrix I(w) = {Ij,k(w)}Dj,k=1

for a given statistical model p(y|x,w) are given by

Ij,k(w) =

∫∫
RN+M

(
∂

∂wj
log p(y|x,w)

)(
∂

∂wk
log p(y|x,w)

)
p(y|x,w)q(x)dxdy ,

where the derivatives are evaluated at w. We assume q(x) is such that these integrals exist.

Definition 3.2. A statistical model p(y|x,w) is identifiable if the map w 7→ p(y|x,w) is injective

for all x, y, and non-identifiable otherwise.

Recall that I(w) is positive definite if for all x ∈ RD\{0} and all w ∈W , I satisfies xT I(w)x > 0.

This is equivalent to I(w) having no zero eigenvalues for any w, thus det I(w) 6= 0 for all w. Strictly

singular models thus correspond to those models where det I(w) = 0 for some w ∈W .

Definition 3.3. A statistical model p(y|x,w) is regular if it is both identifiable and has positive

definite I(w). It is called strictly singular if it is not regular.

18



The distinction between regular and singular models has profound consequences for the geom-

etry of K(w), and therefore the learning process 1. The main reason for this is that when a model

is regular, in a neighbourhood of a true parameter w(0) ∈ W0, K(w) can be approximated by a

quadratic form

K(w) ≈ 1

2
(w − w(0))T I(w(0))(w − w(0)) ,

for which usual convex optimisation applies. However, if I(w(0)) is singular then this breaks down.

Said differently, regular models obey asymptotic normality :

p(w|Dn)
d−→ N

(
w(0),

1

n
I(w(0))−1

)
,

which is known as the Bernstein-von Moses Theorem [Vaa07, §7]. If I(w(0)) is singular then this

cannot hold as the inverse of I(w(0)) will not exist. Furthermore, the famed Bayesian information

criterion,

BIC = Ln(w0) +
D

2
log n , Ln(w0) = min

w0∈W
Ln(w)

used as a tool for comparison between two Bayesian models, is derived by performing a Laplace

approximation of L(w) which depends on regularity of I(w(0)) for the second order term to exist

[KK08]. All of this is to say, regular statistical results of model complexity are inadequate to

describe singular models.

The remainder of the section is dedicated to proving the following theorem. For simplicity of

the proofs, we restrict our attention to two-layer networks defined in Eq. (2.2), but the proof in

full generality can be found in [Wat07] (and see [Mur+20]).

Theorem 3.1. Let f : RN ×W → RM be a ReLU neural network as defined in Definition 2.1, and

suppose we have a (model, truth, prior) triple as in Hypothesis 2.1. Then the associated Fisher

information matrix I(w) is singular, thus feedforward ReLU neural network models are strictly

singular models.

Lemma 3.2. Under Hypothesis 2.1, the Fisher information is

I(w)j,k =

∫
RN

〈
∂

∂wj
f(x,w),

∂

∂wk
f(x,w)

〉
M

q(x)dx . (3.1)

Proof. Let M = 1 for simplicity, but note that the proof is easily generalised to higher dimensions

using similar Gaussian arguments as in Lemma A.2. We have

∂

∂wj
log p(y|x,w) =

∂

∂wj

(
−M

2
log 2π − 1

2
(y − f(x,w))2

)
= −

(
∂

∂wj
f(x,w)

)
(y − f(x,w))

which implies

Ij,k(w) =

∫
RN

(
∂

∂wj
f(x,w)

)(
∂

∂wk
f(x,w)

)
q(x)

(∫
R

1√
2π

(y − f(x,w))2e−
1
2 (y−f(x,w))2dy

)
dx ,

and since the second central moment of a Gaussian with σ = 1 is 1, we get the result.

The Fisher information matrix is related to the Hessian of K(w), HK(w) = { ∂
2K(w)
∂wj∂wk

}Dj,k=1, in

a fundamental way:

1Rather loftily, Watanabe states that “almost all statistical models are singular” [Wat07], a statement to be

taken with great seriousness, but in mathematical jest.
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Lemma 3.3. Under Hypothesis 2.1, and assuming q(y|x) = p(y|x,w(0)) is realisable defined by

some fixed w(0) ∈W , the entries of the Hessian of K(w) satisfy

∂2

∂wj∂wk
K(w) = Ij,k(w) +

∫
RN

〈
f(x,w)− f(x,w(0)),

∂2

∂wjwk
f(x,w)

〉
M

q(x)dx .

In particular, HK(w(0)) = I(w(0)).

Proof. The key property is the product rule applied to an inner product. Let g, h : W → RM be

two functions, then writing ∂j = ∂
∂wj

we have

∂j〈g(w), h(w)〉 = 〈∂jg(w), h(w)〉+ 〈g(w), ∂jh(w)〉 .

This gives

∂jK =

∫
RN
〈∂jf(x,w), f(x,w)− f(x,w(0)〉dx .

The remaining details are left to the reader.

To show that I(w) is singular we will show that its rows are linearly dependent.

Lemma 3.4. Consider a given two-layer ReLU network fw : RN → R as defined in Eq. (2.2) with

d hidden nodes and a fixed w ∈W . Given a fixed node i ∈ [d], fw satisfies the following differential

equation on the open domains for which fw is differentiable (see Definition 4.2):
N∑
k=1

wik
∂

∂wik
+ bi

∂

∂bi
− qi

∂

∂qi

 f = 0 . (3.2)

Proof. Let ai = 〈wi, x〉+ bi. Straight calculations show

∂f

∂wi,k
= qixk1(ai > 0) ,

∂f

∂bi
= qi1(ai > 0) ,

∂f

∂qi
= ReLU(ai) .

Recalling that ReLU(ai) = ai1(ai > 0), we have
N∑
k=1

wik
∂

∂wik
+ bi

∂

∂bi
− qi

∂

∂qi

 f = qi

 N∑
k=1

wi,kxk + bi

1(ai > 0)− qi ReLU(ai) = 0 .

We note that the scaling symmetry that shall be exhibited in Chapter 4 is responsible for this

result. Let us now prove the main theorem.

Proof of Theorem 3.1. Observing the form of Eq. (3.1), we first show that I(w) is degenerate if

and only if the set {
∂

∂wj
f(x,w)

}D
j=1

is linearly dependent. Note that here wj refers to the jth component of w ∈ W ⊆ RD, not to be

confused with the specific weight vectors defined in two-layer networks. To see this, first suppose

the set is linearly dependent, meaning there is some sequence rj ∈ R such that

D∑
j=1

rj
∂

∂wj
f(x,w) = 0 .
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Then for any fixed k ∈ [d] we have

D∑
j=1

rjIj,k(w) =

D∑
j=1

rj

∫∫
RN+M

〈
∂

∂wj
f(x,w),

∂

∂wk
f(x,w)

〉
q(x)dxdy

=

∫∫
RN+M

〈
D∑
j=1

rj
∂

∂wj
f(x,w),

∂

∂wk
f(x,w)

〉
q(x)dxdy

= 0 .

In particular, letting Ij(w) = [Ij,k(w)]Dk=1 denote each row of I(w) we thus have

D∑
j=1

rjI
j(w) =

 D∑
j=1

rjIj,k(w)

D
k=1

= 0 ,

thus showing the rows of I(w) are linearly dependent and so I(w) is singular. For the reverse

implication, if I(w) is singular then its rows must be dependent by the invertible matrix theorem.

We leave the remaining details as an exercise for the reader.

In particular, the differential equation in Eq. (3.2) implies that for any w ∈ W we have a lin-

ear dependence relation for each node. The Fisher information restricted to each node is thus

singular, and arranging I(w) into block diagonal form where the blocks correspond to each node

shows that I(w) itself is singular, proving the claim.

Connection to algebraic geometry

This series of results provides the key link between statistical learning theory and algebraic geom-

etry, as we now explain.

Given an analytic function K : W → R, x ∈W is a critical point of K if ∇K(x) = 0, and if it

further satisfies K(x) = 0 then it is a singularity of K [Har10, §1.5]. In fact, any true parameter

w(0) ∈W0 is a singularity of K since K(w(0)) = 0, and ∇K(w(0)) = 0 because K(w) ≥ 0. However,

what we are interested in are degenerate singularities.

A singularity x ∈W ⊆ RD of K is non-degenerate if in a neighbourhood of x one can write

K(x) = x2
1 + · · ·+ x2

D

for some set of local coordinates x1, . . . , xD. Otherwise, x is degenerate. By the Morse lemma

[Gil93], if the Hessian of K at a singularity x is non-degenerate, then that singularity is non-

degenerate, which corresponds to non-degenerate Fisher information matrix by Lemma 3.3. Then

by Theorem 3.1, for feedforward ReLU neural networks, every point on W0 is a degenerate singu-

larity of K.

From the point of view of algebraic geometry, non-degenerate singularities of K are uninterest-

ing. Even if a statistical model is non-identifiable (meaning true parameters are simply isolated

minima of K), regular asymptotic results hold in a local sense, as discussed in [Bal97]. The strength

of Singular Learning Theory’s results are only necessary for dealing with the case where W0 con-

tains degenerate singularities, where it is shown that the nature of these singularities from an

algebraic geometric perspective strongly affect the statistical learning process. It is this realisation

that makes Watanabe’s change in perspective truly groundbreaking for statistical learning.

For intuition let us now examine how W0 typically differs between regular and singular models.

Example 3.1. Let W ⊆ R2 and denote w = (w, q) ∈ W . Consider a one-node two-layer ReLU

network f : R×W → R. Define a model and an underlying truth by

f(x,w) = qReLU(wx) , f(x,w(0)) = θReLU(x) .
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(a) Contour plots of KS(w, q) and KR(w, q).

(b) Normalised posterior (see Remark 2.6) of singular and regular models, taking Kn(w) ≈ K(w).

Figure 3.1: The difference between singular and regular models for θ = 1
5 and ϑ = 1

2 respectively,

where ϕ(w) is uniform on [0, 1]2 and n = 100.

Assume that w, q, θ ≥ 0 where θ is fixed, and assume that q(x) is the uniform distribution on

[−
√

3,
√

3]. Then by Lemma 2.2,

KS(w, q) = (qw − θ)2 ,

so WS
0 = {(w, q) ∈ W | qw = θ} and thus every point is a degenerate singularity. We observe

in Fig. 3.1a that this gives a kind of hyperbolic valley, where W0 corresponds to the floor of the

valley. The degeneracy here comes from the fact that at every point w(0) ∈W0, there is a tangent

direction in which K(w) is still minimised.

In contrast, consider a constant model and truth g : R ×W → R2 (i.e. a feedforward ReLU

network with only the last layer biases) such that

g(x,w) = (w, q) , g(x,w(0)) = (ϑ, ϑ) ,

where we again assume w, q, ϑ ≥ 0 and ϑ is fixed. Taking q(x) uniform on [0, 2] for ease, this gives

KR(w, q) = (w − ϑ)2 + (q − ϑ)2 ,

and so WR
0 = (ϑ, ϑ). Fig. 3.1a shows that this induces a bowl-like paraboloid with a single

minimiser at (w, q) = (ϑ, ϑ).

For completeness, Fig. 3.1b shows the respective posteriors of the singular and regular model

(up to a scale factor).
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3.2 Free Energy

As alluded to in Section 2.3, the free energy is a fundamental object of study in both physics and

Bayesian statistics. Primarily, one can think of the free energy as being a measure of posterior

density associated to a particular region of W . In physical terms, these regions of W are sets of

microscopic states associated to particular macroscopic states.

Such a view implies that optimising the free energy is perhaps the fundamental objective of

statistical learning. Indeed many of the results of Singular Learning Theory suggest that this is the

correct approach to understanding how neural networks generalise so effectively, as well as being

the key to understanding how neural networks undergo phase transitions.

Definition 3.4. Given a dataset Dn, we define the total empirical free energy F βn ∈ R as

F βn = − logZβn = − log

(∫
W

ϕ(w)e−nβLn(w)dw

)
.

We will typically just refer to F βn as the free energy.

Let us inspect this definition a bit more closely. The free energy F βn depends on the choice of

model p and prior ϕ, but more importantly it is inherently a random variable that depends on the

random dataset Dn. To investigate the posterior landscape of a given true network in the search

for phase transitions we will want to make statements independent of Dn, hence we may instead

define the total free energy as a function of EX [nLn(w)] = nL(w),

F
β

n = − log

(∫
W

ϕ(w)e−nβL(w)dw

)
.

Note that F
β

n still depends on n even though the randomness in Dn has been marginalised out.

Indeed, it is stated in [Wat18, §9.4] that F βn and F
β

n are asymptotically equivalent up to constant

order, meaning we may interchange statements about either.

Remark 3.1. In physics, F
β

n is known as the annealed average, whereas E[− logZβn ] is known as

the quenched average. This is a subtle but important distinction, which is explored in a statistical

mechanics setting in [SST92] by appealing to the replica method.

What makes the free energy more informative than K(w) is that it encodes both regions of

maximum likelihood, which correspond to minimisers of K(w), as well as the generalisation of a

region of parameters, as the next lemma shows.

Lemma 3.5. Let Fn denote the free energy when β = 1. The generalisation loss is the average

increase in free energy,

Gn = EXn+1 [Fn+1]− Fn . (3.3)

In particular, the average free energy is the sum of the generalisation loss,

EDn [Fn] =

n−1∑
i=1

EDi [Gi] + ED1 [F1] .

Proof. The proof hinges on the fact that we may write

Zn+1

Zn
=

∫
W
p(yn+1|xn+1, w)ϕ(w)e−nβLn(w)dw∫

W
ϕ(w)e−nβLn(w)dw

= Ew[p(yn+1|xn+1, w)] = p(y|x,Dn)

which implies

Fn+1 − Fn = − log p(y|x,Dn) .

The remaining details can be found in Lemma A.5.
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In the process of model selection, which we will outline formally in Section 5.1, we will be

interested in comparing the free energy associated to compact sets.

Definition 3.5. Let W ⊆ W be a compact subset. We define the truncated posterior pβW(w|Dn)

to be the posterior restricted to W, that is,

pβW(w|Dn) =
ϕ(w)e−nβLn(w)

1(w ∈ W)

Zβn(W)
, where Zβn(W) =

∫
W
ϕ(w)e−nβLn(w)dw .

We let EβW denote expectation with respect to pβW(w|Dn).

Definition 3.6. For a given β and n, the empirical free energy associated to a compact region

W ⊆W is

F βn (W) = − logZβn(W) = − log

(∫
W
ϕ(w)e−nβLn(w)dw

)
.

The total free energy F
β

n(W) is defined in the obvious way.

Remark 3.2. Lemma 3.5 is easily generalised to Fn(W) by considering Zn+1(W)
Zn(W) .

SupposeW1,W2 ⊆W are two compact sets, and suppose for simplicity that they have the same

measure inW . If the posterior is more densely concentrated inW1 thanW2, then
∫
W1

p(w|Dn)dw >∫
W1

p(w|Dn)dw, implying F βn (W1) < F βn (W2). Combining this with its relation to generalisation

from Lemma 3.5 shows why minimising the free energy should be our primary statistical goal.

As in statistical physics, derivatives of the free energy with respect to intensive parameters

often equate to expectation values and variances of quantities of interest. This is easy to see given

the following lemma.

Lemma 3.6. Let W ⊆W be compact. The free energy of W satisfies

∂F βn (W)

∂β
= EβW [nLn(w)] = nGβt (W) ,

and
∂2F βn (W)

∂β2
= −EβW [(nLn(w))2] + EβW [nLn(w)]2 = −VβW [nLn(w)] .

Proof. For the first result, by straight calculation we have

∂F βn (W)

∂β
= − 1

Zβn(W)

∂Zβn(W)

∂β

= − 1

Zβn(W)

∂

∂β

(∫
W
ϕ(w)e−nβLn(w)dw

)
= − 1

Zβn(W)

∫
W
ϕ(w)

∂

∂β
e−nβLn(w)dw

=
1

Zβn(W)

∫
W
nLn(w)ϕ(w)e−nβLn(w)dw = EβW [nLn(w)] ,

where we may take the derivative inside the integral by similar arguments to those in Lemma 3.7.

The second equality here follows from the definition Gβt and Ln(w) = Kn(w) + Sn. We leave the

second derivative to Lemma A.4.

