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Abstract

We develop a formalism to apply Watanabe’s Singular Learning Theory to the problem of
program synthesis. In our case, a program is a sequence of letters on the tape of a Turing
Machine, which we associate to a singularity of an analytic function. The key invariant associated
to a singularity in this context is the real log canonical threshold, and we introduce methods to
compute this value from an ideal generated by polynomials. We provide a semantic interpretation
of these singularities, which distinguishes distinct algorithms by viewing them as the limit of a
learning process.
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1 Introduction

The central object of study in theoretical computer science is the program, a finite set of instruc-
tions which effectively compute a function. There may, however, be many different programs
which compute the same function: even for something as elementary as integer multiplication,
several different algorithms are known [Ber01]. In many cases, the ideas of these algorithms are
distinct, and it is far from clear how to capture this semantic difference mathematically. The
syntax, or lines of code, certainly differs from algorithm to algorithm, but these differences are
too numerous to pin down the difference in meaning. Logician Dana Scott addresses this in
[Sco77]:

In giving precise definitions of operational semantics there are always to be made
more or less arbitrary choices . . . and to a great extent these choices are irrelevant
for a true “understanding” of a program. Mathematical semantics tries to avoid
these irrelevancies and should be more suitable to the study of such problems as the
equivalence of programs.

The contention of this thesis is that in order to understand semantic differences between pro-
grams, we ought to examine how they come about. Conventionally, a construction of a program
is understood to be a step-by-step recipe which assembles a program from simple units [GLT93,
§3.3]. Following Turing, we take a different view, in which programs are the limit of a learn-
ing process that gradually tunes an initially unorganised machine towards an organised result
[Tur04]. By working towards an understanding of this learning process, we endeavour to enrich
our understanding of programs themselves.

We can formalise the idea of of learning programs, or program synthesis, in the language of
inductive inference [Hut04, §2.1]. If our system of computation evaluates functions S → T , and
we have some set C of possible programs, then there is a natural evaluation map

C −→ P(S × T ),

taking each program F to its graph ΓF = {(x, Fx) | x ∈ S}, as an element of the power set.
Program synthesis, or more specifically Programming by Example1 [Lib01], looks to go the other
way. Given a set G ⊂ S × T of input/output pairs, we search for a program F which matches
this specification in the sense that G ⊂ ΓF .

This thesis provides a mathematical framework for understanding programs as the limit of
a learning process, using the analytic geometry of Watanabe’s Singular Learning Theory (SLT)
[Wat09]. In particular, we discover a natural analogue of machine education, as described by
Turing in [Tur04]. The main technical result is Theorem 4.24, which links the analytic framework
to algebraic geometry. This result demonstrates that, for a natural class of synthesis problems
P , which we call compact, the learning process is strongly controlled by a polynomial ideal IP ,
called the fibre ideal [Lin11, §1.5.1], inside the ring of analytic functions on the space of possible
programs.

As quoted above, Scott aimed to provide a mathematical interpretation of programs, with
the goal of abstracting from the “irrelevancies” of operational semantics, in order to understand

1It should be observed that this is not the only form that program synthesis can take; it does not include, for
example, synthesis of programs from natural language inputs [GM14, MGA13].
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the fundamental properties of a given algorithm. To do this, he axiomatises data types as
complete lattices: the ordering, x v y, encodes a refinement of the data x to more specific data
y. We discover in Section 5 exactly this structure on the set I(M) of synthesis problems on a
given machine M , which allows us to use Scott’s work to provide a semantic interpretation of
learning. To extend this to programs themselves, we define a function J−K : C → I(M) which
embeds codes on a Universal Turing Machine M into the lattice. In particular, given a program
w ∈ C , we can specify the associated problem JwK ∈ I(M) as the directed limit of compact
problems (Proposition 5.15), to which we can apply Theorem 4.24.

The lattice structure on I(M) mirrors the lattice of ideals IP , and via SLT its geometric
content controls the process of learning. Using this, we can find a novel interpretation of the
limits that are central to Scott’s vision of semantics. If a code w is approximated by compact
synthesis problems

P0 v P1 v P2 v · · · v JwK, (1)

then the varying geometry of the ideals IPi encodes the increasing complexity of the solution
(Proposition 4.19 and Remark 5.19).

To understand programs — say to distinguish semantically different programs, or identify
equivalent ones — we look for ways of modelling them in areas of mathematics that we under-
stand better, such as geometry. For this to be useful, the semantics must expose information
about the original object in a more accessible way. This thesis gives some initial steps in the
direction of a geometric semantics of arbitrary programs.

The rest of this section lays out the concepts which we need to make this story work, and
in that way serves as an outline for the rest of the thesis. In brief, Sections 2 and 3 explain
the necessary background on programs and SLT, and Section 4 uses this to formalise learning
as a problem of inductive inference. Section 5 examines the higher level structure of the theory
we develop, which will help to interpret the semantic information packaged by the geometry of
program synthesis.

1.1 Outline

In Section 2 we lay out the model of computation which underlies our treatment. Clearly, the
specifics of program synthesis depend on the model of computation used, as this controls the
space of possible programs. Frequently, it is desirable to work in a very restricted model of
computation, an extreme example of which is machine learning: there is a sense in which the
search for the correct weights on a neural net is a search for a program, just in a very limited
language [GSLT+18, §3.2]. Similarly, even if one is trying to generate code in C or Haskell,
it can be productive to limit the space of possible programs to those involving manipulations
relevant to the problem at hand [GHS12]. A priori, the approach we take is different. For us,
the space of “programs” will be strings on the input tape of a Turing Machine (TM), which,
according to the Church-Turing thesis, potentially encompasses any effectively calculable function
[Tur39, Ros39]. It should be stressed that we are not considering synthesis of the Turing Machine
itself (as represented by its transition function), but rather the contents of the tape of a fixed
TM. Since there exists a Universal Turing Machine (UTM) which simulates any given TM via
a code on its tape, the former problem reduces to the latter [HMU01, §9.2.3].

This model of computation has a few advantages. Firstly, we choose TMs over more specific
(and potentially practical) models of computation, as they are universal. Any problem which is
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Figure 1: A representation of the map J−K : C → I(M), defined in Definition 5.16. The lattice
v, on the right, gives structure to the programs, and allows us to approximate them by inference
problems, as in (1).

soluble by computation may be solved on a TM [Tur39], so any sufficiently general theoretical
result proven or explored in this case extends to more practically interesting languages. This
will allow us to discover structure which we claim is not dependent on the specific model. Sec-
ondly, TMs are simpler to apprehend mathematically than the full complexity of a programming
language in the more everyday sense of the term. They are specified by fairly minimal data,
and their running can be (relatively) easily simulated by hand. Finally, as contrasted with even
simpler models such as the lambda calculus, TMs correspond very closely to our intuitive idea
of computation: this, in fact, motivated their introduction, which was preceded by other equiv-
alent definitions [Tur39, p.8]. Using an intuitively comprehensible model will make the logical
structure of the resulting theory more clear.

Having settled on Turing Machines, program synthesis looks like a discrete problem. How-
ever, with reference to our intuitive understanding of learning, it is desirable to allow for small
(even infinitesimal) variations in programs. Our solution to this problem is to allow for un-
certainty in the configuration of the Turing Machine at a fixed time, following [CMW21]. For
example, each square on the tape will hold a distribution over the tape alphabet Σ, rather than
a definite letter. The details of this extension will be discussed in Section 2.2.

This innovation turns the problem of program synthesis into one of statistical inference: from
knowledge of some true distribution q(x), corresponding to the given input-output specification,
we seek a matching distribution among some family p(x|w), parametrised by possible programs
w ∈ W. A key observation is that we cannot assume this statistical model p is regular. In
particular, the map p from programs w to distributions p(x|w) will not be injective. Apart
from the fact that this is verifiably the case in real-world machine learning problems, it accords
well with our intuitions about learning and program synthesis. We expect that there may be
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qualitatively different ways of computing the same function, and a theory of program synthesis
which does not account for this will not be able to answer important questions about the learning
process. The right framework to deal with this fact is Sumio Watanabe’s Singular Learning
Theory (SLT), as laid out in [Wat09]. In Section 3 we will detail the necessary elements of
Watanabe’s theory, focussing particularly on the role of the real log canonical threshold (RLCT),
a geometric invariant which controls the learning process over large data sets.

In Section 4, we formulate statistical inference on Turing Machines, and provide examples
demonstrating that this is relevant to program synthesis. This will lead us to define the fibre ideal
of an inference problem, which links program synthesis to algebraic geometry. Given a learning
problem, we can associate to a true parameter w — for which p(x|w) = q(x) — a local RLCT.
These values package information about the geometry of the learning problem around w. In the
case of program synthesis, it is from there that we obtain semantic information about programs
via geometry. For example, codes w with smaller local RLCT will be preferred by a Bayesian
learning machine, a result which is the smooth analogue of Occam’s razor [CMW21, Bal97].

Section 5 defines the lattice of inference problems, and interprets it as a semantics of pro-
grams. Using our results about the fibre ideal, we explain the way in which this lattice com-
plements the geometric information we discovered in the previous section. In particular, we
interpret directed limits in our lattice as a version of machine education, as described by Turing
in [Tur04]. We show in Appendix A that this limiting process enacts a sequence of second-order
phase transitions.
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Notation Explanation Reference

M = (Σ, Q, δ) A Turing Machine M with tape alphabet Σ, states Q and
transition function δ.

Definition 2.1

ΣU,� Sequences of elements of Σ, indexed by U and with only �
appearing infinitely often

Definition 2.1

U A pseudo-Universal Turing Machine. Inputs are on tape
squares U , codes on V .

Definition 2.3

∆Z The standard simplex over a set Z. Definition 2.5

(∆Σ)U,� Sequences of distributions over Σ, indexed by U and with
only � appearing infinitely often

Definition 2.7

∆stepM The smooth relaxation of the step function associated to a
TM M .

Definition 2.8

(q, p, ϕ) Singular Learning Triple: true distribution q(x), model
p(x|w), prior distribution ϕ(w).

Setup 3.1

W0 ⊂ W The subset W0, inside the code space W, of solutions:
p(x|w) = q(x).

Setup 3.1

DKL(q || p) The Kullback-Leibler divergence between distributions q, p. Definition 3.5

RLCTW(f ;ϕ) The real log canonical threshold of a phase function f with
the prior ϕ.

Definition 3.9

RLCTW(I;ϕ) The real log canonical threshold of an ideal I inside the ring
of analytic functions AW on W, using the prior ϕ.

Definition 3.18

S The possible constraints for an inference problem. Definition 4.1

C (V, c) The code space over V with allowed codes c. Definition 4.2

c(P ) The Kolmogorov complexity of a synthesis problem P . Definition 4.18

S+(P ) The support of an inference problem P . Definition 4.6

IP ⊂ AW The fibre ideal of an inference problem P , inside the ring of
analytic functions on W.

Definition 4.23

I(M,V, c) The set of inference problems on a Turing Machine M , with
fixed code window V and allowed codes c.

Definition 5.1

⊥,> Overspecified and underspecified inference problems. Definition 5.1

P v P ′ The inference problem P specialises to P ′. Definition 5.2

P +Q The sum of inference problems P and Q. Definition 5.7

P ∩Q The intersection of inference problems P and Q. Definition 5.8

JwK The inference problem associated to a code w ∈ C (V, c) Definition 5.16
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2 Turing Machines

This section fixes our definitions and conventions for our chosen model of computation: single-
tape Turing Machines. Section 2.1 deals with classical Turing Machines, and Section 2.2 outlines
the process of smooth relaxation.

2.1 Conventional Turing machines

This section endeavours to be self-contained, but for a detailed treatment of this topic see
[HMU01, §8-9], noting small differences in conventions. In particular, [HMU01, §8.3] demon-
strates how familiar programming techniques are translated into the language of TMs. Loosely,
a Turing Machine is a computer with a one-dimensional tape for memory, and finitely many
internal states. Each “tape square” holds one of a finite collection of letters, and the “head”
reads one of the tape squares at a time. Depending on the internal state and the square under
the head, the TM writes a new letter, and possibly changes the state and/or moves to the left
or right. More formally:

Definition 2.1. A (single-tape) Turing Machine M = (Σ, Q, δ) is a tuple consisting of a finite
set Σ, called the tape alphabet, a finite set Q of states, and a transition function:

δ : Σ×Q −→ Σ×Q× {−1, 0, 1}.

If δ(σ, q) = (σ′, q′, d), then if the machine is in state q and reads the letter σ, it will write σ′

to the tape, transition into state q′, and move according to d: d = 1 indicates “move right”,
d = −1 “move left” and d = 0 stay still. We will often write δi for the component πi ◦ δ.

We assume there is a specified blank symbol � ∈ Σ, which is the only symbol allowed to
appear infinitely many times on the tape. Therefore, the state of the machine at a fixed time is
specified by a pair (y, q), with q ∈ Q and:

y ∈ ΣZ,� := {(yi)i∈Z | yi = � for all but finitely many i}

The tape squares are numbered relative to the head: y0 is the symbol being read, y1 immediately
to the right, and so on. As such, if (y, q) is the state at time t, then after one step of the machine,
the new state is:

step
(
(yi)i∈Z, q

)
=
(
(y′i+d)i∈Z, q

′),
where δ(y0, q) = (y′0, q

′, d), and y′i = yi for i 6= 0. Among the states Q, we will often fix specified
initial and halting states, denoted init and halt, and force that:

δ(x,halt) = (x,halt, 0).

Example 2.2 (The Shift Machine). The following example, which we will return to throughout,
is taken from [CM19, Section 7.2]. The Turing Machine M has alphabet and states:

Σ = {�, A,B, 0, . . . , 9}
Q = {init,halt, goR, goLA, goLB},
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and transition function:

δ(σ, halt) = (σ, halt, 0)

δ(n, init) = (n− 1, goR, 1) 0 < n ≤ 9

δ(0, init) = (0, halt, 0)

δ(σ, goR) = (σ, goR, 1) σ ∈ {A,B}
δ(n, goR) = (n,halt, 0) 0 ≤ n ≤ 9

δ(�, goR) = (�, goLA,−1)

δ(σ, goLσ′) = (σ′, goLσ,−1) σ, σ′ ∈ {A,B}
δ(n, goLσ) = (n− 1, goR, 1) σ ∈ {A,B}, 1 ≤ n ≤ 9

δ(0, goLσ) = (0, halt, 0) σ ∈ {A,B}.

Informally, initialised to a tape configuration consisting of a counter n, and some string of A’s
and B’s, the machine moves the string left by n squares, padding with A’s at the right-hand
end. For example, initialised to the following, with the underline indicating head position:

. . . � 2ABAABBAB� . . .

the machine will eventually halt in the configuration:

. . . � 0AABBABAA� . . .

This specification leaves some components of δ undefined — for example, if the machine is in
state goR, it will never read an integer n under the head. However, we will see in Example 2.11
that the behaviour of the smooth relaxation depends on these choices. We have set the machine
to halt in these cases, to ensure that for large enough t the machine is in state halt with
probability 1.

The example that allows us to view codes on a TM as a programming language is the
following.

Definition 2.3. A pseudo-Universal Turing Machine (pseudo-UTM) is the data:

• A simulation alphabet Σ and simulation states Q, and an ordering on Σ×Q;

• a Turing Machine U = (ΣU , QU , δU ), with Σ ∪Q ∪ {−1, 0, 1} ⊂ ΣU ;

• two disjoint subsets V,U ⊂ Z, called the code and input windows, with |V | = 3 · |Σ| · |Q|,
and an indexing (bijection) u : U → Z,

• and a background initialisation z ∈ (ΣU )U
′,�, where U ′ = Z \ (V ∪ U).

We define N = |Σ| and M = |Q|. Of this Turing Machine we require the following. Given a
sequence:

w ∈ (Σ×Q× {−1, 0, 1})MN ⊂ ΣV ,

of the form:
σ1 q1 d1 . . . σMN qMN dMN ,
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we use the ordering on Σ × Q to define a function δw : Σ × Q → Σ × Q × {−1, 0, 1}, reading
from left to right. The triple (Σ, Q, δw) defines a Turing Machine Mw, and if the tape regions V
and U are initialised to w and x ∈ ΣZ,�, and U ′ to z, we require that U have the same halting
behaviour as Mw. That is, if Mw halts on the input x, U should to, and the tape squares U
should contain the halting tape configuration of Mw. Note that the tape configuration of U is
determined by the indexing u: if we have (xi)i∈Z ∈ ΣZ,�, then the corresponding sequence in
ΣU,� is (xu(j))j∈U .

Remark 2.4. We will usually identify the data of a pseudo-UTM with the Turing Machine
U . Many constructions of such a machine exist, for example see [CMW21, Appendix E]. Such
a machine is not a genuine UTM, as, in the manner described at least, it can only simulate
machines with alphabets and states contained in Σ and Q. Briefly, in the general case, a UTM
might simulate triples of (M, e1, e2), where M = (Σ, Q, δ) is a TM, and e1 and e2 are encodings
of Σ and Q into the tape alphabet of U . [HMU01, §9.2.3] outlines the construction of such
a machine in detail, encoding the ith tape letter of M by i zeros followed by 1. We will not
consider this case here, as the behaviour of the smooth relaxation of such a machine is unclear
[Xu21, §4].

2.2 Smooth relaxation

As discussed in the introduction, we want to use Turing Machines as a basis for our model of the
concept of learning, which means we want to allow for small variations in programs. As such,
we need to choose a smooth relaxation of the discrete definition in the previous section.

The approach we take follows [CMW21] in using the smooth relaxation of [CM20, CM19].
Each square of the tape will hold a probability distribution over the tape letters, and the internal
state will be a distribution over the states Q. This is a natural choice: [GBS+16] generalises
the version of this technique appearing in [KAS16] to synthesise programs by gradient descent,
and [EG18, §4] describes a version of this for logic programming. This issue is discussed in more
detail in Remark 2.10.

Probability distributions will be represented as vectors in Euclidean space, and the following
definitions fix our notation for these distributions.

Definition 2.5. Given a set Z, the standard simplex over Z is the collection:

∆Z = {f : Z → [0, 1] |
∑
z∈Z

f(z) = 1 and f(z) = 0 for all but finitely many z}.

When Z = {0, . . . , n}, we abbreviate ∆Z = ∆n. We embed Z in ∆Z by defining, for an element
z ∈ Z, z(z) = 1, and z(z′) = 0 otherwise. ∆Z is a subset of the free vector space RZ with basis
Z.

Definition 2.6. Given a set Z and non-empty subset Z ′ ⊂ Z, we embed ∆Z ′ ⊂ ∆Z as:

{f ∈ ∆Z | z 6∈ Z ′ =⇒ f(z) = 0}.

This is referred to as the Z ′ face of ∆Z. If Z ′ is finite, the interior of the Z ′ face is the image
of the interior of ∆Z ′ in ∆Z. That is, the set:

{f ∈ ∆Z | ∀z ∈ Z((f(z) = 0 ∧ z 6∈ Z ′) ∨ (f(z) > 0))}.
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Figure 2: The standard simplex ∆{0, 1, 2} = ∆2 ⊂ R3, with the {0, 2}-face marked in red.

The methods of [CM20, CM19] define a particular approach for updating uncertainties in
the configuration of a TM, as the machine is run. In particular, samples from the tape squares
and states will be conditionally independent (in a sense we shall make precise in Remark 2.9).
To emphasise this, we will refer to a configuration of our relaxed TM as the state of belief for a
naive Bayesian observer (see [CM19, §1]), to differentiate it from a more standard probabilistic
approach. The following definitions fix our notation for these states of belief, and define the
function which updates them in response to a time step of the machine.

Definition 2.7. At a fixed time, the state of belief of a naive Bayesian observer to the running
of a Turing Machine M = (Σ, Q, δ), is an element of (∆Σ)Z,� ×∆Q, where we define:

(∆Σ)Z,� = {g : Z→ ∆Σ | g(i) = � for all but finitely many i}.

We also define projections, πstate and πtape
a onto the state and ath tape squares:

πstate ((yi)i∈Z,q) = q

πtape
a ((yi)i∈Z,q) = ya.

Definition 2.8. The smooth relaxation of step for a Turing Machine M = (Σ, Q, δ), is the
function:

∆stepM : (∆Σ)Z,� ×∆Q −→ (∆Σ)Z,� ×∆Q,

defined by ∆stepM
(
(yi)i∈Z,q

)
=
(
(y′i)i∈Z,q

′), and:

y′i(σ) =
∑
σw,qw

∑
σd,qd

y0(σw)q(qw)y0(σd)q(qd)
{
1[i 6= −d]yi+d(σ) + 1[i = −d]1[σ = δ1(σw, qw)]

}
(2)

q′(q) =
∑
σs,qs

y0(σs)q(qs)1[q = δ2(σs, qs)] (3)

where in the first formula we set d = δ3(σd, qd) in each summand.
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Remark 2.9. Loosely, the above formulae correspond to the following method for propagating
uncertainty through the running of the machine. At each time step, the machine makes three
decisions, corresponding to the three components of δ. Corresponding to these decisions, a naive
Bayesian observer takes three independent samples each from the distributions y0 ∈ ∆Σ and
q ∈ ∆Q, and calculates the action of the Turing Machine accordingly. Here, by action, we mean
a tuple (σ, q, d) ∈ Σ×Q×{−1, 0, 1}, so that the machine writes σ to the square under the head,
updates its internal state to q, and moves in direction d. We can express the new distribution as
a sum over the outcomes of these samples, weighted by the probability of that sample coming
up (using the initial distribution).

More precisely, we have presented the smooth relaxation map ∆stepM as the restriction of
a polynomial:

∆stepM : (RΣ)Z × RQ −→ (RΣ)Z × RQ. (4)

Define P = (Σ×Q)3 to be the collection of possible outcomes for the samples described above.
Examining (2) and (3), we can rewrite our polynomial as:

∆stepM =
∑
σw,qw

∑
σs,qs

∑
σd,qd

y0(σw)q(qw)y0(σs)q(qs)y0(σd)q(qd)fp, (5)

where (fp)p∈P is a family of polynomial functions (RΣ)Z ×RQ −→ (RΣ)Z ×RQ, indexed by the
possible samples p = (σw, σs, σd, qw, qs, qd). So far all we have done to the first equation is to
add in a sum over σs, qs, and the terms y0(σs)q(qs) to each summand (likewise for the second).
Each component of fp is simple: it is either 0, 1 or yi(σ) for some (σ, i) ∈ Σ× Z. Specifically, if
for σ ∈ Σ, i ∈ Z and q ∈ Q we write πσ,i and πq for the projections out of the codomain of (4),
we have the formulae (with d = δ3(σd, qd)):

πσ,i ◦ fp =


0 i = −d, σ 6= δ1(σw, qw)

1 i = −d, σ = δ1(σw, qw)

yi+d(σ) i 6= −d

πq ◦ fp =

{
0 q 6= δ2(σs, qs)

1 q = δ2(σs, qs)

We can view (5) as a sum over “paths” p ∈ P , where each summand is the probability of
executing that path (taking the given sample p), multiplied by a polynomial version of the
classical update rules for a TM. The important fact here is that each summand is a monomial,
and the same goes for ∆steptM (though the summands are not as easily interpreted).

Remark 2.10 (Why this smooth relaxation?). With this intuitive understanding of our formulae
in hand, the question remains as to why we should care about the naive Bayesian observer. We
will answer this by contrasting the method used here with a more obvious, but less useful,
version, which we will refer to as the standard probability approach. For further analysis see
[CM19, §5].

Speaking loosely, we define our alternate smooth relaxation ∆stdstepM by replacing our
conditionally independent samples (as in the previous remark), with samples according to the
usual rules of Bayesian probability. Letting the possible states of M be Z := ΣZ,�×Q, we define
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for z ∈ ∆Z:
∆stdstepM (z) =

∑
z∈Z

z(z) · stepM (z).

This is more intuitive: the state after one time step is the superposition of all of the classical
update rules, weighted by the probability M is in that state. However, this version of smooth
relaxation is less well adapted to learning, or statistical inference, than the process we have
outlined in this section.

Suppose our initial belief is z =
(
(yi)i∈Z, q) ∈ Z, and we want to vary z so there is a small

chance that the state is q′. Then we might set z′ =
(
(yi)i∈Z, (1 − ε) · q + ε · q′

)
. If we use the

standard probabilistic extension to update the belief z′, then after one time step we have:

∆stdstepM (z′) = (1− ε) · stepM
(
(yi)i∈Z, q

)
+ ε · stepM

(
(yi)i∈Z, q

′). (6)

As such, the standard probabilistic extension doesn’t offer any incremental benefit over com-
puting the evolution of the Turing Machine over all possible states. On the other hand, in the
naive approach we take multiple independent samples from the state distribution, so the new
state isn’t a straightforward superposition. The consequence of this is that it is useful to vary
parts of the belief in question, say corresponding to different tape squares, independently.

The perspective of [CM19] validates this intuition. In [CM20] the smooth relaxation is
derived by encoding Turing Machines as proofs in Linear Logic, and applying a certain semantics
of Linear Logic to these proofs. The details will not be important for us here, but this embedding
induces more structure than the smooth relaxation alone. Namely, it makes sense to take
algebraic derivatives of proofs, and as such of Turing Machines, using the structure of Differential
Linear Logic [Ehr16].

In the situation we have been describing, we will learn programs by nudging them slightly
towards the behaviour we want. These derivatives correspond, under semantics, to precisely this
kind of small variation in the smooth relaxation.

There are two main practical consequences of this. The first is that computation using the
standard approach is far more time-intensive — each state in the superposition of (6) must be
computed individually. By contrast, the learning process using the naive probabilistic extension
is polynomial time [CM19, Proposition 7.15] (specifically, evaluation of the loss, corresponding
to the KL divergence of Definition 4.9, can be done in polynomial time). Secondly, as in Remark
7.8 of loc. cit., if we treat the tape squares as independent, it makes sense to ask how much a
certain “bit” (if Σ = {0, 1}) is used. The naive probabilistic extension assigns a higher degree
(in the polynomial) to bits that are used more frequently, which implies that (as described in
Sections 7.2 and 7.3 of loc. cit.) gradient descent on the loss will change more frequently used
bits more quickly. We can interpret this as showing that a learning machine will tend to look
for a minimal explanation of an observation.

Example 2.11. We can now calculate the polynomials associated to the smooth relaxation of
the Shift Machine described in Example 2.2. Suppose an observer to the running of our Shift
Machine M is initially uncertain about whether the counter, under the head, is 0 or 2, and
whether the first tape square to the right is A or B. This corresponds, say, to the distributions:

νcounter = (1− h) · 0 + h · 2
νstring = (1− k) ·B + k ·A

(7)
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for (h, k) ∈ [0, 1]2. If the rest of the tape is known for sure, then we can represent the situation
as:

. . . x−1 νcounter νstring x2 x3 . . .

for some xi ∈ Σ. This corresponds to the state of belief ((yi)i∈Z,q), with q = 1 · init and:

yi =


νcounter i = 0

νstring i = 1

1 · xi else

Using the smooth relaxation, we can update this state of belief as the machine runs. Let
us assume for simplicity that xi = � for i 6∈ [0, 3]. The only non-zero summands in (3) are
(σs, qs) ∈ {(0, init), (2, init)}, so after one time step the state distribution is:

q(1) = (1− h) · halt + h · goR.

Corresponding to the same two possibilities, the machine will either write 0 or 1 to the tape,
and will stay still or move right. This gives us the following:

y−1(1) = (1− h) ·�+ h(1− h) · 0 + h2 · 1
y0(1) = (1− h)2 · 0 + h(1− h) · 1 + h · νstring

y1(1) = (1− h) · νstring + h · x2

y2(1) = (1− h) · x2 + h · x3

y3(1) = (1− h) · x3 + h ·�

We will do one more time step. For n ∈ {0, 1} and σ = {A,B}, we have possible samples:

(σ, q) ∈ {(n,halt), (σ, halt), (n, goR), (σ, goR)}.

In all but the last case, the machine will halt, meaning the state distribution is:

q(2) = (1− h2) · halt + h2 · goR.

In all cases, the write symbol is the same as the read symbol, so we get for the tape:

y−2(1) = (1− h3) ·�+ h3(1− h) · 0 + h4 · 1
y−1(1) = (1− h)(1− h2) ·�+ h(1 + 2h)(1− h)2 · 0 + h2(1 + 2h)(1− h) · 1 + h3 · νstring

y0(1) = (1− h)2(1− h2) · 0 + h(1− h)(1− h2) · 1 + h(1− h)(1 + 2h) · νstring + h3 · x2

y1(1) = (1− h)(1− h2) · νstring + h(1 + 2h)(1− h) · x2 + h3 · x3

y2(1) = (1− h)(1− h2) · x2 + h(1 + 2h)(1− h) · x3 + h3 ·�
y3(1) = (1− h)(1− h2) · x3 + (h+ h2 − h3) ·�

We can read this as a superposition of two copies of yi(1) shifted according to the move direction
d = (1− h2) · 0 + h2 · 1, that is yi(2) = (1− h2) · yi(1) + h2yi+1(1). In the case that i ∈ {−1, 0}
this relies on the fact that the write symbol is identical to the read symbol.
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Remark 2.12. Observe that, in Definition 2.3, we did not place any constraints on the smooth
relaxation of U . As described in [Xu21, §3.2], there exists for any choice of Σ and Q a pseudo-
UTM which, initialised as described but allowing x ∈ (∆Σ)Z,�, simulates the smooth relaxation
of the coded machine. More specifically, there is an increasing sequence 0 = T0 < T1 < . . . of
natural numbers, such that

πtape
U ∆stepTnU (w + x, init) = ∆stepnM (x, halt).

Better, we can allow the sequence w to contain uncertainty. In this case any w ∈ (∆Σ ×
∆Q×∆{−1, 0, 1})W lets U simulate the “smooth” Turing Machine with generalised transition
function:

δ : Σ×Q→ ∆Σ×∆Q×∆{−1, 0, 1},

defined in the same way.
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3 Singular Learning

In this section we give a brief overview of Sumio Watanabe’s theory of singular learning. Section 4
will state the problem of program synthesis on a Turing Machine in the language of statistical
learning, in order to apply these techniques. The key takeaways are the Bayesian posterior and
Kullback-Leibler divergence, which determine the model we select, and the free energy, which
helps us to estimate the generalisation error.