Whilst an important quantity, the free energy is both analytically and computationally in-

tractable for most non-trivial models, meaning our model selection process hinges on asymptotic

results instead. Deriving these asymptotics for singular models is the main result of Singular

Learning Theory, which we will see in Section 3.3. The start of this proof begins with the following

simple result.

Lemma 3.7. Assume that Ln(w) is not a constant in w. Denote F βn (W) = FWn (β) to indicate

W ⊆W is fixed and β is the function variable. Then
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1. EβW [nLn(w)] is a decreasing function of β.

2. FWn (β) is continuous in β.

3. There exists a unique β∗ ∈ (0, 1) satisfying

FWn (1) = Eβ
∗

W [nLn(w)] .

Proof. From Lemma 3.6, since ∂
∂βE

β
W [nLn(w)] = −VβW [nLn(w)], and the variance is always posi-

tive by the Cauchy-Schwarz inequality (and Ln(w) is non-constant), we see that ∂
∂βE

β
W [nLn(w)] < 0

showing the first claim.

FWn (β) is continuous via a simple application of the Lebesgue dominated convergence theorem

assuming Hypothesis 2.1, for which ϕ(w) and Ln(w) are continuous in w and positive. Merely

consider a sequence βj → β and define a sequence of continuous functions fj(w) = ϕ(w)e−nβjLn(w).

Then fj(w) → f(w) = ϕ(w)e−nβLn(w), and |f(w)| is bounded since W is compact and f is

continuous, meaning

FWn (βj) =

∫
W
fj(w)dw −→

∫
W
f(w)dw = FWn (β)

by the dominated convergence theorem [SS05, §2] and so FWn (β) is continuous.

For the this final claim, first note that by definition FWn (0) = 0, hence

FWn (1) =

∫ 1

0

∂FWn
∂β

(β)dβ .

Since Fn(β) is continuous, by the mean value theorem there exists a unique β∗ ∈ (0, 1) such that

∂FWn
∂β

(β∗) = Eβ
∗

W [nLn(w)] =
FWn (1)− FWn (0)

1− 0
= FWn (1) .

Finding the optimal inverse temperature β∗ is where the heavy lifting of the resolution of

singularities comes into play, which we shall now discuss.

3.3 Asymptotics of the Free Energy

One of the key observations of Watanabe is that the real log canonical threshold λ is the funda-

mental quantity determining the geometry of K(w), at least as it relates to statistical learning

theory. Suppose ϕ(w) > 0 on all of W and K(w) is a real analytic function. The zeta function

ζ(z) of a statistical model, where z ∈ C, is defined as

ζ(z) =

∫
W

K(w)zϕ(w)dw .

It is standard (see [Wat09, §4]) that ζ(z) can be analytically continued to a meromorphic function

on the whole complex plane with Laurent expansion

ζ(z) = ζ0(z) +

∞∑
k=1

mk∑
m=1

ckm
(z + λk)m

, (3.4)

where ζ0(z) is holomorphic and ckm ∈ C are coefficients, each λk ∈ Q>0 satisfies 0 < λ1 < λ2 < . . .

and mk is the largest order of the pole λk.

Definition 3.7. The real log canonical threshold (RLCT) of the (model, truth, prior) triple is

λ = λ1 with multiplicity m = m1 of Eq. (3.4).

Remark 3.3. The subsequent results hold on any compact set W , so in particular one may

consider local RLCTs associated to some compact subset W ⊆W by taking the integral over this

domain in the definition of ζ(z).
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Remark 3.4. Recall from Section 2.2.2 that K(w) is not in general analytic for ReLU networks,

thus one instead pretends that we are referring to the swish function for the remainder of this

discussion.

As shown in [Wat09, Theorem 7.1], the RLCT can be understood as a volume co-dimension,

that is, the number of “effective parameters” near the most singular point of W0 ⊆ RD. In

essence, λ = D′

2 where D′ ≤ D is such that for every point w0 ∈ W0, K(w) has an expression in

local coordinates of the form

K(w) =

D′∑
i=1

ciw
2
i

for some constants ci > 0 that may depend on w0. With this viewpoint, it becomes clear that the

RLCT should be the quantity that describes the geometric behaviour ofK(w) near true parameters,

and thus the free energy. In fact, in regular models, the RLCT is precisely equal to D/2.

To analyse the asymptotic expansion of the free energy, Watanabe’s idea is to desingularise

K(w) by employing Hironaka’s Resolution of Singularities [Hir64], one of the fundamental results

of algebraic geometry. Let us state the main theorem of [Wat13]. The fundamental conditions can

be found in [Wat09, §6] and further summarised in [Wat13, §3]. In short, they ensure that W is

a compact set whose boundary is defined by several analytic functions, the prior is analytic, the

model is sufficiently integrable in the Ls-space for s ≥ 6, and a local finite-variance property of

K(w).

Theorem 3.8. Consider a (model, truth, prior) triple satisfying the fundamental conditions. Let

β = β0

logn for some constant β0 > 0, and let Ln(w0) = minw∈W Ln(w) (in the realisable case

Sn = Ln(w0)). Then there exists a random variable Un such that

Eβw[nLn(w)] = nLn(w0) +
λ

β
+ Un

√
λ log n

2β0
+Op(1) , (3.5)

where λ is the RLCT of the triple and {Un} is a sequence of random variables which satisfy

E[Un] = 0 and converges in distribution to a Gaussian random variable as n→∞.

Remark 3.5. Recall that op(1) denotes a sequence of random vectors that converge to zero in

probability, and Op(1) denotes a sequence that is bounded in probability [Vaa07, §2.2].

Remark 3.6. So long as ϕ(w) > 0 on all of W Theorem 3.8 holds independent of the choice of

ϕ(w).

Combining this with Lemma 3.7, Watanabe shows:

Theorem 3.9. The free energy satisifes

Fn = Eβ
∗

w [nLn(w)]

at the optimal inverse temperature

β∗ =
1

log n

(
1 +

Un√
2λ log n

+ op

(
1√

log n

))
.

The quantity Eβ∗w [nLn(w)] is called the Widely Applicable Bayesian Information Criterion (WBIC).

Remark 3.7. The WBIC result still holds for a truncated posterior on a compact W ⊆ W , that

is,

Fn(W) = Eβ
∗

W [nLn(w)]

for the same optimal inverse temperature. This allows us to discuss local free energy associated to

different regions of W .
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Remark 3.8. These theorems have important consequences for practical computations, too.

Firstly, Theorem 3.9 gives us a direct way of estimating the free energy of a given triple. We

can estimate the posterior via a sampling procedure at inverse temperature β∗ = 1
logn , and then

calculate the average log loss over these samples. Secondly, Theorem 3.8 shows we may estimate

the RLCT via a simple linear regression on {(xj , yj)} for a sequence of points yj = Eβjw [nLn(w)],

xj = 1
βj

= logn

βj0
, where λ̂ is the gradient of this line [Wat13, §6.2].

The WBIC is so called because it is the precise generalisation of the BIC for singular models:

Corollary 3.10. If a model with W ⊆ RD is regular, then λ = D
2 and Un = 0, so

WBIC = nLn(w0) +
D

2
log n = BIC . (3.6)

It is in this sense that deep learning is “unreasonably effective” as described by Yann Lecun

[LeC14]. According to the BIC, if D is very large (for example, D ∼ 1011 in the state of the art

GPT-3 [Bro+20]) one should never use large neural networks as the dimensionality is massively

penalised. But as Watanabe shows, it is not D that we care about in model selection, but λ. Let

us explore this.

Occam’s Razor

We can interpret the asymptotic relationship in Eq. (3.5) as a competition between “energy and

entropy”, or equivalently, “accuracy and complexity”. The above theorems show that in singular

models, for any compact W ⊆W we may write

Fn(W) ≈ nLn(ω0) + λ
log n

β0
, (3.7)

where Ln(ω0) = minω∈W Ln(ω), β0 = β∗ log n and λ is the local RLCT associated to the most

singular point on W. For the rest of this discussion we assume we are in the realisable case.

In [Bal97] the BIC in Eq. (3.6) is analysed for regular models. The nLn(w0) term is called

the accuracy of the model, which is to say, the smallest loss that one can hope to attain for the

model p(y|x, ω) evaluated at some parameter ω ∈ W. The D
2 log n term is a measure of complexity,

where models with large numbers of parameters are penalised. This, he states, gives a mathematical

realisation of Occam’s Razor: “plurality should not be posited without necessity,” [Bri] or typically

known as “the simplest explanation is usually the right one”.

This embodiment is even more apparent in the singular setting. Recall that λ can be thought of

as measuring the effective number of dimensions associated to a singularity on W0. The accuracy

term in Eq. (3.5) is the same as in the BIC, but the complexity term is now dependent on λ.

Let W,W ′ ⊆ W be two sufficiently small compact sets and W0 = W ∩W0, W ′0 = W ′ ∩W0,

which we assume are both non-trivial. Let ω0 ∈ W0 and ω′0 ∈ W ′. Since they are both true

parameters their accuracies are equal, Ln(ω0) = Ln(ω′0) = Sn. Suppose, however, that the local

RLCTs λ, λ′ of W,W ′ respectively satisfy λ < λ′. Then

Fn(W) < Fn(W ′)

meaning we should prefer models from W0 over W ′0 since they have lower model complexity as

measured by the RLCT. Recalling the relationship between free energy and generalisation from

Lemma 3.5, this illustrates Watanabe’s equivalence [Wat09, §7.6]:

smaller λ⇐⇒ more complicated singularity ⇐⇒ lower free energy ⇐⇒ better generalisation.

This forms the motivation for our experiments in Chapter 5 where we will demonstrate that

different singularities can have different free energies with simple examples. First we need to

classify the points of W0 in some simple but nontrivial examples. This is the subject of the next

chapter.
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Chapter 4

Symmetries of W0

In order to demonstrate differences in the free energy of regions of W , we must first begin by

understanding what points are on W0. In this chapter we will fully charactersie the symmetries of

the set of true parameters W0 when the true distribution is defined by an activation-distinguished

minimal two-layer feedforward ReLU network with two inputs and one output with m hidden

nodes, and the model is defined similarly but with d hidden nodes. This classification procedure is

equivalent to classifying functional equivalence of these networks, with the key insight being that

their activation boundaries must be the same. We begin with the case where m = d and find

that W0 generically exhibits scaling, permutation, and under particular conditions, orientation

reversing symmetry. This is then generalised to m < d where it is found that each of the d −m
excess nodes is either degenerate or shares an activation boundary with another node. We then

state the main theorem of [PL19] which proves similar results for networks of arbitrary depth. The

section concludes with an example of networks with non-generic symmetries called m-symmetric

networks.

4.1 Topology of Two-Layer Feedforward ReLU Networks

Let fw : RN → R be a two-layer feedforward ReLU neural network with one input, two outputs

and d hidden nodes for some fixed w ∈W . For convenience, recall Eq. (2.2):

fw(x) = c+
d∑
i=1

qiReLU(〈wi, x〉+ bi) (4.1)

where w = (w1, . . . , wd, b1, . . . , bd, q1, . . . , qd, c) ∈W ⊆ R4d+1 ,

where for each node i ∈ [d] := {1, . . . , d} we have wi ∈ R2, and bi, qi, c ∈ R. In this section a

network will always refer to a network of this form.

Definition 4.1. We say a node i ∈ [d] is degenerate in a network fw if either qi = 0 or wi = 0,

thus meaning there is no meaningful contribution from i to fw(x).

Remark 4.1. In the case where wi = 0 but qi 6= 0 and bi 6= 0 we may simply redefine the total

bias to be c′ = c + qibi, thus meaning degeneracy need only be defined in terms of the weights qi
and wi. Without loss of generality, we exclude this case from all subsequent results.

ReLU neural nets are piecewise affine functions, thus determine a finite collection of regions

with constant gradient defined by activation boundaries, which we now formalise.

Definition 4.2. Let α ∈ Λ where Λ is an index set. A linear domain Uα ⊆ RN of fw is a connected

open set such that:

1. fw is a simple plane with constant gradient and bias when fw is restricted to Uα, that is,

fw|Uα (x) = 〈wα, x〉+ bα
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for some wα ∈ RN and bα ∈ R, and;

2. Uα is the maximal such set for which this plane is defined.

Since any network only contains finitely many nodes, |Λ| is necessarily finite.

Remark 4.2. Note that wα and bα are the sum of the weights and biases that are active in the

region Uα, and also absorb the gradients qi and bias c. Given some network fw, the precise size of

Λ is non-trivial in general. 1

Definition 4.3. Let i ∈ [d] be a non-degenerate node of fw(x) and let Uα ∈ R2 be a linear domain.

We say node i is active in Uα if 〈wi, x〉+ bi ≥ 0 for all x ∈ Uα. The activation boundary associated

to i is the hyperplane

Hi = {x ∈ RN | 〈wi, x〉+ bi = 0} . (4.2)

When N = 2, Hi is merely a line in R2. We say Hi is degenerate if the corresponding node i is

degenerate, meaning Hi is either empty or all of RN .

Remark 4.3. Since each wi vector is normal to the activation boundary it defines, recall from

Fig. 2.3b that these vectors “point” to the regions in which they are active when anchored on the

activation boundary they define.

Following from [PL19], we can make sense of these activation boundaries in the context of

foldsets:

Definition 4.4. Let Z ⊆ RN be open and g : Z → R a continuous piecewise linear function. The

foldset of g is

F(g) =

{
x ∈ Z

∣∣∣ g is not differentiable at x

}
.

Lemma 4.1. Let fw : RN → R be a two-layer feedforward ReLU neural network as in (2.2). Then

fw is continuous, and

F(fw) =

d⋃
i=1

{Hi | i is non-degenerate} . (4.3)

Proof. Since ReLU(x) is continuous and fw is a sum of ReLU’s composed with affine functions,

continuity is clear. Note that ReLU(x) is non-differentiable at x = 0 since for x 6= 0 we have

d

dx
ReLU(x) =

1 x > 0

0 x < 0

which is clearly discontinuous at x = 0. Any degenerate nodes will have at most constant contribu-

tion to fw(x), so these nodes won’t contribute to F(fw). For any non-degenerate node i, observing

the form of fw(x) in Eq. (2.2) shows that fw is non-differentiable when 〈wi, x〉 + bi = 0, which is

the activation boundary Hi, giving the result.

By definition, the linear domains and foldsets are related by⋃
α∈Λ

Uα = R2 \ (F(fw)) .

1The reader is referred to [Iva10] for an interesting discussion when these are lines in the plane for N = 2.
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4.2 Classification of W0 for m = d

Recall from Definition 2.8 that the set of true parameters is defined by

W0 = {w ∈W | p(y|x,w) = q(y|x)} .

In classifying W0 we are obviously only interested in the case that it is non-empty, hence we may

assume that q(y|x) = p(y|x,w(0)), where we take w(0) ∈ W to be a fixed parameter defining a

two-layer feedforward ReLU neural network f0(x) := f(x,w(0)) with two inputs and one output.

Since probability distributions are uniquely defined (up to a set of measure zero), this condition

implies that p(y|x,w) and p(y|x,w(0)), under Hypothesis 2.1, must have the same mean. Thus

W0 = {w ∈W | f(x,w) = f0(x)} ,

and so the task of classifying W0 becomes classifying functional equivalence of this class of net-

works. We begin in the simplest case where f0 is activation-distinguished and minimal, and the

model and truth have the same number of parameters.

This section is dedicated to proving the following classification theorem. Suppose the model and

truth have the same number of hidden nodes, and the true network is minimal and activation-

distinguished. Then we will show in Theorem 4.7 that W0 exhibits three kinds of symmetry:

• Scaling symmetry of the incoming and outgoing weights to any node.

• Permutation symmetry of the hidden nodes.

• Orientation reversing symmetry of the weights, only allowed for collections of weights which

sum to zero.

The key observation that guides this proof is that the foldsets of the model and truth must be

equal. Once this is accounted for, the rest is merely a matter of good bookkeeping.

4.2.1 Definitions and hypotheses

Inspired by definitions in [Sus92] which deals with tanh neural networks, we begin with some

simplifying definitions.