3.1 Definitions

This discussion follows §1.1-3 of [Wat09].

Setup 3.1. We take as given a probability space (Ω,B, P ), and X : Ω→ X a random variable
subject to probability distribution q(x)dx. In this note the state space X will usually be discrete,
ie X = [k] := {1, . . . , k}, but to match Watanabe we might as well embed X ⊂ RN as a
collection of discrete points. A model p(x|w) is a family of probability distributions p(x|w)dx
on Ω, parametrised by codes w ∈ W — here we will take W ⊂ Rd compact. We consider also a
prior distribution ϕ(w)dw on the space of codes W. The theory of singular learning is centred
around such triples (q, p, ϕ).

We will assume that the collection of solutions W0 = {w ∈ W | p(x|w)dx = q(x)dx} is non-
empty, but in general we will not have access to the true distribution q. As such, we consider
a family Dn = {X1, . . . , Xn} of independent samples subject to q, and consider the problem of
choosing an estimate p∗(x) of q based on this family.

Watanabe considers two methods of estimation, both of which rely on the following definition.
With β = 1, this is exactly Bayes’ rule [Mac19, §2.1-2]: the term

∏n
i=1 p(Xi|w) is simply p(Dn|w).

Definition 3.2. The (generalised) Bayesian posterior distribution pβ(w|Dn) with inverse tem-
perature β > 0 is:

pβ(w|Dn) =
1

Zn
ϕ(w)

n∏
i=1

p(Xi|w)β,

where Zn is a normalisation constant, namely:

Zn =

∫
dw ϕ(w)

n∏
i=1

p(Xi|w)β.

We refer to Zn as the partition function.
We denote expectation with respect to pβ by Eβw[−]. Note that any such expectation is still

a random variable, via its dependence on Dn.

The posterior concentrates near w ∈ W which assign higher probability to the samples Dn.
Using this, we have two main choices for p∗.

Definition 3.3. Suppose given a triple (q, p, ϕ), and samples Dn. The Bayes estimation is:

p∗(x) = Eβw
[
p(x|w)

]
,

and the Gibbs estimation is p∗(x) = p(x|w∗), where w∗ is drawn randomly from the distribution
pβ(w|Dn).
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Remark 3.4. It is useful to see how these definitions might play out in practice. For the purpose
of intuition, we will roughly outline how Hamiltonian Monte Carlo (HMC) might be used to
sample from the Bayesian posterior, in order to find an estimate for the true distribution. For
a proper exegesis see [BGJM11].

As mentioned, we cannot assume that the true distribution is known. As such, the “student
machine” is provided with n samples from q by some oracle, or “teacher machine”. The collection
Dn defines a distribution pβ(w|Dn) on the parameter space W, by Definition 3.2. In order to
estimate a true parameter w ∈ W0, we sample from pβ(w|Dn) using HMC. This process simulates
a particle moving around W according to Hamiltonian dynamics, where the potential energy
function U(w) is smaller in areas assigned larger probability by the posterior. This generates a
sequence of samples, which will tend to approach areas where pβ(w|Dn) is concentrated. This
is schematically represented in Figure 3.

Figure 3: Schematic drawing of Hamiltonian Monte Carlo. The initial guess is in the top right,
and the learning machine refines this towards the areas where the posterior is concentrated,
represented by darker green.

The most important measure of difference between the true distribution q and an estimate
p∗ is the Kullback-Leibler (KL) function [Wat09, Section 1.1.2].

Definition 3.5. Given two distributions q and p, the Kullback-Leibler divergence is:

DKL(q || p) =

∫
dx q(x) log

q(x)

p(x)
.

We note that DKL(q || p) ≥ 0, with equality if and only if q = p [Wat09, Theorem 1.1].

Starting with this definition, we define three measures of how well p(x|w) approximates q.
As usual we consider a collection of samples Dn = {X1, . . . , Xn}.

Definition 3.6. The log-loss function Ln(w), KL divergence K and empirical KL divergence
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Kn are respectively defined as:

Ln(w) = − 1

n

n∑
i=1

log p(Xi|w)

K(w) =

∫
dx q(x) log

q(x)

p(x|w)

Kn(w) =
1

n

n∑
i=1

log
q(Xi)

p(Xi|w)

We note that Kn(w) = −Sn + Ln(w), where the empirical entropy

Sn = − 1

n

n∑
i=1

log q(Xi)

is independent of w. Also, it is clear that EX [Kn(w)] = K(w), where the expectation is over
our samples Dn.

With this in hand, we can restate our definition of the posterior in a way which draws out a
productive analogy with statistical mechanics, where codes are equivalent to states of a physical
system [Bal97]. Namely,

pβ(w|Dn) =
1

Zn
ϕ(w)e−nβLn(w) =

1

Z0
n

ϕ(w)e−nβKn(w).

In the second equation we use the reduced partition function Z0
n = enSnZn. We will discuss this

in more detail in Appendix A, but for the moment it suffices to observe that this is the form
taken by the Maxwell-Boltzmann distribution, with nKn(w) taking the place of the Hamiltonian
(total energy) of a state. This motivates us to consider, as in [Wat20], the free energy as follows.

Definition 3.7. The free energy of a triple (q, p, ϕ) with samples Dn is:

Fn = − logZn = − log

∫
dw ϕ(w)

n∏
i=1

p(Xi|w)β.

Likewise, the reduced free energy is:

F 0
n = − logZ0

n = − log

∫
dw ϕ(w)e−nβKn(w).

In [Wat09], Watanabe focusses in large part on the following four random variables, each of
which measures the accuracy of either the Bayes or Gibbs estimation. We note that the Gibbs
estimate involves a random choice of w∗, so we examine the expectation of the error for varying
choices.

Definition 3.8. For a particular estimate p∗ of q, the generalisation error is DKL(q || p∗). In
this context we have two:

Bg = EX

[
log

q(X)

Eβw
[
p(Xi|w)

]]
Gg = Eβw[K(w)]
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The training error relies on the particular collection of samples. Namely:

Bt =
1

n

n∑
i=1

log
q(Xi)

Eβw
[
p(Xi|w)

]
Gt = Eβw[Kn(w)]

We will not examine these errors in detail, but we observe the following fact as motivation
for our interest in the free energy. In what follows, the unlabelled expectations are over the
samples Dn = {X1, . . . , Xn}.

Theorem ([Wat09, Theorem 1.2]). For n > 0 and β = 1, we have:

Bg = EXn+1 [F 0
n+1]− F 0

n ,

E[Bg] = E[F 0
n+1]− E[F 0

n ].

That is, we can study how F 0
n grows as a function of n as a proxy for how well our model

p(x|w) generalises.
In a more qualitative way, we can also consider a kind of local free energy. Again, in

Appendix A, we will see that this mirrors the thermodynamic concept of coarse graining. For
w ∈ W, and Nw ⊂ W some neighbourhood, we can study integrals of the form:

F (Nw) = − log

∫
Nw

dw ϕ(w)e−nβKn(w).

If a certain value w ∈ W is assigned large probability (density) by the posterior, then F (Nw)
will be comparatively small. In all but the most trivial cases (see [Wat07]) the set of solutions
W0 ⊂ W will contain more than one point, so it is natural to ask which of the solutions will
be favoured for large n. As in thermodynamics, we expect solutions with smaller (local) free
energy to be selected with higher probability.

As Watanabe remarks in §9.4 of [Wat18], to calculate asymptotic expansions, we may con-
sider instead the expected free energy F̄ , which agrees with F 0

n up to terms order O(1).

F̄ (n) := − log

∫
dw ϕ(w)e−nβE[Kn(w)] = − log

∫
dw ϕ(w)e−nβK(w).

3.2 Asymptotic Methods

Motivated by the previous section, we now discuss asymptotic expansions as n→∞ for Laplace
integrals, of the form:

Z(n) =

∫
W
dw |ϕ(w)|e−n|f(w)|.

Throughout, ϕ(w) and f(w) will be real analytic, and W ⊂ Rd will be semianalytic, ie:

W = {w ∈ Rd | g1(w) ≥ 0, . . . , gl(w) ≥ 0},

for some g1, . . . , gl real analytic. With K in place of |f(w)|, the logarithm of such expansions
will give us information about the expected free energy discussed in the previous section.
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It turns out there are constants C, λ and θ such that the leading term is:

Z(n) ≈ Cn−λ(log n)θ−1, n→∞.

Here, as in [Wat09, Theorem 4.7], the asymptotic equivalence is in the sense that, for some
constants a1, a2 > 0 we have for any n > 1:

a1
(log n)θ−1

nλ
< Z(n) < a1

(log n)θ−1

nλ
.

After taking the logarithm, we write this as:

logZ(n) = −λ log(n) + (θ − 1) log log(n) +O(1). (8)

Our task, then, is to calculate the constants (λ, θ). By Mellin transform techniques, these
constants are realised as the poles of a certain zeta function, which are then, theoretically at
least, calculable by resolution of singularities. This is, basically, the content of [Wat09, Main
Formula II].

Definition 3.9. Suppose given a compact semi-analytic set W ⊂ Rd, and functions f, ϕ real
analytic on a neighbourhood of W. If f(w) = 0 for some w ∈ W, then we define the real log
canonical threshold (RLCT) as RLCTW(f ;ϕ) = (λ, θ), where λ and θ are the coefficients in the
asymptotic expansion of Z(n), as above. If |f(w)| > 0 everywhere inW, we set RLCTW(f ;ϕ) =
(∞,−). We order pairs (λ1, θ1) < (λ2, θ2) if λ1 < λ2, or λ1 = λ2 and θ1 > θ2. That is, such that
for sufficiently large n:

λ1 log n− θ1 log logn < λ2 log n− θ2 log log n.

The RLCT, in [Lin11] and elsewhere, is defined in terms of the following function. To prove
the statements in the lemma, one needs resolution of singularities (Theorem 3.12), but we state
it now anyway in order to motivate the statements that follow.

Lemma 3.10. Given functions f, ϕ on W as above, then the following zeta function may be
analytically continued to a meromorphic function of z ∈ C:

ζ(z) =

∫
W
dw |f(w)|−z|ϕ(w)|.

Its poles are isolated positive rational numbers, and RLCTW(f ;ϕ) = (λ, θ) is the smallest such
pole, and its multiplicity.

Proof. The first statement is Corollary 3.10 in [Lin11] — and remains true if ϕ is the product
of an analytic function and a smooth, positive function (in Lin’s terms, ϕ is nearly analytic).
The latter is the definition of the RLCT in [Lin11], and the equivalence of the two definitions
follows from his Theorem 3.16.

We first observe the following special case, where W = Rd≥0 is the positive orthant, and f, ϕ
are monomials. The process of resolution of singularities allows us to reduce the general case
to this one. It should be remarked that this story, where resolution of singularities is a mere
computational technique, misses the significance of the process a little. Watanabe’s book centres
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on extending statistical learning theory to the singular case, and the conceptual core of that
process is the geometric process of resolution of singularities. In short, the RLCT is a measure
of how singular the set W0 ⊂ W is (see [Mus11] for a discussion of the complex case). It is a
profound observation that the geometry of the analytic function K controls the learning process
in a fundamental way.

Proposition 3.11. Let w = (w1, . . . , wd) be coordinates on Rd and let κ = (κ1, . . . , κd) and
τ = (τ1, . . . , τd) be vectors of non-negative integers. Set wκ = wκ11 . . . wκdd , wτ = wτ11 . . . wτdd ,
and define:

W = Rd≥0 := {w ∈ Rd | ∀i wi ≥ 0}.

Then for a compactly supported smooth function φ(w), with φ(0) > 0, we have

RLCTW(wκ; wτφ(w)) = (λ, θ),

where we have set,

λ = min
1≤i≤d

{
τi + 1

κi

}
,

and θ is the number of i for which this minimum is attained.

Proof. See [Lin11, Proposition 3.7], with more detail in [AVGZ85, Lemma 7.3]. For φ(w) = 1,
we can integrate our zeta function explicitly (taking w ∈ [0,K]d as φ is in fact compactly
supported):

ζ(z) =

∫
W
dw wτ−zκ

=
d∏
i=1

∫ K

0
dwwτi−zκi

=

d∏
i=1

K1+τi−zκi

1 + τi − zκi
.

In this situation we have poles for 1 + τi − zκi = 0, so the statement is clear. The general case
follows by expanding φ into an N th order Taylor series and remainder. The (non-zero) constant
term contributes the smallest pole, and by increasing N , the term involving the remainder can
be made analytic.

With this result in mind, it is clear that the following theorem, originally due to Hironaka,
is useful. Following Watanabe [Wat09, Theorem 2.3] and Lin [Lin11, Theorem 3.3], we state the
version used by Atiyah in [Ati70]. For definitions of analytic spaces and manifolds, we refer to
§0.1 of [Hir64], the original paper on this topic. The theorem is algorithmic (if labour-intensive),
and proceeds by a series of transformations called blow-ups, which are defined and explained in
§3.5 of [Wat09]. In §3.6 of the same, Watanabe provides some concrete examples.

Theorem 3.12 (Resolution of Singularities). Let f be a non-constant real analytic function on
a neighbourhood of the origin in Rd, with f(0) = 0. Then there exists a triple (M,W, ρ) where:

• W ⊂ Rd is open, and contains 0,
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• M is a d-dimensional real analytic manifold,

• ρ : M →W is a real analytic map.

The following also hold.

• ρ is proper, the inverse image of a compact set is compact.

• ρ is a real analytic isomorphism away from VW (f). (That is, M\VM (f◦ρ) −→W \VW (f).)

• Around any point y ∈ VM (f ◦ ρ), there are local coordinates u = (u1, . . . , ud) on some
neighbourhood My, vectors κ and τ of non-negative integers, and strictly positive, real
analytic functions a and h of u such that:

f ◦ ρ(u) = a(u)uκ,

and the Jacobian determinant of ρ:

|ρ′(u)| = h(u)uτ .

Corollary 3.13. Given non-constant analytic functions f1, . . . , fl in a neighbourhood of 0 ∈ Rd,
all vanishing at the origin, there is a triple (M,W, ρ) as above which desingularises each fi.

Proof. See [Wat09, Theorem 2.8]. Apply the original form of the Theorem to the product
f1(w) · · · fl(w), then observe [Wat09, Theorem 2.7] that the resulting triple desingularises each
fi.

Now we want to apply this theorem to calculate RLCTs: in short, it works as follows
[Lin11, Lemma 3.8]. The statement is local, so we examine a particular point w ∈ VW(f),
and desingularise f at w, using the theorem. We may also assume that the triple (M,W, ρ)
desingularises ϕ and each of the analytic functions g1, . . . , gl (if they vanish at w) which define
W ⊂ Rd. We can also show that the neighbourhood W can be shrunk to Nw such that ρ−1(Nw)
is a union of coordinate neighbourhoods My as in the theorem. In each of these coordinates,
the situation is as in Proposition 3.11: since the constraints are monomial, My = My ∩ ρ−1W
is a union of orthants, and the functions f ◦ ρ, ϕ ◦ ρ are of the correct form. Using a partition
of unity {σy} subordinate to {My}, we can write the zeta function as:

ζ(z) =
∑
y

∫
My

du |f ◦ ρ(u)|−z|ϕ ◦ ρ(u)||φ ◦ ρ(u)|σy(u).