Definition 4.5. Let Z ⊆ R2 be an open set. Given a two-layer network fw : Z → R with d

hidden nodes, fw is minimal if: given another two-layer network f ′w′ : Z → R with d′ ≤ d hidden

nodes such that fw(x) = f ′w′(x) for all x ∈ Z, then the number of hidden nodes are necessarily

equal, d = d′. We say fw is activation-distinguished if each non-degenerate Hi is unique, that is,

Hi 6= Hj for each i 6= j ∈ [d].

Remark 4.4. Each node of a minimal network is necessarily non-degenerate.

To see why we impose the activation-distinguished condition, observe that if f(x,w) has d

unique activation boundaries then it is necessarily minimal, but the converse is not necessarily

true:

Example 4.1. Consider w = (w1, w2, b1, b2, q1, q2, c) = ((1, 1), (−1,−1), 0, 0, 1, 1, 0), so

f(x,w) = ReLU(x1 + x2) + ReLU(−x1 − x2) .

Then H1 is the line x1 +x2 = 0 and H2 is the line −x1−x2 = 0, and so clearly H1 = H2 as subsets

of R2, thus there is only one unique foldset. However f(x,w) is minimal: suppose there was a one-

node neural network f(x,wr) = c+ qReLU(〈x, r〉+ b) which produced the same input output map.

Then this network necessarily has a region of inactivation by the definition of ReLU, 〈x, r〉+ b < 0,

and f(x,wr) has zero gradient in this region. But f(x,w) has non-zero gradient in both regions

{(x1, x2) |x2 ≥ x1} and {(x1, x2) |x2 ≤ x1}, thus we could not have f(x,wr) = f(x,w).
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Remark 4.5. It is possible to show that n non-parallel lines divide the plane into Ln = n(n+1)
2 +1

different regions. As such, in principle one can check for the minimality of a given network f by

counting |Λ| and comparing this to Ln.

For the remainder of this section we will enforce some simplifying hypotheses:

Hypothesis 4.1. Let q(y|x) be a realisable true distribution defined by a two-layer feedforward

ReLU neural network f0 := f(· , w(0)) : R2 → R1 with m hidden nodes for some fixed parameter

w(0) ∈W . We call f0 the true network. Let p(y|x,w) be the model as in Hypothesis 2.1 defined by

a two-layer feedforward ReLU neural network f : R2 ×W → R1 with d hidden nodes. We further

impose:

• f0(x) is minimal and distinguished, so all activation boundaries Hi are non-degenerate and

unique.

• The width of the true network and the model are equal, so m = d.

• w(0) is defined by

w(0) = (w
(0)
1 , . . . , w(0)

m , b
(0)
1 , . . . , b(0)

m , q
(0)
1 , . . . , q(0)

m , c(0)) ,

where w
(0)
i ∈ R2\{(0, 0)}, b(0)

i ∈ R, q
(0)
i ∈ R\{0} and c(0) ∈ R for each i ∈ [d], since every

node is non-degenerate.

To characterise W0, we thus set f(x,w) = f0(x) and describe the possible values of w.

Remark 4.6. Clearly the model f(x,w) must also be minimal and activation-distinguished.

Armed with these formulations we are thus ready to begin investigating the symmetries of W0.

4.2.2 Lemmas

The results of Lemma 4.2, Lemma 4.4, Lemma 4.5, Lemma 4.6 and Theorem 4.7 all assume the

conditions of Hypothesis 4.1. The fundamental observation that guides this classification is that

the foldsets of a network are the pivotal piece of data. Given that the foldsets of the model and

truth must be equal, this restricts the classification process to observing equivalence of lines in the

plane, and then ensuring the gradients and biases are equivalent.

Beginning with this observation, the first form of symmetry is a simple permutation of nodes.

Lemma 4.2. Let Hi denote the activation boundaries associated to f(x,w) as in (4.2) and let

H
(0)
i denote the activation boundaries associated to f0(x). Then there exists some permutation

σ ∈ Sm (the symmetric group of order m) such that Hi = H
(0)
σ(i) for each i ∈ [d].

Proof. Since f(x,w) = f0(x) for all x ∈ R2, and f(x,w) must also be minimal, they must also be

non-differentiable at the same points, so

F(f(x,w)) =

d⋃
i=1

Hi =

m⋃
j=1

H
(0)
j = F(f0(x)) .

Each Hi and H
(0)
j are distinct by hypothesis, which we will show implies there is a unique j ∈ [m]

such that Hi = H
(0)
j . First observe that there can only be finitely many intersection points of the

lines {Hi}i∈[d] (and similarly for {H(0)
j }j∈[m]), thus let x ∈ F(f(x,w)) be a non-intersection point

uniquely associated to a line Hi for some i ∈ [d], so x ∈ Hi \
(⋃

j 6=iHj

)
. Then since the foldsets

are equal, x ∈ F(f0(x)), and since the points of intersection of the sets {Hi}i∈[d] coincide with

those of {H(0)
j }j∈[m], x is a non-intersection point of the true foldset lines and thus is uniquely

associated to a line H
(0)
j .

31



To see that this implies Hi = H
(0)
j for all x ∈ Hi, suppose we pick d+ 1 non-intersection points

on Hi. Then since m = d, by the pigeonhole principle there must be at least two points associated

to some H
(0)
j . But since lines are uniquely determined by two points, this implies Hi = H

(0)
j for all

non-intersection points x ∈ Hi. By continuity this also applies to intersection points, thus there is

a unique j ∈ [m] such that Hi = H
(0)
j .

Finally, since m = d, our previous statement simply says that there is a unique bijection σ :

[d]→ [m] associating lines in F(f0(x)) to lines in F(f(x,w)), thus giving the desired σ ∈ Sm.

Lemma 4.2 induces a scaling symmetry in the weights and biases. Before demonstrating this,

we begin with a more general result.

Lemma 4.3. Let w,w′ ∈ R2 \ {0} and b, b′ ∈ R be given and let

H = {x ∈ R2 | 〈w, x〉+ b = 0}, and H ′ = {x ∈ R2 | 〈w′, x〉+ b′ = 0} .

Then H = H ′ if and only if there exists some scalar λ ∈ R \ {0} such that w = λw′ and b = λb′.

Proof. See Lemma A.6.

Lemma 4.4. Given f(x,w) = f0(x), there exists a unique σ ∈ Sm, and for each i ∈ [d] there

exists an εi ∈ Z2 and λi ∈ R>0, such that

wi = (−1)εiλiw
(0)
σ(i) , and bi = (−1)εiλib

(0)
σ(i) , where λi =

q
(0)
σ(i)

qi
,

meaning qi and q
(0)
σ(i) necessarily have the same sign.

Proof. Lemma 4.2 gives the permutation σ ∈ Sm relating the activation boundaries of f(x,w)

and f0(x). For each i ∈ [d] Lemma 4.3 gives us a µi ∈ R\{0}, which we can decompose into

µ = (−1)εiλi for some εi ∈ Z2 and λi ∈ R>0 such that we can initially write

wi = (−1)εiλiw
(0)
σ(i) , and bi = (−1)εiλib

(0)
σ(i) . (4.4)

Let i ∈ [d] be fixed and fix a non-intersection point x ∈ Hi \
(⋃

j 6=iHj

)
. Let U 3 x be a sufficiently

small open ball around x such that U ∩
(⋃

j 6=iHj

)
= ∅, which exists since there are only finitely

many (and thus isolated) points of intersection. Recall that by hypothesis Hi 6= Hj for any other

j 6= i, thus excluding the possibility of any other node being activated across the boundary Hi.

Then the vector wi emanating from x points towards a unique linear domain Uα for which x is

on the closure of Uα, and node i is active in Uα. Similarly, −wi points towards a different unique

linear domain Uβ satisfying the same closure property, but for which node i is inactive in Uβ .

Thus we can find a unique decomposition U = U− ∪ U+ where

U− = U ∩ Uβ , and U+ = U ∩ Uα

Then we have

f |U+ (x,w) = f |U− (x,w) + qi(〈wi, x〉+ bi) .

Similarly, consider the same set up for the line H
(0)
σ(i) = Hi associated to f0(x), where U0 = U

is the same sufficiently small neighbourhood and U−0 and U+
0 are the regions of inactivation and

activation (referring to f0) respectively. Note that the orientation of wi will determine whether

U+ = U+
0 or U+ = U−0 , and similarly for U−. Explicitly, we then have

f0|U+ (x) = f0|U− (x) + q
(0)
σ(i)

(
〈w(0)

σ(i), x〉+ b
(0)
σ(i)

)
. (4.5)
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First suppose εi = 0, so wi and w
(0)
σ(i) are oriented in the same direction, hence U+ = U+

0 and

U− = U−0 . Since f(x,w) = f0(x) we have

qi(〈wi, x〉+ bi) = f |U+ (x,w)− f |U− (x,w)

= f0|U+ (x)− f0|U− (x) = q
(0)
σ(i)

(
〈w(0)

σ(i), x〉+ b
(0)
σ(i)

)
,

and so by comparing polynomial coefficients we must have

wi =
q

(0)
σ(i)

qi
w

(0)
σ(i) , and bi =

q
(0)
σ(i)

qi
b
(0)
σ(i) . (4.6)

If ε1 = 1 then wi and w
(0)
σ(i) are oriented in different directions, thus U+ = U−0 and U− = U+

0 so

we have

qi
(
〈wi, x〉+ bi

)
= f |U+ (x,w)− f |U− (x,w)

= f0|U− (x)− f0|U+ (x) = −q(0)
σ(i)

(
〈w(0)

σ(i), x〉+ b
(0)
σ(i)

)
and so again comparing coefficients we have

wi = −
q

(0)
σ(i)

qi
w

(0)
σ(i) , and bi = −

q
(0)
σ(i)

qi
w

(0)
σ(i) . (4.7)

Combining (4.6) with (4.7) we can write

wi = (−1)εi
q

(0)
σ(i)

qi
w

(0)
σ(i) , and bi = (−1)εi

q
(0)
σ(i)

qi
w

(0)
σ(i) ,

thus giving λi =
q
(0)

σ(i)

qi
as advertised. Since λi must be positive by (4.4), we see that qi necessarily

has the same sign as q
(0)
σ(i).

At first glance, one may assume that all orientations must be preserved, that is, all εi = 0, to

yield functional equivalence. But as the next example shows, this is not necessarily the case.

Example 4.2. Consider a simple one dimensional ReLU neural network f : R ×W → R with

d = 2 hidden nodes. Defining w(0), w ∈W such that

f0(x) = ReLU(x+ 1) + ReLU(−x+ 1) ,

and f(x,w) = 2 + ReLU(−x− 1) + ReLU(x− 1) ,

we see that f(x,w) = f0(x) and so w = (−1, 1,−1,−1, 1, 1, 2) is also a true parameter for w(0) =

(1,−1, 1, 1, 1, 1, 0). Notice that here we have w1 + b1 = −(w
(0)
1 + b

(0)
1 ) and similarly w2 + b2 =

−(w
(0)
2 + b

(0)
2 ), meaning ε1 = ε2 = 1. But this works because the weights of both networks sum to

zero.

We use this example as the inspiration for the orientation reversing symmetry. We letGα(f(x,w)) ∈
R2 denote the gradient computed by f(x,w) in the linear domain Uα, and similarly Bα(f(x,w)) ∈ R
the bias.

Lemma 4.5. Let E = {i ∈ [d] | εi = 1}. Given σ ∈ Sm, λi ∈ R\{0} and εi ∈ Z2 from Lemma 4.4,

the weights of the true network necessarily satisfy
∑
i∈E q

(0)
σ(i)w

(0)
σ(i) = 0.

Proof. Let Uα be a fixed domain associated to f(x,w). For notational convenience, define

δαj :=

1 if 〈w(0)
j , x〉+ b

(0)
j ≥ 0

0 otherwise
, and δj

α
:= 1− δαj , (4.8)
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thus δαj indicates whether node j ∈ [m] of f0(x) is active in the region Uα, and δαj indicates the

converse. Let i ∈ [d] be a node of f(x,w) and σ(i) the corresponding node of f0(x) such that

Hi = H
(0)
σ(i).

Following the result of Lemma 4.4 we can calculate

f(x,w) = c+

d∑
i=1

qiReLU
(
〈wi, x〉+ bi

)
= c+

d∑
i=1

qiλiReLU

(
(−1)εi

(
〈w(0)

σ(i), x〉+ b
(0)
σ(i)

))
,

where λi =
q
(0)
i

qi
> 0. In particular, the single node map

ReLU(〈wi, x〉+ bi) 7−→ λi ReLU

(
(−1)εi

(
〈w(0)

σ(i), x〉+ b
(0)
σ(i)

))
shows that if node σ(i) is active in Uα, then we are in one of two situations: either εi = 0 and

δασ(i) = 1, or εi = 1 and δ
α

σ(i) = 1. We can then equate gradients Gα(f(x,w)) = Gα(f0(x)), and

recall q
(0)
σ(i)w

(0)
σ(i) = (−1)εiqiwi from Lemma 4.4, to calculate∑

i∈[d]

δασ(i)q
(0)
σ(i)w

(0)
σ(i) =

∑
i/∈E

δασ(i)qiwi +
∑
i∈E

δ
α

σ(i)qiwi =
∑
i/∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) +

∑
i∈E

δ
α

σ(i)q
(0)
σ(i)(−w

(0)
σ(i)) .

But by definition we have∑
i∈[d]

δασ(i)q
(0)
σ(i)w

(0)
σ(i) =

∑
i/∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) +

∑
i∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) ,

so subtracting one from the other shows that∑
i∈E

(
δασ(i) + δ

α

σ(i)

)
q

(0)
σ(i)w

(0)
σ(i) =

∑
i∈E

q
(0)
σ(i)w

(0)
σ(i) = 0 .

Example 4.2 shows us that we can expect a similar result for the biases.

Lemma 4.6. With E as in Lemma 4.5, given σ ∈ Sm and εi ∈ Z2 from Lemma 4.4, the biases of

the true network satisfy c0 +
∑
i∈E q

(0)
σ(i)b

(0)
σ(i) = c .

Proof. Let Uα be a fixed linear domain, so the same arguments from Lemma 4.5 regarding active

nodes on Uα apply. The bias c is active on every domain, so equating B(f(x,w)) = B(f0(x)) gives

c0 +
∑
i∈[d]

δασ(i)q
(0)
σ(i)b

(0)
σ(i) = c+

∑
i/∈E

δασ(i)qibi +
∑
i∈E

δ
α

σ(i)qibi

= c+
∑
i/∈E

δασ(i)q
(0)
σ(i)b

(0)
σ(i) +

∑
i∈E

δ
α

σ(i)q
(0)
σ(i)(−b

(0)
σ(i)) ,

but again recalling ∑
i∈[d]

δασ(i)q
(0)
σ(i)b

(0)
σ(i) =

∑
i/∈E

δασ(i)q
(0)
σ(i)b

(0)
σ(i) +

∑
i∈E

δασ(i)q
(0)
σ(i)b

(0)
σ(i) ,

we thus have

c0 +
∑
i∈E

δασ(i)q
(0)
σ(i)b

(0)
σ(i) = c−

∑
i∈E

δ
α

σ(i)q
(0)
σ(i)b

(0)
σ(i) ,

and so c0 +
∑
i∈E q

(0)
σ(i)b

(0)
σ(i) = c.

Remark 4.7. Our convention is to take the empty sum to be zero, so if E is empty then we have

c = c0.
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4.2.3 Main theorem for m = d

We have thus arrived at the main theorem of this section having classified all of the symmetries of

W0 for m = d. We first introduce some notation. Let σ ∈ Sm be a fixed permutation and define

Xi :=
{

(λi, qi) ∈ R>0 × R
∣∣∣λiqi = q

(0)
σ(i)

}
,

and Υ :=

{
ε : [d]→ Z2

∣∣∣∣∣ ∑
i∈E

q
(0)
σ(i)w

(0)
σ(i) = 0 , and c0 +

∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) = c

}
,

where E = {i ∈ [d] | εi = 1}.

Theorem 4.7. Let f0 : R2 → R1 , f0(x) := f(x,w(0)) be an activation distinguished minimal

feedforward ReLU neural network with two-layers, d hidden nodes defined by some fixed parameter

w(0) ∈W . Then there is a bijection

Ψ :
m∏
i=1

Xi × Sm ×Υ
∼=−→W0

(
(λi, qi)

m
i=1 , σ, ε

)
7−→

((−1)εiλiw
(0)
σ(i)

)d
i=1

,
(

(−1)εiλib
(0)
σ(i)

)d
i=1

, (qi)
d
i=1, c0 +

∑
i∈E

q
(0)
σ(i)b

(0)
σ(i)

 .