The RLCT (λ, θ) associated to ζ is simply the smallest such pair (using the ordering of Defini-
tion 3.9) associated to one of the integrals:

ζy(z) =

∫
My

du |f ◦ ρ(u)|−z|ϕ ◦ ρ(u)||φ ◦ ρ(u)|σy(u),

which we may calculate as in the proposition. In particular, λ and θ are positive rational
numbers, independent of the function φ. What we have shown is the following.
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Lemma 3.14. Around any w ∈ W such that f(w) = 0, there is a neighbourhood Nw ⊂ W such
that for all smooth functions φ with φ(w) > 0 we have:

RLCTNw(f ;ϕφ) = RLCTNw(f ;ϕ).

These RLCTs are positive rational numbers.

This may seem to have achieved little, but the independence of φ allows us to express the
“global” RLCTW(f ;ϕ) in terms of the “local” RLCTNw(f ;ϕ): this is [Lin11, Proposition 3.9].
We know that the large-n Laplace integral Z(n) is controlled by W0 = V(f), as everywhere else
the integrand is arbitrarily small. The intuitive content of this lemma is that 1) we can perform
the integrals of interest in small neighbourhoods of solutions, and ignore a non-vanishing prior,
and 2) Z(n) is in fact controlled by the “deepest” [Lin11, §3.2.5] of these singularities, which
minimise the local RLCT.

Lemma 3.15. For f, ϕ, φ functions on W ⊂ Rd, with the usual assumptions:

RLCTW(f ;ϕφ) = min
w∈VW (f)

RLCTNw(f ;ϕ).

Proof. Noting that W is compact, pick a finite subcover {Nw | w ∈ S} among the neighbour-
hoods Nw defined by Lemma 3.14. If w 6∈ VW(f), then choose Nw small enough that f > 0, so
that RLCTNw(f ;ϕφ) = (∞,−). With a partition of unity {σw}w∈S subordinate to this cover,
we can rewrite the zeta function in question as:

ζ(z) =
∑
w∈S

∫
Nw

|f(v)|−z|ϕ(v)φ(v)|σw(v)dv.

Noting that we can choose σw(w) > 0, this implies:

RLCTW(f ;ϕφ) = min
w∈S

RLCTNw(f ;ϕφσw) = min
w∈S

RLCTNw(f ;ϕ).

The minimum exists as S is finite. To finish, we observe that for any w ∈ W, the zeta function
defined by Nw cannot have poles that are not also present in ζ. As such,

RLCTW(f ;ϕφ) ≤ RLCTNw(f ;ϕφ) = RLCTNw(f ;ϕ).

We take the minimum over w ∈ VW(f), as the other RLCTs are infinite.

In summary, the large n asymptotics of Laplace-type integrals, of which our free energy is
one, are controlled by the RLCT, which can be calculated as the poles of a certain zeta function.
By resolution of singularities, these poles are at positive rational numbers, and may be calculated
algorithmically.

3.3 Effective Parameters

Before we move on to the methods that we will use to calculate the RLCT, we develop in
this section an intuition for its value as a measure of the effective number of parameters in a
neighbourhood of a particular solution. The ideas here are contained in [Wat09, §7.1], and the
discussion follows [Mur20b].
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Let us consider a singular learning triple (q, p, ϕ), with KL divergence K :W → R. Watan-
abe observes the following fact in [Wat09, Theorem 7.1 (4)]. Supposing that the set of true
parameters is non-empty, and defining the following volume function:

V (t) =

∫
K(w)<t

dw ϕ(w),

we have that for arbitrary a ∈ (0, 1):

λ = lim
t→0

log[V (at)/V (t)]

log a
, (9)

where (λ, θ) = RLCTW(K;ϕ). This expresses λ as a measure of dimension. The function V (t)
measures the size of the set of “almost true parameters”, and the limit of (9) measures a scaling
exponent with decreasing “radius” t.

More precisely, suppose that 0 ∈ W is a solution, and assume that for some coordinates
w1, . . . , wd on a neighbourhood N of 0, we can write the KL divergence as:

K(w) =
d′∑
i=1

w2
i , (10)

for some d′ ≤ d. Then we can write (for the right choice of neighbourhood N):

{w ∈ N | K(w) < t} = Bd′

t1/2
(0)× [−ε, ε]d−d′ ,

where Bd′

t1/2
(0) is a d′-ball of radius t1/2. For a uniform prior, we have:

V (t) ∝ td′/2,

so the local RLCT around 0 is:

log[V (at)/V (t)]

log a
=

log ad
′/2

log a
=
d′

2
.

(This fact is also easily calculated using the arguments of Lemma 3.21, and the fact that
RLCTN (w2

i , 1) = 1
2 .) In this case,

W0 = {w ∈ W | K(w) = 0} = {0} × [−ε, ε]d−d′ ,

so d′ is the codimension ofW0. Therefore, around our solution there are 2λ coordinate directions
which vary K: we say that our model has 2λ effective parameters.

Of course, we can’t always write K in the form of (10), and as a result 2λ may not even be
an integer. That being said, if W0 = {w | K(w) = 0} is a (d − d′)-dimensional submanifold of
W around w0, then by [Wat09, Theorem 7.3]:

λ ≤ d′

2
. (11)

Observe that for any analytic K defined and positive in an open neighbourhood of 0, the
Taylor series of K must only have quadratic terms and above. As such, (10) is the sharpest way
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Figure 4: A plot of e1−x4−y2 . The model is more weakly coupled to the value of x, than to y.

K can vary from 0, in the sense that xn = o(x2) as x → 0 for n > 2. This explains the upper
bound of (11). If K is comparable to a function of the form:

wm1
1 + · · ·+ w

md′
d′ ,

for mi ≥ 2, then

RLCTN (K, 1) =
d′∑
i=1

1

mi
.

For this reason, we can interpret the quantity 2λ as a more refined measure than simply counting
the normal directions toW0. If the parameter wi appears with an index larger than 2, the model
is more weakly coupled to its value, so it “effectively” accounts for less than one parameter
(Figure 4).

As observed in [Wat13], this subsumes the Bayesian Information Criterion, which only
applies to regular statistical models. In any case, if w0 minimises the loss, the free energy is
asymptotically

Fn = nLn(w0) + λ log n+O(log log n).

(This extends (8) to the case where w0 such that K(w0) = 0 might not exist.) Then, to choose
between statistical models p with varying minimal loss Ln(w0) and numbers of parameters, we
choose the model which minimises this quantity (appealing to [Wat09, Theorem 1.2]). In the
regular case, this amounts to minimising the value of:

k

2
log(n) + nLn(w0),

where k is the number of parameters. This is exactly the Bayesian Information Criterion,
introduced by Gideon Schwartz in [Sch78].
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3.4 Calculating RLCTs

It is often not feasible to calculate the resolution of singularities for a general function f . We
are interested in the asymptotics of the expected free energy:

F̄ (n) := − log

∫
dw ϕ(w)e−nβE[Kn(w)] = − log

∫
dw ϕ(w)e−nβK(w).

The function K (which will play the role of the phase f) is complicated, so we will introduce
methods which reduce the complexity, following mostly §4 of [Lin11]. In particular, we will work
on the tacit assumption that the model p is not overly complicated — in the case of program
synthesis on a Turing Machine it will be a polynomial.

Lemma 3.16. Suppose given pairs (f1, ϕ1) and (f2, ϕ2) of functions on W. If for every w ∈ W
and some constants c, d:

|f1(w)| ≤ c|f2(w)| and |ϕ1(w)| ≥ d|ϕ2(w)|,

then with RLCTW(fi;ϕi) =: (λi, θi),

(λ1, θ1) ≤ (λ2, θ2),

using the usual ordering of Definition 3.9.

Proof. This is stated without proof in [Wat09, Remark 7.2]. If we define the Laplace integrals,
for i ∈ {1, 2}:

Zi(n) =

∫
W

dw|ϕi(w)|e−n|fi(w)|,

then as usual we have the asymptotic equivalences, as n→∞:

Zi(n) ≈ Cin−λi(log n)θi−1.

By monotonicity, we have:

Z1(n) ≥
∫
W

dw d|ϕ2(w)|e−nc|f2(w)| = d · Z2(cn)

Taking logarithms, we have for sufficiently large n:

−λ1 log(n) + (θ1 − 1) log log(n) ≥ −λ2 log(n) + (θ2 − 1) log log(n),

as the constants get absorbed in the O(1) term.

Corollary 3.17. If there are positive constants c1 and c2 such that c1|f1| ≤ |f2| ≤ c2|f1|, then

RLCTW(f1;ϕ) = RLCTW(f2;ϕ).

We will refer to such functions [Lin11, §3.2.3] as comparable.

Using this, Lin demonstrates that the RLCT is, suitably interpreted, a property of the ideal
generated by the phase function, inside the ring of real analytic functions on W.
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Definition 3.18. For a subset W ⊂ Rd, AW is the ring of real analytic functions on W. For a
(finitely-generated) ideal:

〈f1, . . . , fr〉 = I ⊂ AW ,

we define RLCTW(I;ϕ), to be RLCTW(f ;ϕ), where:

f(w) =
r∑
i=1

fi(w)2.

The next few results collect properties of this definition, as taken from [Lin11, §4.1]. Cau-
tion: this definition differs by a factor of two from the definition in [Lin11, Proposition 4.3]. As
a result, for f ∈ AW , and 〈f〉 the ideal it generates:

RLCTW(〈f〉;ϕ) = (λ, θ)

RLCTW(f ;ϕ) = (2λ, θ)
(12)

as the first equation is associated to the zeta function:

ζ(z) =

∫
W
dw |f(w)2|−z|ϕ(w)| =

∫
W
dw |f(w)|−2z|ϕ(w)|.

We use this convention because, for our purposes, the RLCT of an ideal is interesting because
of Lemma 3.22, which is easier to state in this way.

Lemma 3.19. The RLCT of a finitely generated ideal I is independent of the chosen set of
generators.

Proof. This is [Lin11, Proposition 4.3]. In brief, if 〈f1, . . . , fr〉 = 〈g1, . . . , gs〉, then for any j,
there are functions h1, . . . , hr ∈ AW such that:

g2
j = (h1f1 + · · ·+ hrfr)

2 ≤ (h2
1 + · · ·+ h2

r)(f
2
1 + · · ·+ f2

r ).

Using that W is compact, this implies that there is c > 0 such that:

s∑
j=1

g2
j ≤ c

r∑
i=1

f2
i .

Corollary 3.20. If I ⊂ J then RLCTW(I;ϕ) ≤ RLCTW(J ;ϕ).

Proof. If I = 〈f1, . . . , fn〉 ⊂ J = 〈g1, . . . , gm〉, then we might as well extend the generators of J
to be 〈f1, . . . , fn, g1, . . . , gm〉. Then clearly,

n∑
i=1

f2
i ≤

n∑
i=1

f2
i +

m∑
j=1

g2
j ,

so the result follows from Lemma 3.16.
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In many ways, the RLCT of an ideal is easier to apprehend. The following result allows us,
in certain cases, to break calculations down into smaller units.

Lemma 3.21. Suppose we can write W = W1 ×W2, for Wi compact and semianalytic. We
can view AWi ⊂ AW by composing with projections. Then for Ji ⊂ AWi ideals, and writing
(λi, θi) = RLCTWi(Ji;ϕ), we have the formulae:

RLCTW(J1 + J2;ϕ) = (λ1 + λ2, θ1 + θ2 − 1)

RLCTW(J1J2;ϕ) =


(λ1, θ1) λ1 < λ2

(λ2, θ2) λ1 > λ2

(λ1, θ1 + θ2) λ1 = λ2

Proof. See [Lin11, Proposition 4.5]. The first follows by examining the asymptotic expansion of
the associated Laplace integrals, and the second by calculating the poles of the zeta functions.

The following result links the RLCT of a function (g ◦ f in this case) to the RLCT of a
particular ideal — it will allow us to calculate RLCTW(K;ϕ) in many cases, without having to
examine the logarithms in K. This technique applies to what Lin calls regularly parametrised
models, as in [Lin11, Theorem 1.11].

Lemma 3.22. Suppose that W ⊂ Rd and W ′ ⊂ Rd′ are compact and semi-analytic, and
f = (f1, . . . , fd′) : W → W ′ and g : W ′ → R are real analytic. Pick ŵ ∈ W, set f̂ = f(ŵ), and
let Nŵ be the neighbourhood defined by Lemma 3.14. Then if g(f̂) = 0, ∇g(f̂) = 0 and the
Hessian ∇2g(f̂) is positive definite, then:

RLCTNŵ
(g ◦ f ;ϕ) = RLCTNŵ

(〈f1 − f̂1, . . . , fd′ − f̂d′〉;ϕ).

Proof. See [Lin11, Proposition 4.4]. The lemma follows from the fact that, in a small enough
neighbourhood of f̂ , g is comparable (in the sense of Corollary 3.17) to a sum of squares:

(u1 − f̂1)2 + · · ·+ (ud′ − f̂d′)2,

where u1, . . . , ud′ are coordinates onW ′. The right-hand side is exactly the RLCT of f composed
with such a sum of squares.

To illustrate these techniques, we calculate an example RLCT, which we will use in Exam-
ple 4.28.

Example 3.23. Let W = [0, 1]2, f(x, y) = x3 + y and set ϕ = 1. The Laplace integral in this
case is

Z(n) =

∫
W
dxdy e−n(x3+y).

By Lemma 3.15 the first order asymptotics of Z only depend on a neighbourhood of the origin,
so we might as well extend the domain to R2

≥0, in which case we can evaluate explicitly:∫ ∞
0

∫ ∞
0

dxdy e−n(x3+y) =

∫ ∞
0

dx e−nx
3 ·
∫ ∞

0
dy e−ny = n−4/3

∫ ∞
0

du e−u
3
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As such, we can read off RLCTW(f ; 1) = (4/3, 1). On the other hand, we can examine the zeta
function by resolution of singularities: we need to resolve the boundary conditions x ≥ 0, y ≥ 0
as well as f . It turns out (a slight extension of [Lin12, Example 9.1]) that the manifold M can
be expressed as a union of four charts U1 ∪ U2 ∪ U3 ∪ U4, each isomorphic to R2, with the map
ρ :M→ R2 given by (in coordinates (xi, yi) on Ui):

ρ(x1, y1) = (x1y1, y1)

ρ(x2, y2) = (x2y2, x
2
2y

3
2)

ρ(x3, y3) = (x3, x
3
3y

2
2)

ρ(x4, y4) = (x4y4, x4y
2
4)

These formulae are derived by blowing up the origin in R2 three times, first in the original domain
then in any coordinate chart where V(f ◦ ρ) remains singular. Without going into details, each
blow-up produces two charts, which are related as follows:

R2 ←−



U1

V1 ←−


V2 ←−

U2

U3

U4

The integrand of the relevant zeta function is (x3 + y)−zdxdy, which in each of these coor-
dinates is (picking out the relevant factor for our calculation):

[y1(x3
1y

2
1 + 1)]−zy1dx1dy1 ∼ y1−z

1 dx1dy1

[x2
2y

3
2(x2 + 1)]−zx2

2y
3
2dx2dy2 ∼ x2−2z

2 y3−3z
2 dx2dy2

[x3
3(1 + y2

3)]−z2x3
3y3dx3dy3 ∼ x3−3z

3 y1−z
3 dx3dy3

[x4y
2
4(x2

4y4 + 1)]−zx4y
2
4dx4dy4 ∼ x1−z

4 y2−2z
4 dx4dy4

In the first case, we get an RLCT of (2, 1), in the second and third we get our expected minimum
value RLCTW(f ; 1) = (4/3, 1), and in the final case we get (3/2, 1).

Note that if 0 is not on the boundary, a simpler resolution of singularities works, viz:

ρ(u, v) = (v, u− v3).

In this case, the zeta function becomes |u|−zdudv integrated in an open neighbourhood of the
origin, so RLCTR2(f, 1) = (1, 1). If we try this in the case above, then we get:

ζ(z) =

∫ 1

0

∫ v3+1

v3
dudv u−z =

1

1− z

∫ 1

0
dv (v3 + 1)1−z − v3−3z,

and the apparent singularity at z = 1 is removable. The two regions of integration are illustrated
in Figure 5.
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Figure 5: The integration regions in the v − u plane, where the blue region is ρ−1
i (W). Case 1

is W = [0, 1]2, and Case 2 W = [−1, 1]2. In the latter case, we can shrink to the green region,
on which Proposition 3.11 applies. Plots throughout use Matplotlib [Hun07].
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4 Singular Learning on Turing Machines

We consider now a problem of general inductive inference on a Turing Machine, as in [CM19,
Setup 7.1]. We start with an observer uncertain about the initial contents of (part of) the tape
of a Turing Machine. The machine is run for some number of steps, and the contents of (some
subset) of the tape are read off. From this, the observer tries to infer the initial tape sequence.
This produces a singular learning triple in the sense of [Wat09] and Setup 3.1.

In the case that the machine is a UTM, our definition allows us to apply the results of
Section 3 to a problem of program synthesis. In particular, ifW parametrises possible programs,
the process of learning a program is controlled by the geometry of the KL divergence, an analytic
function

K :W −→ R.

To link this to algebraic geometry, we define in Section 4.4 an ideal of polynomials with the same
RLCT as K. Our definitions provide the geometric perspective on programs that was discussed
in the introduction.

4.1 Inference problems

We make small modifications to the setup of [CM19], in order to match with the formulation of
SLT, as in [CMW21]. Before defining our inference problems in full generality, let us examine
some special cases. Fix a Turing Machine M , and assume that a naive Bayesian observer is
told what is on the tape after t time steps. Assume also that the observer is told the initial
configuration, apart from the letter on square 0. Then, by varying w ∈ ∆Σ, the smooth
relaxation defines a polynomial function:

∆steptM : ∆Σ −→ (∆Σ)Z.

That is, given any belief w ∈ ∆Σ about the contents of tape square 0, we have a corresponding
belief for the contents of the tape after t steps. To invert this map is a problem of statistical
inference: the value w parametrises a family of distributions, and we seek to find the value(s)
w0 which correspond to the information in the true distribution (the tape configuration after
some time).

The example to hold in mind (which we will return to in Section 4.3) is that of a pseudo-
UTM U , as in Definition 2.3. Suppose we want to find a TM that computes a function f ,
which we specify as a collection of input/output pairs {(xi, yi)}. Rather than searching for the
“solution” TM itself, we search for a code, or program, w ∈ (ΣU )V , which specifies this TM in
the programming language of the UTM U . The situation is similar to above: we have partial
information about the tape configuration of U , given by the pairs (xi, yi), and finding a TM
to compute f is equivalent to finding a program, or code, w ∈ (ΣU )V which matches these
observations.

This suggests some natural extensions. We might want to restrict the behaviour of the TM
beyond requesting it compute a certain function. For example, we could place restrictions on
the state (at varying times), or fix the tape configuration at intermediate times, rather than only
fixing the halting distribution. Finally, we needn’t consider only “deterministic” problems, where
the final tape configuration is known for sure — rather, the “outputs” yi could be distributions
instead of sequences.
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In what follows, the set S := [Z∪ {state}]×N×ΣU,� parametrises all of the possible (types
of) constraints we could apply. The last two factors correspond to the time t and the input
x, and the first to applying a constraint either to tape square a ∈ Z, or to the state. That is,
elements are (a, t, x) ∈ Z×N×ΣU,�, corresponding to fixing tape square a at time t with input
x; or (state, t, x), which fixes the state at time t with input x. A weighting specifies which of
these constraints will be applied, and their relative importance. For convenience, we split up the
weighting — this will help us, say, if there is a single timeout for all inputs, or a fixed window
in which we check the output.

Definition 4.1. By a weighting, we mean a set U ⊂ Z, called the input window, and a distri-
bution s over S = [Z ∪ {state}]× N× ΣU,�, which we present as follows.

• A distribution s(x) over ΣU,�,

• A conditional distribution s(t|x) over N, and

• For each (t, x) ∈ N×ΣU,�, a pair (pt,x, λt,x), where p is a distribution over Z, and λ ∈ [0, 1].

The value λt,x controls the weighting on the state, where λt,x = 0 corresponds to s(state | t, x) =
1. For clarity, the weighting on an element z ∈ S is:

s(z) =

{
λt,x · pt,x(a)s(t|x)s(x), z = (a, t, x) ∈ Z× N× ΣU,�

(1− λt,x) · s(t|x)s(x), z = (state, t, x) ∈ {state} × N× ΣU,�

The support of a weighting (U, s) is the subset

S+(s) = {z ∈ S | s(z) > 0},

and the target window Yt,x for a pair (t, x) is

supp(pt,x) = {a ∈ Z | pt,x(a) 6= 0}.

We will parametrise programs using the probability simplices ∆Σ. However, we want to
limit the letters which can be used, which we think of as defining a syntax for the programming
language on the TM. The following definition is notation for a product of the simplices over this
limited alphabet. In the setup of Section 3, this definition will play the role of W.

Definition 4.2. Given a finite subset V ⊂ Z of tape squares, and a function c : V → P(Σ)
specifying the subset c(i) ⊂ Σ of allowed codes on tape square i, we define the code space:

C (V, c) =
∏
i∈V

∆c(i).

Definition 4.3. Given disjoint subsets U, V ⊂ Z, we define a sequence of distributions in
(∆Σ)Z,�, for x ∈ ΣU and w ∈ (∆Σ)V :

(x+ w)i =


xi i ∈ U
wi i ∈W
� otherwise
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Now we are ready for our definition of an inference problem. We have uncertainty on the tape
squares V , and apply constraints in the situations (input, time, tape square or state) defined
by the weighting (U, s). The state of belief yt,x defines the precise constraint we apply. For
example, if s(0, t, x) > 0 and πtape

0 yt,x = 1 · σ, then the constraint is “with input x tape square
0 should hold the letter σ after t steps”. A solution is w ∈ C (V, c) ⊂ (∆Σ)V which satisfies the
constraints.

Definition 4.4. An inference problem P on a Turing Machine M = (Σ, Q, δ) consists of:

• A finite code window V ⊂ Z,

• A weighting (U, s), with U ∩ V = ∅.

• For every t ∈ N and x ∈ ΣU,�, a state of belief yt,x ∈ (∆Σ)Z,� ×∆Q, and

• A specification of allowed codes c : V → P(Σ), as in Definition 4.2.

An inference problem is deterministic if the constraints we apply have no uncertainty. That
is, for every t, x positively weighted, we have:

πtape
a yt,x ∈ Σ ⊂ ∆Σ, ∀a ∈ Yt,x

πstateyt,x ∈ Q ⊂ ∆Q

Definition 4.5. A solution to an inference problem is w ∈ C (V, c) such that, for every positively
weighted (t, x) ∈ N× ΣU,�, we have:

• if λ < 1 then πstate∆steptM (x+ w, init) = πstateyt,x

• if λ > 0 then for every a ∈ Yt,x, πstate
a ∆steptM (x+ w, init) = πtape

a yt,x.

The set of solutions w ∈ C (V, c) will be denoted W0.

Definition 4.6. The support S+(P ) of an inference problem P is the support of the weighting
s:

S+(P ) = {z ∈ S | s(z) > 0}.

P is called compact if S+(P ) is a finite set.

Remark 4.7. Two inference problems found by varying some yt,x outside the target window
Yt,x will be considered identical, as they have the same solutions, and (see below) the same KL
divergence. We have assumed that: ∑

z∈S
s(z) = 1,

but this is unimportant, so long as the sum is finite.
We make the general definition, rather than restricting ourselves to the specific case of

program synthesis, as many of our results do not depend on that restriction. As such, it will
make the high-level structure of the theory clearer. The definition of a UTM, and as such
of program synthesis, depends on several choices of conventions [Hut04, Definition 2.6], so by
defining a more general version of inductive inference we capture each of these possibilities. The
simpler setting will also make it possible to calculate explicitly in small examples.
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Example 4.8. Continuing from Example 2.11, we define a parametrised family Pα of inference
problems, for α ∈ [0, 1]. As before, the observer to the Shift Machine is uncertain about whether
the counter is 0 or 2, and whether the first tape square is A or B. Suppose now that the observer
is told that the first tape square is an A after two time steps of the machine. The input on tape
squares two and three is either a pair of A’s, or an A and a B. That is, the two input scenarios
are:

x(0) = . . . � ? ?AA� . . .

x(1) = . . . � ? ?AB� . . .

We “interpolate” between these two inputs with the constant α ∈ [0, 1], so that:

s(x) = (1− α) · x(0) + α · x(1).

Formally, we will apply two constraints. The input window is U = {2, 3}, and with the two
sequences x(0) = (A,A) and x(1) = (A,B) ∈ ΣU and a timeout after two steps the weighting is:

s(a, t, x) =


(1− α) (a, t, x) = (1, 2, x(0))

α (a, t, x) = (1, 2, x(1))

0 else

The allowed codes are:
c(0) = {0, 2} and c(1) = {A,B}.

and the relevant part of the target distribution is:

πtape
1 y2,x(i) = 1 ·A.

We have that C (V, c) = ∆{0, 2} ×∆{A,B} ∼= [0, 1]2, where we use the coordinates h, k as

in (7). For i ∈ {0, 1}, define polynomials S
(i)
A and S

(i)
B by:

πtape
1 ∆step2

M

(
w + x(i),q

)
= S

(i)
A ·A+ S

(i)
B ·B.

Using the calculation from that example, we have that:

S
(0)
A = 1− (1− h)(1− h2)(1− k) S

(0)
B = (1− h)(1− h2)(1− k)

S
(1)
A = 1− (1− h)(1− h2)(1− k)− h3 S

(1)
B = (1− h)(1− h2)(1− k) + h3

where w ∈ C (V, c) corresponds to (h, k) ∈ [0, 1]2. With α > 0, so that x(1) is positively weighted,
the only solution is (h, k) = (0, 1). If α = 0, we only need (1 − h)(1 − h2)(1 − k) = 0, so (h, k)
is a solution if h = 1 or k = 1.

Definition 4.9. The KL divergence of an inference problem is:

K(w) =
∑
t,x

s(t, x)λt,x
∑
a∈Yt,x

pt,x(a)DKL

(
εµπ

tape
a yt,x || εµπtape

a ∆steptM (x+ w, init)
)

+
∑
t,x

s(t, x)(1− λt,x)DKL

(
εµπ

stateyt,x || εµπstate∆steptM (x+ w, init)
)
.
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To avoid evaluating the KL divergence on the boundary, we use the injective map εµ : ∆Z −→
∆Z defined by:

εµ(x) = (1− µ)x + µb,

where b =
∑

z∈Z
1
|Z| · z is the barycentre of the simplex, and µ ∈ (0, 1). This follows [CM19],

and is standard in machine learning: see for example the online documentation for Scikit-learn
[PVG+11].

We define the RLCT of an inference problem to be RLCTW(K;ϕ), where ϕ is a some
nonvanishing prior on the compact set W = C (V, c)2.

Lemma 4.10. K(w) = 0 if and only if w ∈ C (V, c) is a solution.

Proof. Given two distributions v,w ∈ ∆Z, we know that:

DKL(v || w) = 0 ⇐⇒ v = w.

From this, and the fact that εµ is injective, the result follows.

Example 4.11. The KL divergence of the inference problem defined in Example 4.8 is:

K(α)(h, k) = (1− α)DKL(εµA || εµS(0)) + αDKL(εµA || εµS(1)).

Calculating, for i ∈ {0, 1}:

DKL(εµA || εµS(i)) = −(1− µ+
µ

|Σ|
) log

(1− µ)S
(i)
A + µ

|Σ|

1− µ+ µ
|Σ|

− µ

|Σ|
log

(1− µ)S
(i)
B + µ

|Σ|
µ
|Σ|


= −(1− µ+

µ

|Σ|
) log

[
1− 1− µ

1− µ+ µ
|Σ|

(1− S(i)
A )

]
− µ

|Σ|
log

[
1 +

1− µ
µ
|Σ|

S
(i)
B

]

= −(1− µ+
µ

|Σ|
) log

[
1− 1− µ

1− µ+ µ
|Σ|
S

(i)
B

]
− µ

|Σ|
log

[
1 +

1− µ
µ
|Σ|

S
(i)
B

]

4.2 Links to statistical learning

In this subsection we will make explicit the way our formulation of an inference problem fits into
the theory of statistical learning outlined in Section 3. Intuitively, we can understand samples
from the true distribution q as observations of some TM. The state space, X in (13), contains
every possible observation of this TM. Then, the singular learning triple we define compares
samples from q to some actual TM, with w ∈ W := C (V, c) parametrising codes on its tape.

Definition 4.12. The singular learning triple (q, p, ϕ) associated to an inference problem P is
defined as follows. Recall that the support of the weighting s is:

S+(P ) = {(a, t, x) ∈ S | s(a, t, x) > 0}.
2Uniform with respect to the Lesbesgue measure, say, or more generally a Dirictlet distribution [Mac19, §23.5].
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The state space is discrete, corresponding to a disjoint union of copies of Q and Σ:

X =
∐

z∈S+(P )

Xz, where Xz =

{
Σ z ∈ Z× N× ΣU,�

Q z ∈ {state} × N× ΣU,�
(13)

The true distribution, corresponding to the two cases z = (a, t, x) or z = (state, t, x), is:

q(σ, (a, t, x)) = s(a, t, x) · εµπtape
a yt,x(σ)

q(m, (state, t, x)) = s(state, t, x) · εµπstateyt,x(m).
(14)

Noting that we have assumed V is finite, set N =
∑

i∈V |c(i)|. Then, the model p will be
parametrised by the code space W := C (V, c), which is semianalytic and compact:

W = C (V, c) =
∏
i∈V

∆c(i) ⊂ RN .

Corresponding to w ∈ W, we have the model:

p(σ, (a, t, x)|w) = s(a, t, x) · εµπtape
a ∆steptM (x+ w, init)(σ)

p(m, (state, t, x)|w) = s(state, t, x) · εµπstate∆steptM (x+ w, init)(m)
(15)

For convenience, we define the target state y(z) ∈ ∆Xz for any z ∈ S+(P ), so that for x ∈ Xz:

q(x, z) = s(z) · εµy(z)(x).