We refer to
∏m
i=1Xi as scaling symmetry, Sm as permutation symmetry and Υ as orientation

reversing symmetry.

Proof. We first verify that Ψ is well defined, that is, f(x,Ψ(θ)) = f0(x) as functions. We compute

for a fixed θ = ((λi, qi)
m
i=1, σ, ε) ∈

∏m
i=1Xi × Sm ×Υ

f(x,Ψ(θ)) = c0 +
∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) +

d∑
i=1

qiReLU

(〈
(−1)εiλiw

(0)
σ(i), x

〉
+ (−1)εiλib

(0)
σ(i)

)

= c0 +
∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) +

d∑
i=1

qiλiReLU

(
(−1)εi

(〈
w

(0)
σ(i), x

〉
+ b

(0)
σ(i)

))

= c0 +
∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) +

d∑
i=1

q
(0)
σ(i)ReLU

(
(−1)εi

(〈
w

(0)
σ(i), x

〉
+ b

(0)
σ(i)

))
.

Thus we see that f(x,Ψ(θ)) has the same foldsets as f0(x). It remains to check the gradients and

biases in any domain Uα agree. Let δασ(i) be as in Lemma 4.5 so it refers to active nodes of f0(x).

Then for any domain Uα the gradient computed by f0(x) is

Gα(f0(x)) =
∑
i∈[d]

δασ(i)q
(0)
σ(i)w

(0)
σ(i) ,

whereas the gradient computed by f(x,Ψ(θ)) is

Gα(f(x,Ψ(θ))) =
∑
i/∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) +

∑
i∈E

δ
α

σ(i)q
(0)
σ(i)(−w

(0)
σ(i))

=
∑
i/∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) +

∑
i∈E

δασ(i)q
(0)
σ(i)w

(0)
σ(i) =

∑
i

δασ(i)q
(0)
σ(i)w

(0)
σ(i) = Gα(f0(x)) ,

where the second equality followed from our hypothesis on ε ∈ Υ. Similarly, the bias computed by

f0(x) is

Bα(f0(x)) = c0 +
∑
i∈[d]

δασ(i)q
(0)
σ(i)b

(0)
σ(i)
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whereas for f(x,Ψ(θ)) it is

Bα(f(x,Ψ(x))) = c0 +
∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) +

∑
i/∈E

δασ(i)q
(0)
σ(i)b

(0)
σ(i) +

∑
i∈E

δ
α

σ(i)q
(0)
σ(i)(−b

(0)
σ(i))

= c0 +
∑
i∈E

q
(0)
σ(i)b

(0)
σ(i) +

∑
i∈[d]

δασ(i)q
(0)
σ(i)b

(0)
σ(i) −

∑
i∈E

q
(0)
σ(i)b

(0)
σ(i)

= c0 +
∑
i∈[d]

δασ(i)q
(0)
σ(i)b

(0)
σ(i) = Bα(f0(x)) ,

where the second equality follows from δ
α

σ(i) = 1− δασ(i). Therefore we have f(x,Ψ(θ)) = f0(x) and

so Ψ is well defined.

For injectivity, if Ψ(θ) = Ψ(θ′) for suitable θ, θ′ ∈
∏m
i=1Xi × Sm ×Υ then we can read off qi = q′i,

hence λi = λ′i for all i. We may then compare foldsets of f(x,Ψ(θ)) and f(x,Ψ(θ′)) which are

identically labelled to recover σ = σ′. Finally we may read off each εi and ε′i from each weight

entry, thus ε = ε′ and so θ = θ′.

For surjectivity, if f(x,w) = f0(x) then they must have identical foldsets as in Lemma 4.2, where

the weights and biases must be equal up to scaling from Lemma 4.3, and ε can only be non-zero

under the hypothesis on Υ shown in Lemma 4.5. Thus Ψ is a bijection.

Remark 4.8. We now see that the activation-distinguished condition allows us to uniquely identify

the permutation σ relating activation boundaries, and ensures only one node changes across each

boundary.

4.3 Classification of W0 for m < d

The key assumption of the previous section was that the number of parameters in the model d and

(minimal) truth m were equal. Let us now weaken this condition and examine the case m < d. In

this section we will show that of the d nodes associated to the model, the symmetries associated

to m of them are the same as in Theorem 4.7 - without loss of generality let these nodes be [m].

By contrast, each “excess” node i ∈ {m+ 1, . . . , d} will either be

• Degenerate, so qi = 0 or wi = 0, or;

• Have the same activation boundary as a node in [m].

Thus in this case W0 has degenerate-node symmetries, suitably adjusted scaling symmetries, suit-

ably adjusted permutation symmetries and almost identical orientation reversing symmetry.

4.3.1 Hypotheses, definitions and lemmas

Hypothesis 4.2. We assume the same conditions as in Hypothesis 2.1, but with the number of

hidden nodes m in the true network f0(x) strictly less than those d in the model f(x,w), so m < d.

In particular, we assume that f0(x) is still minimal and activation-distinguished.

We assume the conditions of Hypothesis 4.2 for Lemma 4.8, Lemma 4.9, Lemma 4.10 and

Theorem 4.11.

Lemma 4.8. Let Hi denote the activation boundaries associated to the model for i ∈ [d], and H
(0)
j

those to the truth for j ∈ [m]. Let K = d−m > 0 denote the number of excess parameters in the

model. Then:

1. There exists a 0 ≤ k ≤ K such that k nodes of f(x,w) (and thus their corresponding

activation boundaries) are degenerate.
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2. Consider the remaining d′ = K − k ≥ m nodes of the model. Without loss of generality we

may write this set as {1, . . . , d′}. Then there is a surjective finite set map

π : {1, . . . ,m,m+ 1, . . . d′} −→ {1, . . . ,m}

such that Hi = H
(0)
π(i) for each i ∈ [d′]. If d′ = m then π is a bijection.

Proof. Once again, the key observation is that since f(x,w) = f0(x), their foldsets must also be

equal, thus

F(f0(x)) =

m⋃
j=1

H
(0)
j =

d⋃
i=1

{Hi | i is non-degenerate} = F(f(x,w)) .

Since f0 is minimal and activation-distinguished, so
⋃m
j=1H

(0)
j comprises m distinct lines in the

plane, the model requires at least m non-degenerate activation boundaries for these foldsets to be

equal. Without loss of generality, suppose the non-degenerate nodes of the model are {1, . . . ,m}.
Thus, there exists a permutation σ ∈ Sm such that Hi = H

(0)
σ(i) for i ∈ [m]. For clarity, let us write

F(f(x,w)) =

 m⋃
i=1

Hi

⋃ d⋃
i=m+1

{Hi | i is non-degenerate}

 .

Since
⋃m
i=1Hi =

⋃m
j=1H

(0)
j , we see that

d⋃
i=m+1

{Hi | i is non-degenerate} ⊆
m⋃
j=1

H
(0)
j .

Let Hi be one of the remaining activation boundaries for m+ 1 ≤ i ≤ d. Then using the same

arguments associating unions of lines to one another as in Lemma 4.2, there are two choices:

1. {Hi | i is non-degenerate} is empty, thus Hi is degenerate, or;

2. Hi = H
(0)
j for some j ∈ [m].

Enumerating these choices over each m+ 1 ≤ i ≤ d, the model thus has 0 ≤ k ≤ d−m degenerate

nodes, and d′ = d− k ≥ m non-degenerate nodes. Let υ : {m+ 1, . . . , d′} → {1, . . . ,m} denote the

map given as a result of the second choices above. Combining σ and υ gives a map π : {1, . . . , d′} →
{1, . . . ,m} which acts as σ on {1, . . . ,m}, and as υ on {m + 1, . . . , d′}. The map π inherits its

surjectivity from σ, and if d′ = m then π = σ and thus is a bijection.

Remark 4.9. If d′ > m then π is clearly non-injective, meaning multiple nodes of the model will

share the same activation boundaries.

In light of Lemma 4.8, we can introduce a new kind of network that simplifies the degeneracy

property of f(x,w).

Definition 4.6. Let w ∈ W ⊆ R4d+1, and f : R2 ×W → R be a two-layer feedforward ReLU

network with d hidden nodes. Suppose f(x,w) is an activation-distinguished network such that

0 ≤ k ≤ d nodes are degenerate, and let d′ = d− k. Then by Lemma 4.8 there exists an

• activation-distinguished two-layer ReLU network g : R2×W ′ → R with d′ hidden nodes such

that W ′ ⊆ R4d′+1 and W ′ ⊆W , and;

• a parameter w′ ∈W ′ with d′ non-degenerate nodes equal to the non-degenerate nodes of w;

such that f(x,w) = g(x,w′) for all x ∈ R2. We call g(x,w′) the degenerate reduced network of

f(x,w).
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Since the networks in Definition 4.6 are activation distinguished, this definition uses the first

form of symmetry in Lemma 4.8 to remove degenerate nodes from both the function and the vector.

Assuming f(x,w) to be in its degenerate reduced form with d′ hidden nodes, we can now classify

the excess nodes m+ 1 ≤ i ≤ d′ by appealing to the same scaling symmetry as seen in Lemma 4.3.

Lemma 4.9. Assume we have the data of Lemma 4.8, where f(x,w) is in its degenerate reduced

form with d′ hidden nodes. Then for each i ∈ [d′], there exists an εi ∈ Z2 and λi ∈ R>0 such that

wi = (−1)εiλiw
(0)
π(i) , bi = (−1)εiλib

(0)
π(i) . (4.9)

Moreover, let Mj = {i ∈ [d′] |π(i) = j} for j ∈ [m]. Then the λi are constrained such that∑
i∈Mj

qiλi = q
(0)
j .

Proof. The proof is nearly identical to Lemma 4.4. Lemma 4.3 gives Eq. (4.9) since Hi = H
(0)
π(i)

for each i ∈ [d′]. As in Lemma 4.4, we analyse a small neighbourhood U centred at an isolated

non-intersection point x ∈ Hi\
(⋃

j 6=iHj

)
, and let U+ be the region where the truth is active and

U− where it is inactive. Let χ±i indicate when node i of the model is active in the regions U±.

Then

f |U± (x,w) = c+
∑
i∈[d′]

χ±i qi
(
〈wi, x〉+ bi

)
.

In particular, letting Ej = {i ∈ [d′] |π(i) = j , εi = 1} we have

f |U+ (x,w) = c+
∑
i/∈Mj

χ+
i qi
(
〈wi, x〉+ bi

)
+
∑
i/∈Ej

qiλi

(
〈w(0)

π(i), x〉+ b
(0)
π(i)

)
,

and f |U− (x,w) = c+
∑
i/∈Mj

χ−i qi
(
〈wi, x〉+ bi

)
−
∑
i∈Ej

qiλi

(
〈w(0)

π(i), x〉+ b
(0)
π(i)

)
.

The key insight is that the only nodes i that flip activation on this boundary are those with

π(i) = j. That is, for i /∈Mj , χ
+
i = χ−i . Thus

f |U+ (x,w)− f |U− (x,w) =
∑
i/∈Ej

qiλi

(
〈w(0)

π(i), x〉+ b
(0)
π(i)

)
+
∑
i∈Ej

qiλi

(
〈w(0)

π(i), x〉+ b
(0)
π(i)

)

=

∑
i/∈Ej

qiλi +
∑
i∈Ej

qiλi

(〈w(0)
π(i), x〉+ b

(0)
π(i)

)

=

∑
i∈Mj

qiλi

(〈w(0)
π(i), x〉+ b

(0)
π(i)

)
.

But since the model and truth are functionally equivalent, recalling Eq. (4.5) we have

f |U+ (x,w)− f |U− (x,w) =

∑
i∈Mj

qiλi

(〈w(0)
π(i), x〉+ b

(0)
π(i)

)
= q

(0)
π(i)

(
〈w(0)

π(i), x〉+ b
(0)
π(i)

)
= f0|U+ (x,w)− f0|U− (x,w)

and so by comparing coefficients of the polynomials we get the claim.

Remark 4.10. It is easy to see that Lemma 4.4 is recovered in this more general result. If m = d

then π is a bijection so |Mj | = 1 for all j ∈ [m], thus qiλi = q
(0)
π(i).

It turns out that the εi are constrained in effectively the same way as in the minimal activation-

distinguished case.
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Lemma 4.10. Given the data of Lemma 4.8, where E = {i ∈ [d′] | εi = 1}, we have∑
i∈E

qiλiw
(0)
π(i) = 0 , and c0 +

∑
i∈E

qiλib
(0)
j = c .

Proof. We perform the same bookkeeping and notation as in Lemma 4.5, where δαj indicates

whether node j of the truth is active in the linear domain Uα. We have from Lemma 4.9

∑
j∈[m]

δαj q
(0)
j w

(0)
j =

∑
j∈[m]

∑
i∈Mj

qiλi

 δαj w
(0)
j =

∑
j∈[m]

∑
i/∈Ej

δαπ(i)qiλi +
∑
i∈Ej

δαπ(i)qiλi

w
(0)
j . (4.10)

Making the same observations as in Lemma 4.5, we also have∑
j∈[m]

δαj q
(0)
j w

(0)
j =

∑
i/∈E

δαπ(i)qiwi +
∑
i∈E

δαπ(i)qiwi

=
∑
i/∈E

δαπ(i)(−1)εiqiλiw
(0)
π(i) +

∑
i∈E

δαπ(i)(−1)εiqiλiw
(0)
π(i)

=
∑
i/∈E

δαπ(i)qiλiw
(0)
π(i) −

∑
i∈E

δαπ(i)qiλiw
(0)
π(i)

=
∑
j∈[m]

∑
i/∈Ej

δαπ(i)qiλi −
∑
i∈Ej

δαπ(i)qiλi

w
(0)
j . (4.11)

Equating (4.10) and (4.11) thus gives∑
j∈[m]

∑
i∈Ej

(
δαπ(i) + δαπ(i)

)
qiλiw

(0)
j =

∑
i∈E

qiλiw
(0)
π(i) = 0 .

The proof of the biases is identical.

Remark 4.11. Using
∑
i∈Mj

qiλi = (
∑
i/∈Ej +

∑
i∈Ej )qiλi we can alternatively express this as∑

j∈[m]

q
(0)
j w

(0)
j =

∑
i/∈Ej

qiλiw
(0)
π(i) .

Again we note that the m = d case is a corollary of this lemma, which can be seen by substituting

in qiλi = q
(0)
π(i).

4.3.2 Main theorem for m < d

We are once again in a position to fully characterise W0. Define

Sd
′

m :=
{
π : [d′]→ [m]

∣∣∣ π is surjective
}
.

Let π ∈ Sd′m be a fixed surjection. For each i ∈ [d′] we write π(i) = j and define

Mj := {i ∈ [d′] | π(i) = j} ,
E := {i ∈ [d′] | εi = 1} ,

Then for each j ∈ [m] we can define

Yj :=

(λi, qi)i∈Mj ∈ (R>0 × R)|Mj |
∣∣∣ ∑
i∈Mj

λiqi = q
(0)
j

 ,

and Υ′ :=

ε : [d′]→ Z2

∣∣∣ ∑
i∈E

qiλiw
(0)
π(i) = 0 , and c0 +

∑
i∈E

qiλib
(0)
j = c

 .
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Theorem 4.11. Let f : R2 ×W → R be a two-layer feedforward ReLU neural network function

and let w ∈ W ⊆ R4d+1 define a fixed f(x,w) with d hidden nodes. Let the true network f0(x)

be an activation-distinguished, minimal, two-layer network with m < d hidden nodes defined by a

true parameter w(0) ∈ W (0) ⊆ R4m+1, where W (0) ⊆ W . Suppose f(x,w) = f0(x) for all x ∈ R2.

Then

1. Let 0 ≤ k ≤ d−m be the number of degenerate nodes of w. Then there is a degenerate reduced

form g(x,w′) of f(x,w) (Definition 4.6), where g : R2×W ′ → R is a two-layer network with

d′ ≥ m hidden nodes, and w′ ∈W ′ ⊆ R4d′+1 is a parameter whose non-degenerate nodes are

equal to those of w, where W ′ ⊆W .