These are the projections πtape
a yt,x and πstateyt,x to which we compare our model p(−, z|w). In

a similar way, by p(z,w) we mean the model of (15) without the weighting and perturbation εµ
(this will only be used in the following lemma).

Lemma 4.13. The KL divergence associated to an inference problem P , in Definition 4.9, agrees
with the KL divergence of its singular learning triple.

Proof. Using the notation of the previous definition, the KL divergence associated to P is:

K(w) =
∑
z∈S+

s(z)DKL(εµy(z) || εµp(z,w)),

whereas the triple (q, p, ϕ) is DKL(q || p(w)). Expanding the latter expression:

DKL(q || p(w)) =
∑
z∈S+

∑
x∈Xz

s(z) · εµy(z)(x) log

[
s(z)εµy(z)(x)

s(z)εµp(z,w)(x)

]

=
∑
z∈S+

s(z)
∑
x∈Xz

εµy(z)(x) log

[
εµy(z)(x)

εµp(z,w)(x)

]
=
∑
z∈S+

s(z)DKL(εµy(z) || εµp(z,w)).
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With this in mind, it will be sensible to split up our old definition of the KL divergence, viz:

K(w) =
∑
z∈S+

s(z)DKL(εµy(z) || εµp(z,w)) =:
∑
z∈S+

s(z)Kz(w). (16)

The following proposition is included for two reasons. Firstly, in the previous definition
we assume that the distribution over constraints s(z) is known, as it appears in both the true
distribution and in the model. The following result demonstrates that, for a compact synthesis
problem, only the support of s affects the RLCT. Secondly, later on we will see that, in the
compact case, the RLCT can be calculated using a certain ideal, which also only depends on
the support of s.

Proposition 4.14. Fix a compact inference problem P with weighting (U, s). If s′ : S → [0,∞)
has the same support as s, then the inference problem P ′ found by changing the weighting to
(U, s′) has the same RLCT as P .

Proof. Let K (resp. K ′) be the KL divergence of P (resp. P ′). As the common support S+ of
s and s′ is finite, define positive constants c1 and c2 by

c1 = min{s(z)/s′(z) | z ∈ S+}
c2 = max{s(z)/s′(z) | z ∈ S+}.

Then, we see that K and K ′ are comparable, as,

c1K
′ ≤ K ≤ c2K

′.

Therefore, by Corollary 3.17 RLCTW(K;ϕ) = RLCTW(K ′;ϕ), which proves the proposition.

The link outlined in this section has practical implications. We will see in Section 4.5 that the
formulation of synthesis problems in [CMW21] fits into our definition, which implies relevance
of their practical experiments, where a learning machine attempts synthesise programs from
a sequence of input/output pairs. In light of this, the results of Section 3 apply to a suitably
designed learning machine examining one of our inference problems. This motivates the following
definitions.

Definition 4.15. Given a compact inference problem P with associated triple (q, p, ϕ), the
expected free energy F̄ (n) and RLCT (λ, θ) of the inference problem are defined as for the
associated statistical learning triple. That is, if K :W → R is the KL divergence of P , then:

F̄ (n) = − log

∫
W
dw e−nβK(w)ϕ(w)

and
(λ, θ) = RLCTW(K,ϕ).

By the proposition, this agrees with the remark in Definition 4.9.

The expected free energy F̄ is asymptotically equivalent to λ log(n) − (θ − 1) log log n, and
predicts the generalisation error of a Bayesian learning machine, as in Section 3.1.
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4.3 Program Synthesis on Turing Machines

The motivating example, which we consider in this subsection, is that of a synthesis problem on
a pseudo-UTM. This exhibits program synthesis as a form of the statistical inference we have
considered so far.

Definition 4.16. A synthesis problem on a pseudo-UTM U is an inference problem to which
we apply the following constraints.

• The input and code windows are U ∪ U ′ and V respectively, as specified in the design of
the UTM (Definition 2.3). If we index V in increasing order, a1, . . . , a3MN , the allowed
codes are:

c(ai) =


Σ i ≡ 1 mod 3

Q i ≡ 2 mod 3

{−1, 0, 1} i ≡ 0 mod 3

• If x ∈ (ΣU )U∪U
′

is a positively weighted input, then it decomposes as x′ + z: an input
string x′ ∈ ΣU over the simulation alphabet, and z ∈ (ΣU )U

′
the background initialisation.

• We put no constraints on the state, that is, λt,x = 1 for every positively weighted pair
(t, x).

• We examine the tape configuration inside the subset U : that is, the target window Yt,x =
supp(pt,x) ⊂ U .

• The tape part of the target state yt,x lies in the Σ-face of the simplices ∆ΣU : that is, the
final state should be a distribution over strings in the simulation alphabet.

A synthesis problem is called deterministic if the underlying inference problem is determin-
istic. That is, if the target state πtapeyt,x ∈ ΣU,� ⊂ (∆Σ)U,�.

Note that the code space W = C (V, c) = (∆Σ×∆Q×∆{−1, 0, 1})MN , so the dimension is:

dimW = [(M − 1) + (N − 1) + (3− 1)]MN = (M +N)MN.

Remark 4.17. We will often specify a deterministic synthesis problem with a subset D ⊂
ΣU,� and functions τ : D → N and f : D → ΣU,�. Then the positively weighted pairs are
(t, x) = (τ(x′), x′ + z) for x′ ∈ D, and the target state of belief yt,x has πtapeyt,x = f(x′).
This is the most intuitive form of program synthesis: it asks a learning machine to find a code
w ∈ (∆Σ × ∆Q × {−1, 0, 1})MN which specifies a TM computing the function f within the
timeout τ .

Here the timeout is applied on the UTM — the relationship between time steps on the
simulated machine M , and those on U is a function of the specific UTM, but as U is part of the
data, we will glide over this subtlety. In our general definition, we only demand that the pseudo-
UTM mimic the halting behaviour of the simulated machine. As discussed in Remark 2.12, in
particular examples we can often do better, in which case it makes sense to apply constraints
at intermediate times as well. Similarly, certain pseudo-UTMs might store the state of the
simulated machine on the tape. In this case, we might relax the last two requirements on the
target window and state (see Example 4.29).
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As a preliminary link between this formulation of program synthesis, and the classical, com-
binatorial version, we now examine the relationship between the RLCT and the Kolmogorov
complexity of a given synthesis problem. In particular, this justifies our claim that the geometry
of K around a given solution contains semantic information about that code.

Speaking loosely, the Kolmogorov complexity c(D) of data D is the length of the smallest
program computing D. For example, let D1 = (3, 1, 4, 1, 5, . . . ) be the sequence of the first N
digits in the decimal expansion of π, and suppose that D2 is a sequence of N genuinely random
integers. Then c(D1) < c(D2). In the first case, a short program might use an expansion like:

π

4
= 1− 1

3
+

1

5
− . . . ,

whereas a program generating D2 would have to manually list all N digits. Of course, the value
of c(D) depends on the programming language used, but only up to an additive constant [Hut04,
§2.2.3]. In our context of synthesis problems, we can make a simple definition. The formulation
and results here follow [CMW21, §3].

Definition 4.18. Given a synthesis problem P , we suppose that all input strings x take values
in the restricted alphabet Σin ⊂ Σ. Then, classical codes w ∈ W may specify Turing Machines
T = (Σ′, Q′, δ) for any Σ′, Q′, where Σin ⊂ Σ′ ⊂ Σ and Q′ ⊂ Q, by assigning any arbitrary value
to the tuples corresponding to (σ, q) with σ 6∈ Σ′ or q 6∈ Q′. The Kolmogorov complexity c(P )
of P is the infimum of |Σ′| · |Q′| over Turing Machines T which are solutions to P .

Proposition 4.19. Consider a synthesis problem P on a pseudo-UTM U , with KL divergence
K and RLCT (λ, θ) = RLCTW(K;ϕ). Recalling the integers N = |Σ| and M = |Q| associated
to U , we have:

λ ≤ 1

2
(M +N)c(P ).

Proof. Let T = (Σ′, Q′, δ) be the TM attaining the infimum defining c(P ), and w ∈ W the
associated code. Define N ′ = |Σ′| and M ′ = |Q′|. Let T̃ = (Σ, Q, δ̃) be any TM using the full
simulation alphabet and states, but with transition function δ̃ agreeing with δ on the “fixed”
tuples associated to

(σ, q) ∈ Σ′ ×Q′ ⊂ Σ×Q. (17)

Then the code w̃ associated to T̃ is also a solution to P — including if there is uncertainty on the
tuples corresponding to (σ, q) ∈ (Σ×Q) \ (Σ′×Q′). This implies that there are 3(MN −M ′N ′)
squares on which the code may be freely assigned, defining a linear submanifold W̃ with

dim W̃ = (M − 1)(MN −M ′N ′) + (N − 1)(MN −M ′N ′) + (3− 1)(MN −M ′N ′).

Observing that dimW = (M +N)MN , this implies that:

codim W̃ = (M +N)M ′N ′ = (M +N)c(P ).

Since w ∈ W̃, [Wat09, Theorem 7.3] implies that the local RLCT (λ′, θ′) = RLCTNw(K,ϕ)
satisfies λ′ ≤ 1

2codim W̃ for any neighbourhood Nw of w. By Lemma 3.15 this value bounds the
global RLCT, which implies the result.
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Remark 4.20. This matches the discussion of Section 3.3, as the Kolmogorov complexity is
clearly a function of the number of effective parameters. If T = (Σ′, Q′, δ) has M ′N ′ minimal
among solutions of P , then any variation in the parts of its code w corresponding to (σ, q) ∈
Σ′ × Q′ must change the model. Each such tuple is associated to M + N parameters, for the
values of δ(σ, q) ∈ ∆Σ × ∆Q × ∆{−1, 0, 1}, meaning 2λ is indeed related to the number of
effective parameters.

We have defined the Kolmogorov complexity with reference to classical codes, with no un-
certainty in the relevant tuples. A priori, this does not interact at all with non-classical codes.
In the case of a deterministic synthesis problem, the situation is made clear by the following
lemma: if we find a non-classical solution in the interior of some face, the classical codes at the
vertices of that face are also solutions.

Lemma 4.21. Consider a solution w to a deterministic inference problem, and some i ∈ V ,
such that the projection wi ∈ ∆c(i) onto the ith tape square lies in the interior of a face of that
simplex. Then every w′ found by varying wi within that face is also a solution.

Proof. Fix a deterministic inference problem as above. w is a solution if and only if, for every
positively weighted pair (t, x) ∈ N × ΣU,�, every a ∈ Yt,x, and every q′ 6= qt,x, σ

′ 6= ft,x(a) we
have:

πstate∆steptM (x+ w, init)(q′) = 0

πtape
a ∆steptM (x+ w, init)(σ′) = 0.

(18)

Each term in the polynomials (2) and (3) which define the smooth relaxation has positive
coefficients. Therefore, since the variables {yi(σ) | i ∈ Z, σ ∈ Σ} and {q(s) | s ∈ Q} take
non-negative values, its vanishing is controlled by the vanishing of some subset of the variables.

In the situation of this lemma, all variables are fixed, barring the set {wi(σ) | i ∈W,σ ∈ c(i)}
(recall that c(i) ⊂ Σ is the set of allowed codes on tape square i). As such, each of the equations
in (18) is a polynomial in these variables, with non-negative coefficients. If w′ is as in the
statement, then:

wi(σ) = 0 =⇒ w′i(σ) = 0.

As such, if w is such that (18) is satisfied for some t, x, a, q′ and σ′, then w′ satisfies the same
condition.

Corollary 4.22. If w is a solution to a non-trivial deterministic synthesis problem, then for at
least one i ∈ V , wi lies on the boundary of the simplex ∆c(i).

Proof. Suppose not. Then for every i, wi lies in the interior of the c(i) face of ∆c(i), and so,
by the above, we may vary wi to any point in ∆c(i). This implies that every w ∈ C (V ) is a
solution, so the synthesis problem is trivial.

4.4 Fibre ideal

The complicated function K is not necessary to specify the collection of solutionsW0 = VW(K).
In this section we study an ideal generated by polynomials which cuts out the same set. This
gives the link between compact synthesis problems and algebraic geometry.
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Figure 6: Possible solution sets W0 to a deterministic inference problem, where W ∼= ∆2 ×∆1.
According to Lemma 4.21, where points on the interior of a face are included, every point in the
face is a solution.

Figure 7: Plot of the posterior distribution corresponding to a non-deterministic inference prob-
lem P ′0, obtained from P0 (Example 4.8) by changing the target distribution to 4/5 ·A+ 1/5 ·B.
W0 is marked by the black line.
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Definition 4.23. The fibre ideal I ⊂ AW of an inference problem is generated by the following
polynomials in the coordinates of w:

πtape
a ∆steptM (x+ w, init)(σ)− πtape

a yt,x(σ) (a, t, x) ∈ S+, σ ∈ Σ

πstate∆steptM (x+ w, init)(m)− πstateyt,x(m) (state, t, x) ∈ S+,m ∈ Q
(19)

I defines the same vanishing locus VW(I) = W0 as the KL divergence K. Since V is finite, I
is generated by polynomials in a finite number of variables, so it is finitely generated by the
Hilbert Basis Theorem [Hil90] — even if S+ is infinite.

Theorem 4.24. Fix a compact synthesis problem P with fibre ideal IP ⊂ AW , and KL diver-
gence K :W → R. Then, in a (small enough) neighbourhood Nw of any solution w ∈ W0:

RLCTNw(K,ϕ) = RLCTNw(I, ϕ).

Proof. In the notation of Definition 4.12, we can factor K as:

W
∏
z∈S+ ∆Xz

∏
z∈S+ R R

∏
p(z,w)

∏
DKL(y(z) || −)

∑
s(z)·−

We lose nothing by projecting off a coordinate from each simplex ∆Xz, so set ∆0Xz ⊂ R|Xz |−1

to be the resulting sets, which have non-empty interior. In order to apply Lemma 3.22, with
W ′ =

∏
z∈S ∆0Xz, we will show that the composite of the last two maps has positive definite

Hessian, when evaluated at the true distribution q. As each s(z) > 0, it suffices to prove this
fact for each map (as in (16)):

Kz : ∆0Xz −→ R.

If we write q(z) = (q1, . . . , qn) ∈ ∆Xz, the Hessian in question is:

∇2Kz = diag

(
1

q1
, . . . ,

1

qn−1

)
+

1

qn


1 . . . 1
...

...

1 . . . 1

 .

This matrix is positive definite, as, with
(
a1 . . . an−1

)
6= 0:

(
a1 . . . an−1

)
∇2Kz


a1

. . .

an−1

 =
n−1∑
i=1

1

qi
a2
i +

1

qn

(
n−1∑
i=1

ai

)2

> 0.

If I is the ideal generated by the polynomials (in w):

εµπ
tape
a ∆steptM (x+ w, init)(σ)− εµπtape

a yt,x(σ) (a, t, x) ∈ S+, σ ∈ Σ

εµπ
state∆steptM (x+ w, init)(m)− εµπstateyt,x(m) (state, t, x) ∈ S+,m ∈ Q,
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Then the above analysis implies that RLCTNw(K,ϕ) = RLCTNw(I, ϕ). The function εµ only
contributes a non-zero constant. For example, in the former case, the polynomial is:

εµπ
tape
a ∆steptM (x+ w, init)(σ)− εµπtape

a yt,x(σ)

= (1− µ)
[
πtape
a ∆steptM (x+ w, init)(σ)− πtape

a yt,x(σ)
]
.