2. Let W ′0 = {w′ ∈W ′ | g(x,w′) = f0(x)}. Then there is a bijection

Ψ :
m∏
j=1

Yj × Sd
′

m ×Υ′
∼=−→W ′0

((
(λi, qi)i∈Mj

)m
j=1

, π, ε

)
7−→

((−1)εiλiw
(0)
π(i)

)d′
i=1

,
(

(−1)εiλib
(0)
π(i)

)d′
i=1

, (qi)
d′

i=1, c0 +
∑
i∈E

qiλib
(0)
i

 .

Proof. One simply needs to perform identical calculations to those in Theorem 4.7. The same

justifications about bijectivity apply too, using Lemma 4.8, Lemma 4.9 and Lemma 4.10.

As we have remarked above, the result in Theorem 4.7 is a corollary of Theorem 4.11 when

m = d.

Remark 4.12. In both Theorem 4.7 and Theorem 4.11 we have considered symmetries of W0

when the domain of the model and truth is all of R2, which allowed us to make conclusions about

comparing polynomial coefficients. In the case where f(x,w) and f0(x) are restricted to some open

bounded domain Z ⊆ RN , there could in principle be more degeneracies and symmetries of W0,

since the functional equivalence need only be on Z.

To see this more explicitly, consider a true network f0(x) = 0 with single node model f(x,w) =

qReLU(〈w, x〉 + b) defined on Z = (−a, a)2 for some a > 0, where H is the single activation

boundary. Then so long as H ∩ Z = ∅ and w points away from the origin, there will be func-

tional equivalence f(x,w) = f0(x). This observation is important to keep in mind because our

experiments in Chapter 5 involve such a situation.

4.4 Arbitrary Depth

In Section 4.2 and Section 4.3 we have considered networks with two layers. In [PL19], Phuong and

Lampert were able to show that this can be generalised to networks of arbitrary depth and arbitrary

input dimension for networks with non-increasing widths. They show that, other than set of mea-

sure zero, there are “no other function preserving parameter transformations besides permutation

and scaling”. We state the main result with the key assumptions here for completeness, but the

proof of this theorem is beyond the scope of this thesis, for which the reader is referred to the paper.

Referring back to Definition 2.1, let f : RN × W → R1 be a neural network of depth L with

non-increasing widths N = d0 ≥ d2 ≥ · · · ≥ dL ≥ dL = 1. Letting 1 ≤ l ≤ k ≤ L be two layers, we

introduce notation for truncated networks

Al:k := Ak ◦ ReLU ◦Ak−1 ◦ · · · ◦ ReLU ◦Al ,

where Al:ki denotes the ith component (i.e. the output of node i ∈ [dk+1]).

Definition 4.7. A general feedforward ReLU network is one that satisfies the following three

conditions:
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1. For any node i ∈ [dl+1] of a layer 1 ≤ l ≤ L, the local optima of A1:l
i do not have value

exactly zero.

2. For all 1 ≤ k ≤ l ≤ L and diagonal indicator matrices (Ik, . . . , Il) with entries in {0, 1},

rank(Ilw
lIl−1 . . . Ikw

k) = min{dk−1, rank(Ik), . . . , rank(Il−1), rank(Il)} .

3. Let i ∈ [dl], j ∈ [dk] be nodes of layers 1 ≤ l, k ≤ L respectively. Let Uα be a linear domain

of A1:l
i , and Uβ be a linear domain of A1:k

j . Then A1:l
i

∣∣
Uα

and A1:k
j

∣∣∣
Uβ

are not multiples of

one another.

Relating to Theorem 4.7 and Theorem 4.11, the conditions of general networks ensure that

there is no weight-cancellation (and thus no orientation-reversing symmetries), and that each node

is non-degenerate. Thus Theorem 4.13 excludes these symmetries.

The following lemma proven in Theorem 4.13 justifies the study of general networks:

Lemma 4.12. Almost all feedforward ReLU networks with this architecture are general.

As Phuong and Lampert put it, “a sufficient condition for a network to be general with prob-

ability one is that the weights are sampled from a distribution with a density.” We now state the

main theorem of [PL19].

Theorem 4.13. Let Z ⊆ RN be a bounded non-empty connected open set, and let f : RN×W → R1

be a neural network of depth L with non-increasing widths N = d1 ≥ d2 ≥ · · · ≥ dL ≥ dL+1 = 1.

Let f0(x) = f(x,w(0)) be the true network defined by a parameter w(0) ∈ W , which we assume is

general, and suppose the model f(x,w) is functionally equivalent, so f(x,w) = f0(x) for all x ∈ Z.

Then there exist permutations σ1, . . . , σL−1 ∈ Sm, and positive diagonal matrices M1, . . . ,ML−1

such that

w1 = M1σ1w
1
(0) , b1 = M1σ1b

1
(0) ,

wl = Mlσlw
l
(0)σ

−1
l−1M

−1
l−1 , bl = Mlσlb

l
(0)σ

−1
l−1M

−1
l−1 ,

wL = wL(0)σ
−1
L−1M

−1
L−1 , bL = bL(0) ,

where l ∈ {2, . . . , L− 1}.

In essence, this result shows that the only generic symmetries of W0 for ReLU networks with

non-increasing widths and one output are scaling and permutation symmetries. Though degenerate

and orientation-reversing symmetries are non-generic as points on W0, we will show in Section 5.1

that such points can nonetheless have lower free energies and thus be preferred by the posterior -

in other words, be better model choices. In this way, we believe the theory of deep learning should

shift its focus from points to singularities.

4.5 Example - m-symmetric Networks

Let us consider a particular class of networks that gives rise to both degenerate-node and orientation

reversing symmetries. In particular, the latter implies that Υ (in the notation of Section 4.2.3) is

non-trivial.

Definition 4.8. We define an m-symmetric network to be fm : R2 → R such that

• fm is a two-layer feedforward ReLU neural network with two inputs and one output with d

hidden nodes as defined in (4.1);

• Let m be an integer such that 2 ≤ m ≤ d and let sm ∈ W be the parameter defining

fm(x) = f(x, sm). Let g ∈ SO(2) denote the rotation matrix by 2π
m and let w0 6= (0, 0) be

some fixed initial vector, e.g. w0 =
(

1
0

)
. Then for each i ∈ [m], the weights are successively

rotated by g, hence set wi = gi−1w0.
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Figure 4.1: fm(x) for m = 3, 4, 5 with suitably defined b and w0.

• For i = 1, . . . ,m we let qi = 1, c = 0, and bi = −b for some fixed b > 0.

• For each i = m+ 1, . . . , d, node i is degenerate, so qi = 0.

We can observe contour plots of m-symmetric networks (with no degeneracies) in Fig. 4.1.

Visually, it is clear that these weight vectors always sum to zero, which will induce orientation

reversing symmetry. Let’s prove it.

Lemma 4.14. For any 2 ≤ m ≤ d, fm is a degenerate reducible network. The degenerate reduced

form of fm is minimal distinguished.

Proof. The first claim follows immediately from the definition of fm, so assume without loss of

generality that fm is degenerate reduced. For each node i ∈ [m] the corresponding activation

boundary is

Hi = {x ∈ R2 | 〈gi−1w0, x〉+ bi = 0} .

If Hk = Hj for some k < j ∈ [m] (without loss of generality), then by Lemma 4.3 we would have

for some λ ∈ R\{0}

gj−1w0 = λgk−1w0 , so gj−kw0 = λw0 , and bj = λbk .

This would imply that w0 was an eigenvector of gj−k with eigenvalue λ. The eigenvalues of gj−k

are λ± = e±i
2π(j−k)

m , which are only real-valued when j − k = 0 (λ = 1) or j − k = 2
m (λ = −1).

If λ = −1 then we would have bj = −bk. But all biases are equal by definition (and by design),

thus we see that j = k, showing that each Hj is unique and thus fm is distinguished. Since it is

distinguished, it is necessarily minimal.

In particular, m-symmetric networks satisfy the weight cancellation that induces orientation

reversing symmetry in W0 (Theorem 4.7).

Lemma 4.15. Let fm be an m-symmetric network for some fixed integer m as above. Then the

weights associated to fm satisfy

d∑
i=1

qiwi = 0 .

Furthermore, suppose m is prime and let I ⊆ [m]. Then
∑
i∈I qiwi = 0 if and only if I is empty

or I = [m].

Proof. By definition, for weights m < i ≤ d we have wi = 0, so we only need to consider the indices

1 ≤ i ≤ m. Further, recall that each qi = 1.

Since each wi is a unit vector and g are rotation matrices, it is easier to reformulate this in

terms of complex roots of unity under the isomorphism U(1) ∼= SO(2), so let g = e
2π
m i ∈ C, which

satisfies gm − 1 = 0. The key to the proof rests on the factorisation

gm − 1 = (g − 1)(1 + g + g2 + · · ·+ gm−1) . (4.12)
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We know g 6= 1 since m ≥ 2, so g − 1 is invertible, hence

m∑
i=1

wi = (1 + g + g2 + · · ·+ gm−1)w0 = (g − 1)−1(gm − 1)w0 = 0 ,

showing the first claim.

For the second claim, if m is prime then it is well known that 1 + X + X2 + · · · + Xm−1

is the minimal polynomial of the algebraic number g [Lan02], which is the unique irreducible

polynomial of minimal degree such that g is a root. Suppose I is a non-empty subset of [m] such

that
∑
i∈I wi = 0, and let J = {i − 1 | i ∈ I}. This would imply

∑
j∈J g

j = 0, that is, g is a

root of the polynomial
∑
j∈J X

j = 0. But since
∑m−1
j=0 Xj is the minimal polynomial, this implies

J = {0, . . . ,m−1} or J is empty (since we take the empty sum to be zero), showing the claim.

Corollary 4.16. Let fm be an m-symmetric true network in degenerate reduced form for some

prime m, and let f(x,w) be the model with d > m hidden nodes such that f(x,w) = fm(x). Then

fm(x) is a degenerate reduced form of f(x,w). For ease, now suppose f(x,w) is in its degenerate

reduced form with d = m nodes as per Definition 4.6 and define W0 = {w ∈W | f(x,w) = fm(x)}.
Then W0

∼=
∏m
i=1Xi × Sm ×Υ where

Υ =
{

(0)mi=1, (1)mi=1

}
,

meaning

W0(fm) =

{(
(wi)

d
i=1, (bi)

d
i=1, (qi)

d
i=1, c

) ∣∣∣ ε ∈ {0,−1} , qi ∈ R>0 , σ ∈ Sm
}
,

where wi =

(
(−1)ε

qi
gσ(i)−1w0

)d
i=1

, bi =

(
(−1)ε+1

qi
b

)d
i=1

, c = εmb .

Proof. By Lemma 4.14 we may reduce fm to its degenerate reduced network which is then dis-

tinguished, meaning we can apply Theorem 4.7. By Lemma 4.15, the only subsets I for which∑
i∈I qiwi = 0 is the empty set or [m]. Thus either no weights are reversed, ε = (0)mi=1, or all

weights are reversed, ε = (1)mi=1. So by Theorem 4.7, Υ has the stated form.

Remark 4.13. If m is not prime then Υ will have a more complicated form. In particular, not

all ε ∈ Υ will have the same entries for i ∈ [m]. We leave it as an exercise to the reader to think

about such cases, for example in the case of m = 4.
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Chapter 5

Phase Transitions in ReLU Neural

Networks

In Chapter 4 we classified the symmetries of the set of true parameters W0 in order to determine all

points that minimise K(w). In this chapter we will show that not all points on W0 are equally good

minimisers of the free energy, and moreover, that parameters not in W0 can nonetheless be preferred

by the posterior due to having lower model complexity. Inspired by statistical physics, we identify

phases of Fn as compact sets containing a particular singularity of interest. Phase transitions

arise from changes in the accuracy versus complexity trade-off of different phases of W , which

we induce by changing the symmetries of the underlying W0. In particular, we use m-symmetric

networks and Markov Chain Monte Carlo methods to analyse the non-generic orientation-reversing

and degenerate-node phases found in Chapter 4.

5.1 Phases and Phase Transitions

Physicists typically think of a phase as an aggregate state of a system of many particles with

complicated interactions. For example, the solid, liquid or gaseous states of H2O are all examples

of phases. Phases are distinguished by their physical properties, such as the molar volume in the

case of the phases of water. A phase transition, then, is a sudden change in such a property as a

function of some order parameter θ. Mathematically speaking, this is a non-analyticity of the free

energy, which corresponds to a change in the configuration of phases resulting in one being newly

preferred over another.

Empirical measures of neural network performance, such as scaling laws [Kap+20] and gen-

eralisation error learning curves [Nak+19] offer evidence of phase transitions in neural networks.

Furthermore, [SST92] provides a theoretical-physics treatment of phase transitions associated to

the generalisation error, where the order parameter is n
D . However, as in most statistical literature,

incorrect assumptions of regularity of the neural network models are relied upon.

In the context of Bayesian statistics, Watanabe simply defines a phase transition as a “drastic

change in the posterior,” [Wat18], and in [Wat20] he outlines a useful conceptual framework for

phase transitions in neural networks. Let us attempt to add a modicum more rigour to this

statement in line with the interpretation of phase transitions in [Cal85] and [Gil93].

For simplicity of interpretation, we suppose the free energy is a function of a level set of W ,

as projected by a function V . We may think of this V as a macroscopic observable (e.g. volume)

which thus extracts information about configurations in W .

Definition 5.1. Let n and β be fixed. Let V : W → R be an analytic function, and let V =

Image(V ), which is compact since W is, and define

Wv = {w ∈W | V (w) = v} .
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Figure 5.1: A depiction of two phases of Fθ(v) = 1
4v

4 + θ
2v

2 over the interval I = [−3,−1].

Suppose the posterior depends on a non-stochastic order parameter θ ∈ Θ ⊆ R. In particular, we

will assume Ln(w) = Ln(w, θ), but this could also be true of the prior ϕ(w). Let the free energy

be defined by

F : V ×Θ −→ R , F (v, θ) = − log

(∫
Wv

ϕ(w)e−nβLn(w,θ)dw

)
.

We define the critical points of F to be

CritF =

(v, θ) ∈ V ×Θ

∣∣∣∣∣ ∂F∂v (v, θ) = 0

 ,

and we let Critmin
F ⊆ CritF denote those critical points that are minima of F .

Consider an interval I = [θ1, θ2] ⊆ Θ. A phase over I is a continuous map γ : I → Θ such

that the following diagram commutes

Critmin
F

V ×Θ

I Θ

ι

π2

γ

ι

where ι denotes the respective inclusions and π2 is the projection of the second component.

In words, a phase is a minimum of the free energy that remains a minimum with small pertur-

bations in θ, and as such can be viewed as a path in Critmin
F . The precise value of the free energy

is irrelevant to the phase structure, but the ordering of the free energy of phases is the substance

of phase transitions, whereby the configuration of the phases changes. The following definition is

based on [Gil93, §10], where we adopt the Maxwell convention outlined in [Gil93, §8.2].

Definition 5.2. Let Γ = {γg}Gg=1 be the set of phases of some F on a fixed interval I, and assume

G ≥ 2. Let Ic = [θ0, θ1] = [θc − ε, θc + ε] ⊆ I denote a small critical interval for some critical
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Figure 5.2: A first order phase transition (left), a second order merge phase transition (centre)

and a second order creation phase transition (right). All curves are generated by Fθ(v) = 1
6x

6 +
1
8c1x

4 + 1
2c2x

2 + c3x+ c4 for parameters ci that depend on θ as in [Gil93, §10.8].

parameter θc ∈ I. Without loss of generality, assume that Γ is ordered by the corresponding free

energy of each phase at the left endpoint of the interval. That is, for each 1 ≤ g < h ≤ G,

F (γg(θ0)) ≤ F (γh(θ0)) ,

where F (γ1(θ0)) thus denotes the global minimum.

A first order phase transition at θc is a reordering of Γ that exchanges a local and global

minima. That is, for some g > 1, varying θ ∈ Ic gives
F (γ1(θ)) < F (γg(θ)) θ < θc

F (γ1(θ)) = F (γg(θ)) θ = θc

F (γ1(θ)) > F (γg(θ)) θ > θc

.