As such, the ideal I is exactly the fibre ideal IP .

Remark 4.25. In the terminology of [Lin11, §1.5], the proof of the theorem demonstrates that
the model p is regularly parametrised, which follows from his Example 1.9. The Hessian of
the KL divergence is called the Fisher Information Metric, and the condition that it be positive
definite is one of the conditions for a model to be “regular”. In our case, ∇2K is not (necessarily)
positive-definite, so the model is singular.

Remark 4.26. From the definition of RLCTW(I;ϕ), the ideal I is interchangeable with the
polynomial given by the sum of the squares of its generators. However, using the ideal gives us
freedom to pick a convenient set of generators, by [Lin11, Proposition 4.3]. This will simplify
calculations.

Corollary 4.27. For any inference problem, the RLCT of its fibre ideal I, on a neighbourhood
Nw any solution w, is a lower bound for the RLCT of K on Nw.

Proof. Associate to a subset S′ of S+ the ideal IS′ generated by the polynomials in (19) with
z ∈ S′. For any S′, IS′ ⊂ I. Using the Hilbert basis theorem, there is a finite subset F ⊂ S+

such that IF = I, and as such,

RLCTNw(IF ;ϕ) = RLCTNw(I;ϕ).

As in (16), we can rewrite the KL divergence as:

K(w) =
∑
z∈S

s(z)Kz(w),

where Kz : ∆Xz → R are non-negative. By Theorem 4.24, if we set

KF (w) =
∑
z∈F

s(z)Kz(w),

then RLCTNw(KF ;ϕ) = RLCTNw(IF ;ϕ). (KF is not strictly the KL divergence of an inference
problem, as s is not a probability distribution. As observed in Remark 4.7 this is not important,
and the proof of the Theorem goes through regardless.) Observing that KF ≤ K and applying
Lemma 3.16, this implies

RLCTNw(I;ϕ) = RLCTNw(KF ;ϕ) ≤ RLCTNw(K;ϕ).
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4.5 Examples

Example 4.28. We wrap up the discussion of the Shift Machine, using the techniques developed
in the previous section. First let us recall the definitions and results of Examples 2.11 and 4.8.
The machine is initialised to one of the configurations we represented as:

x(0) = . . . � νcounter νstring AA� . . .

x(1) = . . . � νcounter νstring AB� . . .

where the unknown distributions are parametrised by (h, k) ∈ [0, 1]2, according to:

νcounter = (1− h) · 0 + h · 2
νstring = (1− k) ·B + k ·A.

The machine is run for two steps, and the distribution is read off one square to the right of the
head. In the two input cases x(i) the distribution we read off is S(i)(A) ·A+ S(i)(B) ·B, where:

S(0)(B) = (1− h)(1− h2)(1− k)

S(1)(B) = (1− h)(1− h2)(1− k) + h3

We set the true distribution to be 1 ·A in both cases.
We now calculate the fibre ideal and RLCT of the inference problems Pα in Example 4.8.

We have two elements (1, τ, x(i)) ∈ S+, so the non-zero generating polynomials associated to
(1, τ, x(i)) are:

S(i)(A)− 1 if z = (1, τ, x(i)), σ = A

S(i)(B) if z = (1, τ, x(i)), σ = B

As S(i)(B) = 1− S(i)(A), we have that the fibre ideal Iα for varying α ∈ [0, 1] is:

Iα =


〈(1− h)(1− h2)(1− k)〉 α = 0

〈(1− h)(1− h2)(1− k), h3〉 α ∈ (0, 1)

〈(1− h)(1− h2)(1− k) + h3〉 α = 1

When α = 0 the global RLCT is of the form (up to a linear coordinate change) of Proposi-
tion 3.11, namely the vanishing of a monomial in the positive orthant. That is:

RLCTW(〈(1 + h)(1− h)3(1− k)〉; 1) = RLCTR2
≥0

(x6y2; 1) = (1/6, 1).

(Note that we consider the square of our generator, and that the factor (1 + h) is positive on
W.) In the local case, around some solution w0, we have one of w0 = (1, k), w0 = (h, 1) or
w0 = (1, 1). In the first and last cases, the local RLCT achieves the global minimum, but in the
second we have (for h 6= 1):

RLCTN(h,1)
((1− h)6(1− k)2; 1) = (1/2, 1),

as the highest order vanishing monomial is (1−k)2. This indicates that the posterior will favour
solutions with h = 1 (as shown in Figure 8).
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Figure 8: A graph of e−nK
(0)(h,k), to which the posterior at is proportional at α = 0. Observe

that it is larger in a neighbourhood of h = 1 than the same neighbourhood around k = 1.

For α ∈ (0, 1), we have a unique solution w0 = (0, 1). In a small neighbourhood N of (0, 1),
1− h is a unit, so the ideal in question is 〈1− k, h3〉 = 〈1− k〉+ 〈h3〉 ⊂ AN . Using the sum rule
of Lemma 3.21 we have RLCTN (Iα; 1) = (2/3, 1).

For α = 1, again W0 = {(0, 1)}. Observe that, on N , our generator (1 − h)2(1 − k) + h3

is comparable to 1 − k + h3. As such, and using a linear coordinate change that takes w0 7→
(0, 0) ∈ N ′:

RLCTN (Iα; 1) = RLCTN ′(〈x3 + y〉; 1) = (2/3, 1).

Here we use the calculation of Example 3.23, and the relationship observed in (12).

Example 4.29 (parityCheck and detectA). In [CMW21], two synthesis problems are con-
sidered from a practical point of view, which we can now fit into our definitions. Two slight
complications should be noted. Firstly, the staged pseudo-UTM defined in Appendix E of their
paper is multi-tape, but this can be reconciled with our single-tape presentation using the tech-
niques of [Xu21]. Secondly, the synthesis problems place constraints on the final state of the
simulated machine, but this is minor as the pseudo-UTM they consider has a tape location
holding this state.

First, consider parityCheck. For this example, the pseudo-UTM has simulation alphabet
and states:

Σ = {�, A,B,X}
Q = {reject, accept, getNextAB, getNextA, getNextB, gotoStart},

with the lexicographic ordering on Σ×Q induced from the above. The code and input windows
are on different tapes, and the background initialisation is described in [CMW21, Appendix E].
Here N = |Σ| = 4 and M = |Q| = 6.

Let aq ∈ Z be the index of the tape square holding the state of the simulated machine, and
let T ∈ N be the timeout on the UTM corresponding to 42 steps of the simulated machine
[CMW21, Table 3]. The input strings x will be sampled from {A,B}l, where 1 ≤ l ≤ b, where
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for the three experiments b ∈ {5, 6, 7}. More specifically, for some fixed b, the weighting s(x)
over inputs is:

s =
1

b

b∑
l=1

∑
x∈{A,B}l

2−l · x.

For any x with s(x) > 0, we have a single timeout s(t = T |x) = 1, and pT,x(aq) = 1 is the only
tape square constrained. The target πtape

aq yt,x is accept if x contains an equal number of A and
B, and reject otherwise (recall that the simulation states Q are contained in the alphabet ΣU of
the UTM).

This synthesis problem asks a learning machine to find a code

w ∈ (∆Σ×∆Q×∆{−1, 0, 1})MN ,

which checks the parity of an input string. The total number of parameters is (M +N)MN =
240, but the statistical estimates of the RLCT for b = 5, 6, 7 are λ = 4.4, 4.0 and 3.9 respectively.

The situation for detectA is similar. Now we consider a pseudo-UTM with simulation
alphabet and states:

Σ = {�, A,B}
Q = {reject, accept},

With the code and input windows as above. Similarly, we apply a constraint to the state of
the simulated machine, held on tape square aq, now at time T corresponding to 10 steps of
the simulated machine. The input strings x are sampled from {A,B}∗ in the same way, with
1 ≤ l ≤ b < 10. Having constructed the weighting in the same way, the target distribution is
accept if x contains an A, and reject otherwise.

In this simple example, we can illustrate explicitly the discussion about effective parameters
in Section 3.3, extending the treatment of Kolmogorov complexity. Suppose that the (simulated)
machine is initialised to the state “reject”, and with the first character of x under the head. Then,
there is an obvious solution which scans rightwards through the string until it finds an A. We
can represent such a transition function δ in a table.

� A B

reject (�, reject, 0) (A, accept, 0) (B, reject, 1)

accept (�, accept, 0) (A, accept, 0) (B, accept, 0)

Some of these parameters don’t matter, however. For any values in the spaces left blank the
following is also a solution:

� A B

reject (�, reject,−) (−, accept,−) (B, reject, 1)

accept (−, accept,−) (−, accept,−) (−, accept,−)

This defines an 18-dimensional submanifold of W, which has dimension 30. By the results of
Section 3.3, this implies that the RLCT of detectA is bounded above by 1

2(30− 18) = 6. Even
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with relatively short Markov chains, estimates of the RLCT consistent with this prediction
are found in [CMW21, Table 1], which demonstrates that the semantic information we have
extracted by hand is present in the dynamics of the learning process.
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5 Lattice of Inference Problems

In this section, we explore the structure of the collection of inference problems on a fixed Turing
Machine. The results of the previous section allow us to extract geometric information about
programs, by seeing them as singularities of some fibre ideal. The question that remains is
“which fibre ideal?”, or what is the same, “which inference problem?” The definition of the
fibre ideal suggests a natural lattice structure on inference problems, which we claim illuminates
the semantic content of this choice.

The specialisation preorder underlying our lattice is developed in Section 5.1, and in Sec-
tion 5.2 we define a function from codes into inference problems. Lattices of this form arise in
program semantics and in logic (see Remark 5.12), which suggests the structure we develop in
this section is natural. On the other hand, the process of learning (as in [Tur04]) is reflected by
limits in the lattice. To back up our semantic interpretation, we provide some example situations
where the geometric information that inference problems provide helps to get at the meaning
behind the irrelevancies of syntax.

Appendix A will expand on the relationship encapsulated by specialisation, in terms of
thermodynamics. In particular, the process of learning is represented by second-order phase
transitions.

In this section, fix a TM M , code window V and specification of allowed codes c.

5.1 Specialisation Preorder

We recall some notations for an inference problem P . The support S+(P ) is the support of the
weighting s, as in Definition 4.6. For a ∈ Z∪{state}, and (t, x) ∈ N×ΣU,� the true distribution
y(a, t, x), defined in Section 4.2, is the relevant part of the target distribution yt,x. Specifically:

y(a, t, x) = πtape
a yt,x, for a ∈ Z

y(state, t, x) = πstateyt,x

Define formal inference problems ⊥,>, called overspecified and underspecified respectively.
With a choice of code spaceW, define solution setsW0(⊥) = ∅ andW0(>) =W, and fibre ideals
I⊥ = AW , I> = (0). Formally define RLCTW(⊥;ϕ) = (∞,−) and RLCTW(>;ϕ) = (0,−).

Definition 5.1. Ipre(M,V, c) is the set of inference problems on the machine M , with the fixed
code window V and allowed codes c. We include the two formal problems ⊥,>.

Definition 5.2 (Specialisation Preorder). Given ordinary P, P ′ ∈ Ipre(M,V, c), P ′ is said to be
a specialisation of P , denoted P v P ′, if:

1. The support S+(P ′) of P ′ contains that of P : S+(P ) ⊂ S+(P ′), and,

2. For each z ∈ S+(P ), the target states y(z) and y′(z) of the two synthesis problems agree.

In short, P v P ′ if P ′ applies all of the constraints that P does. If P v P ′, we will occasionally
call P a generalisation of P ′. For every P ∈ Ipre(M,V, c) define P v ⊥ and > v P .

In algebraic geometry, given a containment of ideals I ⊂ J , we have a reverse containment
of their vanishing loci V(I) ⊃ V(J). Having defined the fibre ideal IP ⊂ AW associated to an
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inference problem P , it is natural to consider the relationship between problems P and P ′ for
which IP ⊂ IP ′ . Since V(IP ) = V(KP ) = W0(P ), this will imply that W0(P ) ⊃ W0(P ′). The
preorder v we have defined fulfils this, as we see in Proposition 5.5. The symbol v should be
read as “specialises to”.

Our definition arises naturally out of the geometric interpretation of program synthesis that
we have given. Alternatively, viewing inference problems as propositions, we will see in Re-
mark 5.12 that specialisation P v P ′ is dual to the entailment “P ′ implies P .”

Remark 5.3. The term specialisation is borrowed from topology, where the equivalent ordering
is denoted  . For points x, x′ in a topological space X, x  x′ if x′ ∈ {x}; ie if x′ belongs
to every closed set that contains x [Sta18, Tag 0060]. If p, q are points (prime ideals) of the
spectrum of a ring, then:

p q ⇐⇒ q ∈ {p}
⇐⇒ q ∈ V(p)

⇐⇒ p ⊂ q.

Example 5.4. For any inference problem P , there is an obvious generalisation Q corresponding
to any subset S+(Q) ⊂ S+(P ). Namely, we set:

sQ(z) =

{
1
C · sP (z), z ∈ S+(Q)

0 else

with C =
∑

z∈S+(Q) sP (z), and keep the target distribution the same. This corresponds to
simply omitting the constraints indexed by z ∈ S+(P ) \ S+(Q).

Proposition 5.5. The ordering v is a preorder on the set Ipre(M,V, c). For any inference
problems P, P ′ ∈ Ipre(M,V, c), if P v P ′ then IP ⊂ IP ′ and W0(P ) ⊃ W0(P ′). If P is compact,
then specialisation P v P ′ does not decrease the RLCT.

Proof. The statements are clear in the case of the formal problems.
That (Ipre(M,V, c),v) is a preorder follows from the facts that (a) ⊂ is a partial order, and

(b) equality is transitive. It fails to be a partial order as it only depends on the support of the
weighting.

The second statement is immediate from the definitions. The generators of IP are a subset
of the generators of IP ′ , proving the first assertion, and the second follows from the fact that
any solution of P ′ must also satisfy the constraints applied by P .

The final statement follows directly from the previous, using Theorem 4.24 for the equals
sign, and Corollaries 3.20 and 4.27 for the inequalities:

RLCTW(P ;ϕ) = RLCTW(IP ;ϕ) ≤ RLCTW(IP ′ ;ϕ) ≤ RLCTW(P ′;ϕ).

It is sometimes simpler to think of a synthesis problem P ∈ Ipre(M,V, c) as consisting of
its support S+, and the family y(z) ∈ ∆Xz of target states: that is, to ignore specifics of the
weighting s(z). As we have shown, for compact P the RLCT is indeed independent of these
details, and so, at least up to leading order in n, the expected free energy F̄ (n) is independent
also. This motivates the following definition, which is easily seen to be equivalent. The ordering
v descends to the quotient, and defines a partial order on I(M,V, c) [Vic89, Proposition 3.2.4].
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Figure 9: Solution sets W0 ⊂ W ∼= ∆2 ×∆1 to inference problems P v Q v R.

Definition 5.6. The set I(M,V, c) is the quotient of Ipre(M,V, c) by the equivalence relation
∼, defined by:

P ∼ P ′ ⇐⇒ P v P ′ and P ′ v P. (20)

We identify problems P ∈ Ipre(M,V, c) with their equivalence class in I(M,V, c).