A second order phase transition at θc can be one of two things. A merge transition occurs

when, given two phases γ1 and γg for some g > 1, varying θ ∈ Ic givesγ1(θ) 6= γg(θ) θ < θc

γ1(θ) = γg(θ) θ ≥ θc
,

such that γ1, γg are global minima of F for θ ≥ θc.
A creation transition occurs when, given any phase γg, varying θ ∈ Ic givesγg is not a phase θ < θc

γg is a phase θ ≥ θc
.

The direction of θ may be altered in any of these definitions. If the direction of the creation

transition is reversed we refer to this as a destruction transition. The different types of phase

transitions can be seen in Fig. 5.2.

We do not claim to have given a full classification of phase transitions in these definitions. To

do so generically requires one to pay careful attention to the differential geometry of F , and the

possible types of catastrophes that can occur. For further discussion of this, see [Gil93].

Remark 5.1. In principle, one may also care to define phase transitions that exchange or merge

local minima which are not global. We have restricted our attention to only consider global minima

due to the fact that, in a physical sense, these are the only ones that have a meaningful impact on

the state of a system.

46



Phases as singularities

Let us now explore how phases can be associated to compact sets containing particular singularities

of K, thus providing a different kind of candidate solution to the problem of model selection. For

this discussion, let V : W → R be a fixed analytic function with level sets Wv as in Definition 5.1.

The reader may wish to review the discussion of singularities in Chapter 3. For any compact

set Wv ⊆ W there is a local RLCT λv as per Remark 3.3 which extracts the effective dimension-

ality of “the most singular” point in Wv. Let ωv0 ∈ Wv be defined by Ln(ωv0) = minω∈Wv Ln(ω),

thus has the best accuracy (meaning the lowest loss) of any parameter in Wv. Then according to

[Wat09, §7.6] we have that

Fn(Wv) ≈ nLn(ωv0) +
λv log n

β0
.

Assume for simplicity that n and β0 are both fixed. This relation shows that a minimum of Fn will

correspond to a compact setWv with low Ln(ωv0) and low λv compared to nearby v. Thus, a phase

of F corresponds to a compact setWv that contains a particular singularity of interest. Comparing

the free energy of these different Wv thus becomes the basis of the model selection process, where

each phase can be thought of as a different set from which to draw candidate solutions.

Phase transitions, then, correspond to a change in the structure of K(w), which induces a

change in either the accuracy or RLCT of the regions {Wv}v as a function of θ which causes a

new phase to be preferred. In simple terms, it is a change in the accuracy versus complexity trade-

off between candidate solutions. As the true distribution is varied, so is the geometry of K(w).

We thus expect to see phase transitions occur near points where the underlying symmetry of W0

changes (for example, where a node is newly degenerate). We call such changes symmetry breaking

of W0. Naively we may expect the critical point θc to occur precisely where the symmetry breaking

takes place. But we will show in Section 5.3 that in fact due to the accuracy versus complexity

trade-off, these critical values can occur before the point of symmetry breaking.

Remark 5.2. In general, it is not physically or computationally reasonable to measure these level

sets Wv. Instead we must rely on coarse graining. Let V = [v1, vH ], which we can evenly partition

into intervals

v1 < v2 < · · · < vH−1 < vH

for some H ≥ 2. Then we may define compact sets for each 1 ≤ h ≤ H − 1

Wh = V −1([vh, vh+1]) = {w ∈W |V (w) = [vh, vh+1]} .

Since V is an analytic function defined on the compact W , the Wh are disjoint and compact,

meaning we can write

Zn =

H−1∑
h=1

Zn(Wh) .

Then the model selection process becomes finding

min
h=1,...,H−1

Fn(Wh) .

This is the scenario we will consider in our experiments. More precisely, we will consider compact

sets that are unions of Wh, for which all of the above setup still applies.

Before we move on to our experimental findings, it is useful to have an intuitive understanding

of what we mean by the “nature of a singularity”. In algebraic geometry, typical examples of

singularities are lines that self-intersect (perhaps more than once), cusps, and tacnodes. As an

example, a curve that intersects itself three times at the same singularity will be more complicated

than one that intersects itself only once. Let us give an example relevant to our context.
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Figure 5.3: W θ
0 of Kθ(w, q) coloured by different values of θ.

Figure 5.4: ϕ(w)e−nKθ(w) for n = 50 over different θ values. Notice the posterior concentration of

the more singular point, (w, q) = (0, 0), when θ = 0.

Example 5.1. Consider K(w, q) from Example 3.1, namely

Kθ(w, q) = (wq − θ)2 ,

this time for w, q ∈ [−1, 1]2 and some θ ≥ 0. Then it is visually clear from Fig. 5.3 that, the

geometry of W0 is different for θ = 0 compared to θ > 0, meaning we should think of θ > 0 as one

phase and θ = 0 as another phase. This implies that the RLCT (and/or its multiplicity) is different

between these phases. To prove this, however, one must perform a resolution of singularities (an

algorithm known as a “blow-up”) of the former case in order to calculate ζ(z).

In Fig. 5.4 we observe the posterior (up to a scale factor) for uniform ϕ(w) as θ varies. Notice

that the posterior concentration around the point (w, q) = (0, 0) for θ = 0 is different to that

around wq = θ for θ > 0, giving a clear visual picture of why one might expect “more singular

points” to have lower free energy.

We now turn our attention to studying phases and phase transitions of ReLU neural networks

from an experimental perspective.
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5.2 Experimental Methodology

The following section outlines our methodology for estimating the posterior of ReLU neural net-

works. MCMC methods are introduced for the unfamiliar reader and we outline the details of the

experimental procedure. Finally, we explain how to interpret the density plots demonstrating the

phase transitions, describing how we quotient out the scaling and permutation symmetries of the

networks. The methodology used closely follows the work of [Mur+20].

5.2.1 Markov Chain Monte Carlo

In order to study phases in neural networks, we must first begin with estimating the posterior

density pβ(w|Dn). To see why such a procedure is non-trivial, recall that whilst the numerator

of the posterior ϕ(w)e−nβLn(w) is easily calculated for any given w, the partition function Zn is

intractable even in simple settings.

This problem has given rise to the field of computational Bayesian statistics, whose primary

focus is to develop algorithmic methods for estimating probability densities (see [RC04] for an

introduction). Mathematically, the goal is to generate a set of samples {w(k)}Kk=1 such that for

any arbitrary function f(w) we have∫
W

f(w)pβ(w|Dn)dw ≈ 1

K

K∑
k=1

f(w(k))

as K → ∞ [Wat18, §7]. In particular we can retrieve the posterior on any open set A ⊆ W by

simply taking f(w) = 1(w ∈ A).

The centrepiece of computational Bayesian statistics is a class of algorithms called Markov

Chain Monte Carlo (MCMC). Recall that a Markov chain is a random walk on a space W such

that the next step only depends on the present step and is independent of the previous history.

The main idea of MCMC is to simulate a Markov chain such that the equilibrium distribution of

the chain is equal to the probability density to be estimated. This is achieved in two key steps:

1. Selecting a candidate step from a distribution based on the initial position (Markov step).

2. Choosing to accept the candidate with a probability proportional to ϕ(w)e−nβLn(w) (Monte

Carlo step).

The simplest version of this algorithm is known as the Metropolis algorithm, but it suffers from

some important shortcomings. Namely, it can struggle to sufficiently explore the space of parame-

ters due to potential and entropy barriers in ϕ(w)e−nβLn(w). Further discussions of these problems

can be found in [Bro11] and [Wat18, §7].

Instead, let us turn our attention to the MCMC variant used in this thesis, Hamiltonian Monte

Carlo, which aims to avoid these barrier problems by replacing the Markov step with a particle

simulation through phase space according to Hamilton’s equations of motion. Concretely, define

the Hamiltonian of our model-prior system by

H(w) = βLn(w)− 1

β
logϕ(w)

such that pβ(w|Dn) ∝ e−H(w). Suppose v ∈ Rd is some randomly generated initial velocity, usually

from a standard normal for simplicity. Then we may define the total Hamiltonian by

H(w, v) =
1

2
‖v‖2 +H(w) .

Note that sampling (w, v) from e−H(w,v) still ensures that w is still subject to the equilibrium

distribution e−H(w). After initialising some random starting point w(1) for k = 1, the algorithm

thus runs as follows:
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1. Hamiltonian step: Sample v0 ∼ N (0,1d). Let τ denote the time variable. Simulate a

trajectory through phase space W according to the differential equation

dw

dτ
= v ,

dv

dτ
= −∇H(w) ,

s.t. (w, v) = (w(k), v0) at time τ = 0 .

Run the simulation up to some time τstop and let (w′, v′) = (w(τstop), v(τstop)) be the candi-

date parameter.

2. Monte Carlo step: Define ∆H = H(w′, v′)−H(w(k), v0) and P = min{1, exp(−∆H)}. Then

assign the next step w(k+1) according to the rule:

w(k+1) =

w′ with probability P

w(k) with probability 1− P
. (5.1)

Notice that the candidate is accepted with probability 1 if H(w′, v′) < H(w(k), v0), thus ensuring

that the sampler moves towards regions of lower energy. If the inequality is reversed but the

candidate has relatively similar energy, then the candidate is still accepted with high probability.

If the candidate energy is much higher than that of the current position, it is rejected with high

probability. The Hamiltonian/Markov-chain step is thus the key to ensuring MCMC is not just a

glorified gradient descent algorithm, but rather that it effectively explores the space.

In practice there is an invisible first step called the “burn-in” period, which discards some

number of initial samples to allow the sampler to approach the equilibrium distribution before it

accepts samples.

Remark 5.3. A useful conceptual framework for Hamiltonian Monte Carlo, as elaborated in great

detail in [McE], is to imagine the posterior, or rather the reciprocal of the posterior, as a skate

park. Peaks of pβ(w|Dn) correspond to the troughs of the bowls in the rink, and zero regions

of pβ(w|Dn) correspond to infinitely high walls. Then HMC takes a ball (particle) w(k) at some

starting point in W , generates a random initial velocity v0, and kicks the ball with that initial

velocity. Hamilton’s equations are used to simulate the trajectory across the skate park. After

some stopping time τ ′, we stop the ball, record its position, and restart the process from the chosen

position.

The experiments performed in this thesis use a variant on the Hamiltonian Monte Carlo method

called the No U-Turn Sampler (NUTS), which improves the dynamical simulations by ensuring

there are “no U-turns”, thus dynamically choosing τstop to avoid returning to a similar position

as was started at. More details can again be found in [Bro11]. For the uninitiated but interested

reader, a great introduction to HMC is found in [Bet18].

In this thesis, MCMC methods were implemented using the Python packages PyTorch [Pas+19]

and Pyro [Bin+19], with experiments run on Spartan High Performance Computing of the Uni-

versity of Melbourne [Laf17].

5.2.2 Experimental setup

We shall consider the realisable case under Hypothesis 2.1 where q(y|x) = p(y|x,w(0)) is defined

by a two-layer feedforward ReLU network with two inputs, one output and m hidden nodes as

discussed in Eq. (2.2), and the model has the same architecture with d = m hidden nodes. Since

the model p(y|x,w) is a normal distribution as in Hypothesis 2.1, the true distribution is also a

normal distribution.

In particular, the true network will depend on some order parameter θ ∈ Θ which we denote

by f0(x, θ). Thus for any dataset of samples Dn = {(xi, yi)}ni=1 drawn from the true distribution

(xi, yi) ∼ q(y, x|θ) we write Dn = Dn(θ), meaning the posterior depends on the order parameter

through its variation in the true distribution, and thus the dataset. The exact nature of the order
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parameter will differ between experiments. The prior on inputs will be uniform on a square for

some a > 0,

q(x) =
1

4a2
1

(
(x1, x2) ∈ [−a, a]2

)
,

and the prior on parameters will be the standard normal with fixed variance σ2
ϕ,

ϕ(w) =
1

(2πσ2
ϕ)

4d+1
2

e
− 1

2σ2ϕ
‖w‖2

.

An experiment will refer to a fixed vector (θ, a, σϕ). In order to account for the randomness

in Dn and make statements about the posterior independent of Dn, we will run T repeat trials

of the same experiment and average the posterior estimates over the results following a validation

procedure (see below). Typically T = 8 or T = 4.

For a given trial, we begin by generating a dataset Dn for fixed n = 10000, and then use HMC

(NUTS) to generate a set of samples {w(k)}Kk=1 from the tempered posterior w(k) ∼ pβ∗(w|Dn(θ, a))

with burn-in period K
20 . Here we take β∗ = 1

logn as per Theorem 3.9. Typically K = 20000.

MCMC is quite a delicate algorithm and can occasionally produce results contrary to what

is anticipated - for example, the sampler can get stuck in particular regions of space of much

higher free energy than the true global minimum. Our first form of validation is using standard

MCMC chain divergence criterion, where trials with more than K
10 chain divergences discarded.

We then perform a simple statistical validation process, discarding any outlier trials as measured

by the average mean square error across all samples, which in our language is the empirical Gibbs

training loss Gβt for a trial t,

Gβt (t) ≈ 1

K

K∑
k=1

Ln(w(k)) .

Using the central limit theorem, Gβt ≈ N (µT , s
2
T ) where µT and s2

T are the sample mean and

sample variance respectively. We discard any trials t such that 1
sT
|Gβt (t)−µT | > κ for some outlier

threshold κ, which we usually set as κ = 1.5.

5.2.3 Machine epsilon and practical limits

Strictly speaking, our setup violates two key assumptions of Singular Learning Theory, namely

that W is compact and that K(w) is analytic. The former is violated by our assumption that

ϕ(w) is normally distributed, and thus a density on all of R4d+1. The latter is violated due to

the non-analyticity of f(x,w) for ReLU neural networks. In both cases we may appeal to machine

epsilon εm, which is the finite floating point precision of any given computer.

For the first point, ϕ(w) is computationally zero outside of some (very large) neighbourhood

of the origin. Thus we can simply consider W to be this very large compact neighbourhood, for

which the experimental results do not meaningfully change.

For the second point, we can use Remark 2.1 to find some γ such that ReLU is approximated by

swish, |σγ(x)− ReLU(x)| < εm. Then K(w) will be analytic if we take σγ(x) to be the activation

function. But, importantly, for this γ, σγ and ReLU are indistinguishable from the point of view

of the computer, meaning the experimental results also do not change.

5.2.4 Visualising the posterior

Our main method of studying phases of neural networks will be to examine the posterior of a given

neural network, where “drastic changes” in these posteriors as a function of some order parameter

will correspond to phase transitions. Since W ⊆ R4d+1 for some d ≥ 2, we clearly cannot visualise

the posterior directly. Nor are we interested in doing so: our experiments only consider variations

in the weights, not the biases, so we only need to observe the posterior of the weights.

51



Figure 5.5: Scatterplot of raw (left) versus effective (right) samples {{(ŵ(k)
i,1 , ŵ

(k)
i,2 )}i∈[d]}Kk=1 for

K = 4000, d = 3, labelled according to their index i, for one trial.

Recall from Theorem 4.7 and Theorem 4.11 that W0 generically admits scaling and permutation

symmetry, which is also a property of more general networks as discussed in Theorem 4.13. With

this in mind, these are uninteresting symmetries to analyse as singularities. Instead, we shall focus

on the non-generic degenerate-node and orientation-reversing phases and measure the free energy

of these as we vary the true distribution.

Definition 5.3. Given a fixed sample w(k) ∼ pβ(w|Dn) we define the effective parameter ŵ(k) =

({ŵ(k)
i }di=1, {b̂

(k)
i }di=1, {1}di=1, c), where for each node i ∈ [d] we define

ŵ
(k)
i = |q(k)

i |w
(k)
i , and b̂

(k)
i = |q(k)

i |b
k
i .

By Theorem 4.7 we have

f(x,w(k)) = f(x, ŵ(k)) ,

but now the effective parameter has less degrees of freedom since we have taken the quotient of

the scaling symmetry.

Remark 5.4. In Definition 4.1 we defined a degenerate node i to be one such that qi = 0 or

wi = 0. In the language of effective parameters, this is equivalent to ŵi = 0.

The posterior is invariant under a permutation of nodes, which implies that for each i ∈ [d] =

{1, . . . , d}, wi is identically distributed (though there is a distributional dependence between each

weight). This allows us to project each ŵ
(k)
i on to the same (ŵi,1, ŵi,2) plane. Thus each sample

w(k) is represented d times on each posterior plot by the points {(ŵ(k)
i,1 , ŵ

(k)
i,2 )}i∈[d].

We will mostly present density estimates of the posterior, but for clarity, Fig. 5.5 shows a

typical example of a scatterplot of points{
{(ŵ(k)

i,1 , ŵ
(k)
i,2 )}i∈[d]

}K
k=1

coloured according to the node index i and demonstrating the difference between the effective and

non-effective estimates of the weights. On all plots the red dots indicate the true parameters used

to generate Dn. All experiment plots have been generated using Seaborn [Was21] and Matplotlib

[Hun07].

As we argued in Section 3.2, the free energy of a compact set W ⊆W is a measure of posterior

density associated to W. It was found that approximate values of the free energy using the WBIC

was volatile. Instead, our inference about phases and phase transitions will use the following

correspondence:

phase⇐⇒ minimum of the free energy⇐⇒ concentrated region of posterior ,

where we compare minima associated to regions by comparing their respective posterior concen-

trations.
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5.3 Phase Transition 1: Deforming to Degeneracy

Having taken the quotient of scaling and permutation symmetry, in this section we will explore

phases associated to degenerate-node and non-degenerate-node phases. Recall that a node i ∈ [d]

is degenerate if either wi = 0 or qi = 0, meaning ŵi = 0.

Figure 5.6: f2(x, θ) for θ = 0 (left), θ = π
4 (middle), θ = π

2 (right).

5.3.1 Defining the order parameter

Let f2 : R2 × Θ → R be an m-symmetric network as in Definition 4.8, with m = 2, w0 = (1, 0)T

and b = − 1
3 , which we take to be the true network. We define an order parameter θ ∈ Θ = [0, π2 ]

that rotates the two weights toward one another, that is, the true weights are

w
(0)
1 = gθw0 = (cos θ, sin θ) , w

(0)
2 = gπ−θw0 = (− cos θ, sin θ) ,

where gθ denotes rotation by θ. Explicitly, the truth is defined by

f2(x, θ) = ReLU

(
cos(θ)x1 + sin(θ)x2 −

1

3

)
+ ReLU

(
− cos(θ)x1 + sin(θ)x2 −

1

3

)
.

We can see how the foldsets of f2(x, θ) change with θ in Fig. 5.6.

Using f2(x, θ) we can thus induce symmetry breaking of W0 which occurs when node-degeneracy

becomes one of the symmetries. Recalling that the biases of both nodes are equal, we see that

node-degeneracy symmetry of W0 occurs when w
(0)
1 = w

(0)
2 , which is only at θ = π

2 . By contrast,

for θ ∈ (0, π2 ), W0 only exhibits the standard scaling and permutation symmetry. At θ = π
2 the

model nodes ŵ1, ŵ2 ∈W0(f2(x, π2 )) can have two possible configurations:

• Both non-degenerate: ŵ1, ŵ2 6= 0 such that ŵ1 + ŵ2 = (0, 2),

• One degenerate, one non-degenerate: either ŵ1 = (0, 0) and ŵ2 = (0, 2), or ŵ1 = (0, 2) and

ŵ2 = (0, 0).

We thus identify neighbourhoods of these singularities as phases to compare. Accordingly, let us

define compact subsets of W in order to compare their free energies. Let the analytic projection

of Section 5.1 be V (wi) = ‖wi‖, and define an annulus in the plane as

A(r, ε) = {ŵ ∈ R2 | r − ε ≤ ‖ŵ‖ ≤ r + ε} .

Then we define the two phases containing the singularities of interest to be

ANonDegen = A(1, ε)×A(1, ε)

=
{

(ŵ1, ŵ2) | ŵ1 ∈ A(1, ε) and ŵ2 ∈ A(1, ε)
}

ADegen =
(
A(0, ε)×A(2, ε)

)
∪
(
A(2, ε)×A(0, ε)

)
=
{

(ŵ1, ŵ2) | ŵ1 ∈ A(0, ε) and ŵ2 ∈ A(2, ε) , or ŵ1 ∈ A(2, ε) and ŵ2 ∈ A(0, ε)
}
.

For notational ease we then let Ac = W\(ANonDegen ∪ ADegen). We take {θj}Jj=1 to be a

sequence of angles (in radians) such that θ1 = 1.00c and θJ = π
2 and observe changes in the

posterior over θ. In the following experiments there were K = 20, 000 samples taken over T = 8

trials with a = 2 and σϕ = 1.
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5.3.2 Results and discussion

Fig. 5.7 demonstrates the phase transitions in the posterior as we range over these θj values. This

is further highlighted by Fig. 5.8a where we take ε = 0.3 as the annuli width.

For θ < 1.16c the only phase detected by the posterior is ANonDegen. At θ = 1.16c we see a

second order creation phase transition, where ADegen has suddenly emerged as a region of concen-

tration, and thus a phase - though the ANonDegen phase is still the global minima. As θ → 1.26c,

the phase structure remains the same, though the free energy of ANonDegen is increasing, whilst

for ADegen it is decreasing. Observing Fig. 5.8a, at the critical value θc = 1.26c we notice a first

order phase transition where the free energies of both phases are equal and switch roles as local

and global minima. Once this transition has occurred and ADegen has become the global minima

of F , the gap between the respective free energies continues to widen.

Let us inspect the θ = π
2 figure in Fig. 5.7 more closely. Although at this θ the true network

is defined by two non-degenerate nodes ŵ
(0)
1 = (0, 1) and ŵ(0) = (0, 1) in ANonDegen, the phase

ADegen is nonetheless preferred. This is our first clear example of the fact that, although all points

on W0 minimise K(w), it is their structure as singularities of K(w) that determines which has

lower model complexity, and thus lower free energy. Recall from Section 5.1 that for any phase

A ⊆W

Fn(A) ≈ nLn(ω0) + λ
log n

β0
, (5.2)

where Ln(ω0) = minω∈A Ln(ω) is the accuracy and λ logn
β0

is the complexity. Since both phases

are on W0, and thus have the same accuracy, these findings suggest that the RLCT λ of ADegen is

lower than that of ANonDegen.1

The crucial result is this: for 1.26 < θ < π
2 the degenerate phase ADegen does not contain a

point on W0 by Theorem 4.11, thus has worse accuracy, yet it nonetheless has lower free energy.

We suggest that this is due to the complexity term out-competing the accuracy term in this in-

terval, with the first order phase transition occurring when the accuracy of both phases becomes

comparable. Observing Fig. 5.8 we see that for θ < 1.3 the accuracy of ADegen is worse than that

of ANonDegen (meaning Ln(ω0) is higher), but then for θ ≥ 1.3 the accuracy of the two phases

is approximately equal. The preference of ADegen over ANonDegen in θ ∈ (1.26, π2 ) suggests that

RLCT of each phase is approximately constant in θ, implying that the first order phase transition

is a result of a change in the accuracy of a phase.

Extending this analysis further, we conjecture that as n increases, the critical value θc = 1.26

will move closer to π
2 , since the accuracy term is O(n) whereas the complexity is O(log n). It would

be interesting to analyse this in future studies.

As a final remark, as per our discussion in Section 4.4 recall that [PL19] stated that “almost

all symmetries of W0 are scaling and permutation”, or alternatively, that degenerate-nodes occur

with probability zero in arbitrary-depth ReLU networks. These experiments suggest that while

this view is correct, it is incomplete from the perspective of statistical learning. The singularity

that determines the phase ADegen is non-generic, and yet we have shown that, for these particular

networks, it is nonetheless preferred by the posterior even for θ < π
2 . This implies non-generic

points in the space of parameters W can determine the shape of the posterior, and thus influence

estimation procedures such as MCMC or Stochastic Gradient Descent. Accordingly, we believe

that in order to understand the success of deep learning, the theory should shift perspective from

considering points of W to considering singularities of K(w).

1In order to add weight to this claim we should attempt to estimate λ, and vary the experiments over n and β0.

We leave this to future work.
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Figure 5.7: Posterior densities of pβ
∗
(w|Dn(θ)), where each sample w(k) is represented by two

points, (w
(k)
1,1 , w

(k)
1,2) and (w

(k)
2,1 , w

(k)
2,2). The red dots indicate w

(0)
1 and w

(0)
2 which are rotated by θ.

The ADegen phase undergoes a second order creation transition at θ ≈ 1.16c. There is a first order

phase transition at θ ≈ 1.26c as the ADegen phase becomes the global minima.

55



(a) Density (relative frequency) of each phase. Notice how the preferred phase switches at θ = 1.26c, thus

indicating a first order phase transition.

(b) Accuracy Ln(ω0) of each phase. Notice that variations in Ln(ω0) are closely correlated the accuracy

Ln(w(0)) = Sn of the underlying true distribution. These variations in Sn are random (i.e. not constant)

since each y ∼ q(y|x) which is a normal distribution as outlined in Section 5.2.2.

Figure 5.8: Trajectory of different phases for each θ.
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5.4 Phase Transition 2: Orientation Reversing Symmetry

Figure 5.9: Non-weight-annihilation with ε = (0, 0, 0) (left) versus weight-annihilation with ε =

(1, 1, 1) (right).

Figure 5.10: f3(x, ϑ) for ϑ = 1 (left), ϑ = 1.5 (middle) and ϑ = 2 (right).

5.4.1 Defining the order parameter

Let us now analyse the singularity associated to orientation reversing symmetry of Theorem 4.7,

which is present when effective weight vectors in the network sum to zero. Since the true parameter

defining W0 is not unique, we will need to be more careful in distinguishing between the two

singularities. To this end, when we refer to weight annihilation symmetry, we mean a configuration

of weights such that multiple nodes are active in a linear domain, but cancel to give an effective

weight of zero. This is shown in Fig. 5.9.

We set the true network to be an m-symmetric network f3(x, ϑ) : R2 × Θ → R with m = 3

hidden nodes and set w0 = gπ
3

(1, 0)T and b = − 1
3 . We define an order parameter ϑ ∈ Θ = [1, 2.25]

such that q2 = ϑ, so

f3(x, θ) = ReLU

(
cos

(
π

3

)
x1 + sin

(
π

3

)
x2 −

1

3

)
+ ϑReLU

(
−x1 −

1

3

)
(5.3)

+ ReLU

(
cos

(
5π

3

)
x1 + sin

(
5π

3

)
x2 −

1

3

)
.

In essence ϑ merely scales the effective weight ŵ2(ϑ), which can be seen in Fig. 5.10.

Then according to Corollary 4.16 we have the usual scaling and permutation symmetry of W0,

but weight-annihilation is dependent on ϑ:

Υ =


{

(0)3
i=1

}
, if ϑ 6= 1{

(0)3
i=1, (1)3

i=1

}
if ϑ = 1

.
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Let R(θ) = (cos θ, sin θ) and B(x, ε) be the closed ball centred at x ∈ R2 of radius ε. As regions in

the (wi,1, wi,2) plane, out setup in Eq. (5.3) dictates that

ENonAnn =
⋃
σ∈S3

2∏
k=0

B

(
R

(
π

3
+

2σ(k)π

3

)
, ε

)

EAnn =
⋃
σ∈S3

2∏
k=0

B

(
R

(
2σ(k)π

3

)
, ε

)

are the two phases that we are interested in.

In these experiments there were K = 10, 000 samples over T = 4 trials and a = 1, σϕ = 1.

5.4.2 Results and discussion

The posterior estimates ranging over ϑ ∈ [1, 2.25] can be seen in Fig. 5.11. As anticipated we see

that both ENonAnn and EAnn are minima of the free energy. We see that ENonAnn is the global

minimum, implying the non-annihilation phase has lower model complexity since they have the

same accuracy as true parameters. As ϑ increases there is symmetry breaking of W0 where the

singularity defining EAnn is no longer on W0, meaning Ln(ω0) of this phase, and therefore the free

energy, should increase. Our experiments agree with this conjecture. The free energy of ENonAnn

increases as ϑ increases until we see a second order destruction transition at ϑ ≈ 2 where ENonAnn

ceases to be a minimum of the free energy. This behaviour agrees with our analysis in Section 5.3.2

and reinforces the fact that singularities on W0 can have different free energies.

5.4.3 An instructive calculation

To illustrate why ENonAnn may have a lower free energy, let us consider a perturbation analysis

of K(w) centred at singularities corresponding to weight-annihilation and non-weight-annihilation

in a simple two-layer ReLU network with one input and one output. We will be interested in

measuring the curvature of K(w) at these two points. Since this loosely corresponds to local

density of the normalised posterior ϕ(w)e−nK(w), our results in Section 5.4.2 suggest that ENonAnn

should have the lower curvature of the two phases.

In principle, such a calculation potentially lacks meaning - after all, we have argued that it is

not the Hessian at a point that affects the free energy, but the singularity structure. Nevertheless,

by removing the singularity in a very simple setting, we can gain some intuition into why it may

be that the complexity of ENonAnn is less than EAnn.

Consider a two-layer, one input, one output ReLU network f(x,w) : R ×W → R with d = 2

hidden nodes as the model. The true network f0(x) has the same architecture and is defined by

f0(x) = ReLU(−x− 1) + ReLU(x− 1) + 2 .

Let us define two parameters wNA, wAnn ∈W which depend on a small δ,

fwNA
(x, δ) = ReLU((−1 + δ)x− 1) + ReLU(x− 1) + 2

fwAnn
(x, δ) = ReLU((1 + δ)x+ 1) + ReLU(−x+ 1) ,

where fwNA
is the non-weight-annihilation configuration and fwAnn

is weight-annihilation. Note

that both wNA, wAnn ∈ W0 for δ = 0. Let us then define the KL divergence between from each

network to f0(x) as a function of δ, for q(x) uniform on [−a, a] for some a > 0,

KNA(δ) =

∫ a

−a

(
fwNA(x, δ)− f0(x)

)2
dx

KAnn(δ) =

∫ a

−a

(
fwAnn

(x, δ)− f0(x)
)2
dx .
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Figure 5.11: Posterior densities of pβ
∗
(w|Dn(ϑ)) for Eq. (5.3). The red dots indicate ŵ

(0)
1 , ŵ

(0)
2

and ŵ
(0)
3 , where ŵ

(0)
2 is scaled by ϑ. The EAnn phase always has higher free energy, and undergoes

a second order destruction transition somewhere between ϑ ∈ (1.7, 2).
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Figure 5.12: The different perturbed networks compared to the truth. Notice the additional area

between fwAnn
and f0 in the region (−1, 1).

Through a careful calculation performing the integrals over domains defined by when each node

is active, one finds that

KNA(δ) =


δ2
(
a3 + δ − 1

)
12a

if δ < 0

δ2
(
a3(δ − 1)3 − (δ − 1)

)
12a(δ − 1)3

if 0 < δ < 1

,

KAnn(δ) =


δ2
(
a3δ + a3 + 1

)
12a(δ + 1)

if − 1 < δ < 0

δ2
(
a3(δ + 1)3 + δ + 1

)
12a(δ + 1)3

if δ > 0

.

In particular we have

K ′′(0) =
a3 − 1

6a
<
a3 + 1

6a
= K ′′ε (0) ,

which implies that for any δ ∈ (−1, 1)\{0},

KNA(δ) < KAnn(δ) .

Observing Fig. 5.12 gives some insight into the geometry at play here. Small perturbations in

fwAnn
lead to a meaningful change in the decision boundaries, which in turn results in additional

contributions to the KL divergence from the region (−1, 1). On the other hand, fwNA still retains

a constant region for small perturbations in δ.

Furthermore, notice that

lim
a→∞

|K ′′Ann(0)−K ′′NA(0)| = lim
a→∞

1

3a
= 0 ,

which implies that the free energy of both phases may become equal as a→∞. This hints at the

existence of another first order phase transition. Let us investigate whether EAnn becomes a global

minmia as we vary a.
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Figure 5.13: The true distribution q(y, x) = 1
a2 p(y|x,w3)1((x1, x2) ∈ [−a, a]2) for a = 1 (left),

a = 1.5 (middle) and a = 2 (right).

5.4.4 Phase transition 3: Equal Weight-Annihilation

Inspired by the results in Section 5.4.3, let us keep our same network f3(x) defined in Section 5.4.1,

but this time we shall fix q2 = ϑ = 1 and make the order parameter a ∈ Θ = [1, 2] which defines

the uniform square of q(x). How a changes the distribution is seen in Fig. 5.13. According to

Theorem 4.7, there are no changes to the symmetries of W0 as we vary a. However, it is worth

bearing in mind Remark 4.12, where we observed that our analysis of W0 in Chapter 4 did not

adequately take into account how the form of q(x) affected W0.

In these experiments there were K = 1000 samples over T = 32 trials and σϕ = 1. The reason

for more trials is because potential barriers were found, meaning the final distribution of any trial

chain was highly dependent on its initial value. Thus these experiments were averaged over random

initial values for 32 trials.

The results can be seen in Fig. 5.14. The regions of posterior concentration are not as distinct

as in previous experiments, but the results nonetheless agree with what Section 5.4.3 suggested:

the free energy of EAnn decreases as a increases. This shows how the geometry of K(w) is not just

affected by the nature of the ReLU network defining the true distribution, but also the specifications

of q(x).
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Figure 5.14: Posterior densities of pβ
∗
(w|Dn(a)) for f3(x) where q(x) is uniform on [−a, a]2. Notice

that the free energies of E0 and E1 become comparable as a increases.
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Chapter 6

Conclusion

This thesis aimed to provide accessible examples of singular models in the form of small ReLU

networks in order to elucidate the key messages of Sumio Watanabe’s Singular Learning Theory

and illuminate the change in statistical perspective from points to singularities.

We started by casting deep learning as a Bayesian statistical learning model in Chapter 2. Here

the Kullback-Leibler divergence K(w) between a model and truth was revealed as the fundamental

object of study, alongside the set of true parameters W0 ⊆ W . We then explained how one can

draw an analogy between neural networks as Bayesian models and the Gibbs ensemble of statistical

physics, hinting at objects and phenomena that arise naturally such as the free energy and phase

transitions.

An exposition on Singular Learning Theory was then provided in Chapter 3. We began by

demonstrating that neural networks have degenerate Fisher information matrices and are therefore

singular models, thus showing that singularity theory lies at the heart of statistical learning theory

of neural networks. We then explored the free energy Fn(W) associated to compact subsets of

W , in particular its relation to the generalisation of a model, and why it is the main quantity of

comparison between model. Watanabe’s groundbreaking formula for the asymptotics of the free

energy in singular models was then explained, where we discussed how the RLCT λ is the correct

measure of complexity in singular models and illustrated its interpretation in terms of Occam’s

Razor.

We then set about establishing the symmetries of W0 for two layer ReLU networks in the real-

isable case in Chapter 4, which was equivalent to establishing for which parameters give functional

equivalence between a model and a truth network. This was done in two stages. In the first case

where the model and truth networks had the same number of nodes, m = d, it was found that W0

exhibited scaling, permutation and orientation reversing symmetry, the latter only occurring when

the weight vectors summed to zero. In the second case where the model was had more hidden

nodes than the truth, m < d, it was proven that the excess nodes were either degenerate or had the

same activation boundaries as some other node in the model. We then examined a more general

result from the literature for networks of arbitrary depth, before finally providing the example of

m-symmetric networks which exhibited interesting symmetries of W0.

In Chapter 5 we endeavoured to show that not all points on W0 were equally good minimisers

of the free energy due to their difference as singularities. Initially we explained a correspondence

between phases and singularities of K(w). This naturally led to the notion of phase transitions,

which we argued occurred as a result of a substantial change in the accuracy or RLCT of a compact

subset of W , thus being associated to symmetry breaking of W0. We were able to show that points

on W0 could indeed have different free energies due to having different model complexity. The

key finding was that points on W\W0 could still be favoured by the posterior despite not being

minimisers of K(w). We first showed that the complexity of degenerate-node singularities was less

than that of non-degenerate node singularities. Moreover, we demonstrated a phase transition in

these networks corresponding to a change in the accuracy of the degenerate-node phase. Finally we

showed that weight-annihilation singularities had greater free energy than non-weight-annihilation
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singularities and provided intuition for why this may be the case.

Given the infancy of Singular Learning Theory there remain many key questions that should

be examined in future studies. Relating to this thesis, we think it would be interesting to explore:

• Numerical approximations of the RLCT of our established phases.

• Theoretical values of the RLCT for these phases using the swish approximation to ReLU.

• Generalisations of the proofs in Chapter 4 to examine W0 of networks with arbitrary input

dimension, output dimension, depth, and sequences of hidden layer widths.

• Scaling laws near critical values of phase transitions, particularly how these scaling exponents

may arise theoretically, and how the RLCT is related.

In summary, not all points on W0 are equally good. Thus, we believe it is time to evolve

statistical analysis of deep learning from considering points to investigating singularities.
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Appendix A

Appendix

Lemma A.1. Let q(y, x) and p(y, x|w) > 0 be continuous probability density functions. Then

K(w) ≥ 0 for all w ∈ W , and K(w) = 0 if and only if p(y|x,w) = q(y|x) for almost all x ∈ RN ,

y ∈ RM .

Proof. First note that if q(y, x) = 0 on some open set A ⊆ RN+M , since limx→0 x log x = 0 we

may define in good conscience

q(y, x) log q(y, x)− q(y, x) log p(y, x|w) := 0.

Thus there will be no contribution to K(w) from the region A, so we can assume without loss of

generality that q(y, x) > 0 on the region of integration.

Consider the real-valued function S(t) = − log t + t − 1 for t ∈ (0,∞) which is well defined,

continuous and differentiable everywhere on this domain. Then clearly S(1) = 0, and indeed we

can show that t = 1 is the only root. Since S′(t) = − 1
t + 1, S(t) has a stationary point at t = 1, is

strictly decreasing on (0, 1) and strictly increasing on (1,∞), thus by continuity we see that t = 1

is the only root. Then since S′′(t) = 1
t2 , so S′′(1) = 1 > 0, we see that S is concave up at t = 1,

thus showing S(t) ≥ 0 for all t ∈ (0,∞) and S(t) = 0 if and only if t = 1.

But then since p and q are probability distributions, hence
∫∫

RN+M p(y, x|w)dxdy = 1 and∫∫
RN+M q(y, x)dxdy = 1, we have∫∫

RN+M

q(y, x)S

(
p(y, x|w)

q(y|x)

)
dxdy =

∫∫
RN+M

q(y, x) log

(
q(y, x)

p(y, x|w)

)
dxdy

+

∫∫
RN+M

q(y, x)
p(y, x|w)

q(y|x)
dxdy −

∫∫
RN+M

q(y, x)dxdy

= K(w) .

Since q(y, x), p(y, x|w) > 0 we have 0 < p(y,x|w)
q(y,x) < ∞, hence the integrand in the first integral is

non-negative, thus the integral itself is non-negative, so K(w) ≥ 0.

We have shown that if p(y, x|w) = q(y, x) then K(w) = 0, so suppose K(w) = 0. Since S(t) ≥ 0

and q(y, x) > 0 are continuous and non-negative on RN+M , by standard real analysis results we

must have S
(
p(y,x|w)
q(y,x)

)
= 0 for almost all (x, y) ∈ RN+M , hence p(y,x|w)

q(y,x) = 1 as stated.

Lemma A.2. Let q(y|x) = p(y|x,w0) be realisable, defined by a parameter w0 ∈W . Then

K(w) =
1

2

∫
RN
‖f(x,w)− f(x,w0)‖2q(x) dx . (A.1)
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Proof. We calculate K(w) to be

∫∫
RN+M

q(x)

(2π)
M
2

exp

(
−1

2
‖y − f(x,w0)‖2

)
log

 1

(2π)
M
2

exp
(
− 1

2‖y − f(x,w0)‖2
)

1

(2π)
M
2

exp
(
− 1

2‖y − f(x,w)‖2
)
 dxdy .

=
1

2(2π)
M
2

∫∫
RN+M

q(x) exp

(
−1

2
‖y − f(x,w0)‖2

)(
‖y − f(x,w)‖2 − ‖y − f(x,w0)‖2

)
dxdy .

Let u = y − f(x,w0), so du = dy, and let a = f(x,w) − f(x,w0) ∈ RM which is fixed, then

y − f(x,w) = u− a and so

K(w) =
1

2(2π)
M
2

∫
RN

q(x)K(w,w0, x)dx , (A.2)

where for a fixed x ∈ RN we define

K(w,w0, x) =

∫
RM

e−
1
2‖u‖

2
(
‖u− a‖2 − ‖u‖2

)
du =

∫
RM

e−
1
2‖u‖

2
(
−2a · u+ ‖a‖2

)
du . (A.3)

Recall the standard identity
∫
RM e−

1
2‖x‖

2

dx = (2π)
M
2 . For the dot product term we can show that

this contribution is zero by induction on the dimension M . The base case for M = 1 is simply∫∞
−∞ a1u1e

− 1
2u

2
1du = 0 since it is an odd integrand over a symmetric domain. For the inductive

step, denote a = (a1, . . . , aM ) and u = (u1, . . . , uM ) and suppose
∫
RM (a · u)e−

1
2‖u‖

2

du = 0. Then∫
RM

∫ ∞
−∞

(a · u+ aM+1uM+1)e−
1
2 (‖u‖2+u2

M+1)du duM+1

=

∫ ∞
−∞

e−
1
2u

2
M+1duM+1

∫
RM

(a · u)e−
1
2‖u‖

2

du

+

∫ ∞
−∞

aM+1uM+1e
− 1

2u
2
M+1duM+1

∫
RM

e−
1
2‖u‖

2

du

= 0 ,

where the first integral vanishes by the inductive hypothesis and the second due to the odd integral

over a symmetric domain. Substituting this into (A.3) gives

K(w,w0, x) = ‖a‖2
∫
RM

e−
1
2‖u‖

2

du = (2π)
M
2 ‖a‖2 ,

and so recalling the definition of a and substituting into (A.2) yields the result.

Lemma A.3. Let ϕ(w) > 0 be a prior on W . Suppose P (w) is the unique maximiser of the

relative entropy K(P ||ϕ(w)) subject to the constraint

Ew∼P [nLn(w)] = µβ

for some fixed µβ ∈ R. Then P (w) = pβ(w|Dn) for some β > 0 that depends on µβ

Proof. Given the relative entropy functional

K(P ||ϕ) =

∫
W

P (w) log
P (w)

ϕ(w)
dw ,

we want to solve for the probability distribution P (w) that maximises K(P ||ϕ) subject to the

following constraints:

−
n∑
i=1

∫
W

P (w) log p(yi|xi, w)dw = µβ , and

∫
W

P (w)dw = 1 , and

∫
W

ϕ(w)dw = 1 ,
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where µβ ∈ R is assumed fixed and given. Let k(w,P ) denote the integrand in K(P ||ϕ) and let

g1(w,P ), g2(w,P ) and g3(w,P ) respectively denote the integrands in the constraints above and

let λ1, λ2 and λ3 denote respective Lagrange multipliers. Then we wish to freely optimise the

functional

F [{λi}, P (w)] =

∫
W

k(w,P )−
3∑
j=1

λjgj(w,P )

 dw + λ1µβ + λ2 + λ3 .

We can appeal to the Euler-Lagrange equation which states that F is extremised at the function

P such that

d

dw

(
∂k

∂P ′

)
− ∂k

∂P
−

3∑
j=1

λj

[
d

dw

(
∂gj
∂P ′

)
− ∂gj
∂P

]
= 0

subject to the same constraints as above. This then evaluates to

log
P (w)

ϕ(w)
+ 1− λ1

n∑
i=1

log p(yi|xi, w) + λ2 = 0 ,

so P (w) = e−(1+λ2)ϕ(w)

n∏
i=1

pλ1(yi|xi, w) .

Then λ1 and λ2 can be solved by applying the first two constraints, giving P (w) = pβ(w|Dn) for

β = λ1.

Lemma A.4. Let W ⊆W be compact. The free energy of W satisfies

∂F βn (W)

∂β
= EβW [nLn(w)] = nGβt (W) ,

and
∂2F βn (W)

∂β2
= −EβW [(nLn(w))2] + EβW [nLn(w)]2 = −VβW [nLn(w)] .

Proof. The first proof was provided in the main body of the text. For the second derivative we

have

∂2F βn (W)

∂β2
= − ∂

∂β

(
1

Zβn(W)

∂Zβn(W)

∂β

)
= −

(
∂

∂β

1

Zβn(W)

)
∂Zβn(W)

∂β
− 1

Zβn(W)

∂2Zβn(W)

∂β2

=

(
1

Zβn(W)

∂Zβn(W)

∂β

)2

− 1

Zβn(W)

∫
W

(nLn(w))2ϕ(w)e−nβLn(w)dw

= EβW [nLn(w)]2 − EβW [(nLn(w))2] .

Lemma A.5. Let Fn denote the free energy when β = 1. The generalisation loss is the average

increase in free energy,

Gn = EXn+1
[Fn+1]− Fn . (A.4)

In particular, the average free energy is the sum of the generalisation loss,

EDn [Fn] =

n−1∑
i=1

EDi [Gi] + ED1 [F1] .

Proof. The proof hinges on the fact that we may write

Zn+1

Zn
=

∫
W
p(yn+1|xn+1, w)ϕ(w)e−nβLn(w)dw∫

W
ϕ(w)e−nβLn(w)dw

= Ew[p(yn+1|xn+1, w)] = p(y|x,Dn)
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which implies

Fn+1 − Fn = − log p(y|x,Dn) .

Since Fn does not depend on (Xn+1, Yn+1), taking EXn+1 of both sides gives the first result. Taking

expectation with respect to Dn of Eq. (A.4) gives

EDn [Gn] = EDn+1
[Fn+1]− EDn [Fn] .

Thus we have

n−1∑
i=1

EDi [Gi] + ED1
[F1] = (EDn [Fn]− EDn−1

[Fn−1]) + (EDn−1
[Fn−1]− EDn−2

[Fn−2])

+ · · ·+ (ED2
[F2]− ED1

[F1]) + ED1
[F1]

= EDn [Fn] .

Lemma A.6. Let w,w′ ∈ R2 \ {0} and b, b′ ∈ R be given and let

H = {x ∈ R2 | 〈w, x〉+ b = 0}, and H ′ = {x ∈ R2 | 〈w′, x〉+ b′ = 0} .

Then H = H ′ if and only if there exists some scalar λ ∈ R \ {0} such that w = λw′ and b = λb′.

Proof. The first direction is simple: suppose λ ∈ R \ {0} is such that w = λw′ and b = λb′, then if

x ∈ H ′ we have

0 = 〈w′, x〉+ b′ = 〈λw, x〉+ λb = λ
(
〈w, x〉+ b

)
and so dividing by λ shows that x ∈ H, and by symmetry we clearly have H ′ ⊆ H too, so H = H ′.

Now suppose H = H ′. Let t ∈ H be a scalar multiple of w, so t = µw for some µ ∈ R, then

0 = 〈w, t〉+ b = µ〈w,w〉+ b , so µ = − b

〈w,w〉
,

and so t is the unique point such that b = −〈w, t〉. Similarly we have a unique t′ = µ′w′, where

µ′ = − b′

〈w′,w′〉 , giving b′ = −〈w′, t′〉. Then saying x ∈ H is now equivalent to 〈w, x − t〉 = 0, but

since x ∈ H ′ as well we also have 〈w′, x− t′〉 = 0. Taking x = t′ in the first case and x = t in the

second case, noting 〈w, t′ − t〉 = −〈w, t− t′〉, we have a system of equations

Aw(t− t′) :=

(
w1 w2

w′1 w′2

)(
t1 − t′1
t2 − t′2

)
= 0 .

Thus either t = t′ or rank(Aw) = 1 (w and w′ are nonzero by hypothesis, excluding the possibility

of rank(Aw) = 0). In the first case we have t = µw = µ′w′ = t′, thus we can take λ = µ
µ′ ∈ R to

give w = λw′. In the second case, rank(Aw) = 1 implies w and w′ are linearly dependent, thus

w = λw′ for some λ ∈ R. For such a λ we thus have

b = −〈w, t〉 = −〈w, t′〉 = −λ〈w′, t′〉 = λb′ ,

where the second equality follows from 〈w, t− t′〉 = 0, thus proving the claim.
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