Beyond the order, the partially-ordered set of ideals in the ring AW the structure of a lattice.
For ideals I and J , the meet, or greatest lower bound, is the intersection I ∩ J , and the join, or
least upper bound, is the sum I + J . We can extend this structure to the collection of synthesis
problems.

Definition 5.7 (Sum). Two ordinary inference problems P,Q ∈ Ipre(M,V, c) are said to be
consistent if on the intersection of their supports, z ∈ S+(P )∩ S+(Q), their target states agree:
yP (z) = yQ(z). For consistent P,Q, we define their sum as the inference problem applying all
the constraints of P and Q. More precisely,

• The support of P+Q is the union of the supports of P and Q: S+(P+Q) = S+(P )∪S+(Q),

• For z ∈ S+(P +Q), the weighting is sP+Q(z) = 1
2(sP (z) + sQ(z)),

• The target state yP+Q(z) is whichever of yP (z) or yQ(z) is defined.

If P and Q are inconsistent, define P + Q = ⊥, and let P + ⊥ = ⊥, P + > = P . Observe
that P,Q v P +Q. Indeed, if T ∈ Ipre(M,V, c) is any inference problem such that P v T and
Q v T , then P +Q v T .

Definition 5.8 (Intersection). For ordinary inference problems P,Q ∈ Ipre(M,V, c), define:

S+(P ∩Q) = {z ∈ S+(P ) ∩ S+(Q) | yP (z) = yQ(z)}.

If this set is empty, set P ∩Q = >. For z in this set, define:

sP∩Q(z) =
1

C
(sP (z) + sQ(z)) where C =

∑
z′∈S+(P∩Q)

sP (z′) + sQ(z′).
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In the formal case, make the expected definitions P∩> = > and P∩⊥ = P . Again, P∩Q v P,Q,
and is universal with this property.

Example 5.9. Recall the family Pα of inference problems on the Shift Machine, defined in
Example 4.8. For α ∈ (0, 1), we have a pair of specialisations P0 v Pα and P1 v Pα, which come
from adding a constraint on one of the inputs x(i). P 1

2
is precisely the sum P0 + P1.

Proposition 5.10. For synthesis problems P,Q ∈ Ipre(M,V, c), IP+Q = IP + IQ and IP∩Q ⊂
IP ∩ IQ.

Proof. First examine the sum. If P and Q are consistent, the statement is clear, as the set of
generators of IP+Q is the union of the generating sets of IP and IQ. Similarly, it is clear in the
formal case.

If P and Q are inconsistent, let z ∈ S+(P )∩S+(Q), with yP (z) 6= yQ(z). If yP (z) and yQ(z)
differ on the coordinate x ∈ Xz, and p(x|w) is the model associated to the triple (M,V, c), we
have:

p(x, z|w)− yP (x, z) ∈ IP
p(x, z|w)− yQ(x, z) ∈ IQ

As such, the sum IP + IQ contains the constant yP (x, z) − yQ(x, z) 6= 0. Since this constant is
a unit, IP + IQ = AW = I⊥, so we are done.

For the intersection and in the ordinary case, observe that the generators of IP∩Q are a
subset of each of the generating sets for IP and IQ. The claim is clear in the formal case.

Proposition 5.11. With the induced ordering v, I(M,V, c) is a complete lattice. For P,Q ∈
Ipre(M,V, c), the equivalence classes of the supremum and infimum of {P,Q} ⊂ I(M,V, c) are
represented by P +Q and P ∩Q respectively.

Proof. The second statement is immediate from the universality claims in Definitions 5.7 and 5.8.
It suffices, then, to prove the existence of arbitrary least upper bounds [DP02, Theorem 2.31].

Take some set {Pi}i∈I ⊂ Ipre(M,V, c) of inference problems. if any pair Pi, Pj are inconsis-
tent, the supremum is ⊥. Otherwise, define P ∈ Ipre(M,V, c) by:

S+(P ) =
⋃
i∈I
S+(Pi),

and with y(z) agreeing with yPi(z) for every i. Choosing any weighting sP , P defines an
equivalence class in I(M,V, c) with Pi v P for every i. As before, P is universal with this
property, so:

P = sup
i∈I
{Pi}.

Motivated by the second part of this statement, we will denote arbitrary least upper bounds
by a sum.
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Remark 5.12. As we have alluded to, we can make sense of the lattice structure on I(M,V, c)
by seeing inference problems as propositions. Here we have two distinct perspectives on program
synthesis, one from geometry and one from logic, which give rise to the same structure. This
suggests that the formulation of inductive inference that leads to this lattice structure is canonical
in some way — or at least makes clear some very natural concepts.

In logic, especially in quantum physics, propositions (or “yes-no experiments”) about a
physical system are given a lattice structure, with p ≤ q whenever a proof of p suffices to
demonstrate that q is true [OP93, pp.1-2]. More precisely, suppose that the state of a quantum
system is given by a ray in the Hilbert space S. Then, an argument of von Neumann [vN55,
§III.5] says that a proposition about this state is an observable (roughly a self-adjoint operator
[vN55, §IV.2]), with eigenvalues 0 and/or 1. This is precisely a projection p onto a closed linear
subspace Mp. Then, the partial order p ≤ q comes from pq = p [OP93], which implies Mp ⊂Mq.

In program synthesis, a state is a code w ∈ W, and an equivalence class P ∈ I(M,V, c) is a
proposition about this state. The closed subspaces Mp correspond to solution sets W0(P ), and
as such our relation P v P ′ might be interpreted as P ≥ P ′, as in this case W0(P ) ⊃ W0(P ′)
by Proposition 5.5.

Using the finer relation on Ipre(M,V, c), and the results of SLT, we can do better than a
projection onto W0. Namely, gradient descent against K gives a way of flowing all of W onto
the solution set. Similarly, integration against the posterior distribution refines restriction to
the solution set (and indeed formally reduces to it as β → ∞ [Wat09, Remark 1.13]). By
rediscovering a natural logical structure geometrically, this discussion vindicates our method for
studying program synthesis.

5.2 Mathematical semantics of programs

As alluded to in the introduction, Scott finds in [Sco77] a mathematical interpretation of data
types as complete lattices. To apply his ideas, we interpret our lattice I(M,V, c) in these terms,
and this understanding extends to codes w via a map J−K : C (V, c) → I(M,V, c). In the case
where M is a UTM, this justifies the claim that synthesis problems provide a semantics of
programs. The geometry we have developed enriches this semantics with information about the
construction of a program by learning.

Before we define in detail the Scott-style semantics we obtain from our preorder, we sketch an
example of how the geometry of learning can give us semantic information about programs. The
role of semantics, here and elsewhere, is somewhat analogous to that of topological invariants:
in theory, two spaces can be differentiated by examining their open sets directly, but in many
cases it is easier to differentiate them based on their, say, homology.

Example 5.13. Fix a pseudo-UTM U and a synthesis problem P , and let w ∈ W be some
solution. If we let the simulation states of U be:

Q = {init,halt, q1, . . . , qn},

then any permutation f ∈ Sn of {1, . . . , n} acts naturally on Q, and as such on W. Specifically,
if δw is the transition function coded by w, then set:

δf(w)(σ, qf(i)) = (σ′, qf(i′), d), where δw(σ, qi) = (σ′, qi′ , d).
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Figure 10: A symmetrical arrangement of solutions W0 inside W ∼= ∆3. If the germs (wi,K) in
the bottom corners are isomorphic, via a rotation of W, then we expect that the solutions they
code for are not semantically different.

Assuming that only the states init and halt appear in P , the other “working” states q1, . . . , qn are
entirely interchangeable, and so the maps f we define make no difference to the tape configuration
of the coded machine. Therefore, the syntactically different solutions w and f(w) have no
semantic difference.

This identity between solutions is detected by the geometry. Let K be the KL divergence of
P . Then, as permuting the states does not affect the tape configuration, we have K ◦ f(w) =
K(w). Therefore, the local geometry around w and f(w) is identical. (Precisely, the complex
space germs (w,K) and (f(w),K) are isomorphic [GLS07].)

This is not a deep example — the equivalent in Python might be changing the names of some
variables — but it does illustrate how examining the geometry of K can allow us to “forget”
the irrelevancies of syntax.

In this simple case, the isomorphism of complex space germs has clear semantic content. More
generally, structuring the geometry we have defined will help to provide these interpretations,
and the Scott-style semantics that follows from Section 5.1 will provide this structure. Before
making this link more formal, we sketch Scott’s definitions.

Setup 5.14. In [Sco77] Dana Scott develops an early mathematical semantics of computation3.
In particular, a data type D is a complete lattice, where for two objects x, y ∈ D, x v y means
that the information in y is consistent with that of x, and possibly more detailed. The idea is
that we specify objects y ∈ D by a sequence of approximations:

· · · v xi v xi+1 v . . .

so that y is the limit — or the least upper bound — of the directed set {xi}. This is clearer in
an example. Scott defines R, the type of real numbers, to consist of closed intervals [x, x′] ⊂ R,
with ordering:

[x, x′] v [y, y′] iff x ≤ y ≤ y′ ≤ x′.
3Interestingly, it was a version of Scott’s idea that led Jean-Yves Girard to define Linear Logic, which ultimately

underlies the smooth relaxation we have defined [Gir11, §8].
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The usual real numbers embed as the one-point intervals x = [x, x], which we specify as the
limit (intersection, in this case) of a sequence of intervals with rational endpoints:

[q1, q
′
1] v [q2, q

′
2] v · · · v [x, x].

The crux of Scott’s idea is that the lattice has an effectively given basis4 (Axiom 5 of loc.
cit.), from which we specify general elements as a directed limit. In the example, the basis
is the collection of intervals [q, q′] with rational endpoints, which is countable and recursively
enumerable. A computable element of the data type is one specified as the limit of a sequence
of elements from the basis.

On a surface level, there is a clear analogy with the lattice we have defined. Inference
problems P consist of data, and if P v P ′ then P ′ adds to the data present in P . The following
result demonstrates that any inference problem P may be approximated by compact inference
problems. This is our suggestion for a counterpart to Scott’s basis in program synthesis.

Proposition 5.15 (Compact approximation). Each inference problem P ∈ I(M,V, c) is the
directed limit of compact inference problems.

Proof. Let some P ∈ I(M,V, c) be given. For each z ∈ S+(P ), let Bz,P be the basic inference
problem with support S+(Bz,P ) = {z}, and target state yBz,P

(z) = yP (z). By definition,

Bz,P v P.

Let JP ⊂ I(M,V, c) be the set of inference problems containing every Bz,P , and all of their
finite sums. To give a definite representative, if Q =

∑n
i=1Bzi,P , we can take the weighting from

P :

sQ(z) =
1

C

{
sP (z) z ∈ {z1, . . . , zn}
0 else

where C =

n∑
i=1

sP (zi).

Since S+(Q) = {z1, . . . , zn}, every such finite join is compact. Also, Q v P .
Suppose that T ∈ I(M,V, c) is such that Q v T for every Q ∈ JP . This implies that:

S+(P ) ⊂ S+(T ),

as the latter set contains S+(Bz,P ) = {z} for every z ∈ S+(P ). Also, the two problems must be
compatible, as T is assumed to be compatible with every S+(Bz,P ). Therefore, P v T , which
implies that P is a limit of the directed set JP .

We now want to use the lattice I(M,V, c) to understand programs, which applies in the case
that M is a UTM. In aid of this, the following definition embeds codes w into the lattice.

Definition 5.16. For any w ∈ C (V, c), define JwK ∈ I(M,V, c) to be supported on all of S,
and have the target state of belief yt,x = ∆steptM (x + w). That is, for the two cases of z ∈ S
define the target distribution to be exactly what makes w a solution:

y(a, t, x) = πtape
a ∆steptM (x+ w), a ∈ Z

y(state, t, x) = πstate∆steptM (x+ w).
(21)

As defined, JwK is an equivalence class. Picking a representative amounts to picking a
distribution s which is supported on the whole of S.

4The meaning of “effectively given” is left deliberately vague.
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Having embedded codes into the lattice I(M,V, c), the following proposition expresses a kind
of duality between codes w ∈ C (V, c) and inference problems.

Proposition 5.17. The function J−K defines a Galois connection between programs and infer-
ence problems, in the sense that:

w ∈ W0(P ) ⇐⇒ P v JwK.

Proof. Suppose that w ∈ W0(P ). Automatically, S+(P ) ⊂ S+(JwK) = S, so we need only verify
that they are compatible. This is the requirement that the target state yP (z) = yJwK(z) for each
z ∈ S+(P ), but by the definitions of (21) this is precisely the requirement that w is a solution
to P .

For the reverse implication, we use Proposition 5.5, which implies that:

W0(P ) ⊃ W0(JwK).

Again, by definition w ∈ W0(JwK), so we win.

Remark 5.18. This proposition fits with our inspiration from algebraic geometry: to fully
understand the structure of the set of codes on a given machine, we have to consider “non-
closed points” — and we add in the non-closed points by considering equations that cut out
subsets of the ambient space (affine n-space, or the code space W). Indeed, in the topological
version of specialisation outlined in Remark 5.3 (which doesn’t include the upper bound ⊥),
closed points are maximal elements under v. The elements JwK are also maximal, in the sense
that, for P ∈ I(M,V, c):

JwK v P ⇐⇒ P = ⊥ or P = JwK. (22)

Therefore, the map J−K corresponds closely to the inclusion

MSpecA ↪→ SpecA,

of the closed points into the full spectrum. Compact inference problems correspond to finitely
generated ideals. In our logical interpretation, (22) shows that JwK are the atoms in the lattice
of propositions [DP02, §5.2].

Having interpreted synthesis problems on a UTM as a semantics of programs (in the sense
of Scott), the compact problems provide a stock whose geometry we readily understand — via
Theorem 4.24. The process of approximation in Proposition 5.15 is analogous, in the discrete
version of this theory, to expressing the graph {(x, Tx) | x ∈ Σ∗} of a program T as a union of
its finite subsets:

{(x, Tx)} = {x1, Tx1} ∪ {x2, Tx2} ∪ . . .

Using our results on Singular Learning, we can do better. The data of an inference problem
contain more than a specification of its solutions, as they package information about the learning
process. To understand the semantic content of this approximation, we borrow from Turing. In
this remark, we will stick to the case of program synthesis on a pseudo-UTM, but the ideas are
not specific to this setting.
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Remark 5.19 (Compact approximation is education). The document [Tur04] is Turing’s inves-
tigation of the “question as to whether it is possible for machinery to show intelligent behaviour”.
He offers the following:

If we are trying to produce an intelligent machine, and are following the human model
as closely as we can, we should begin with a machine with very little capacity to carry
out elaborate operations or to react in a disciplined manner to orders (taking the form
of interference). Then by applying appropriate interference, mimicking education, we
should hope to modify the machine until it could be relied on to produce deliberate
reactions to certain commands.

This is particularly interesting to us as by “interference”, Turing means “provision of informa-
tion”, which he calls paper interference. He proposes that we start with a random, but sufficiently
large, architecture5, and modify it by paper interference to mimic the required behaviour [Tur04,
§8].

This model of education provides an interpretation of compact approximation. We start with
a random code w0 ∈ C (V, c) = W, which we see as a solution to the underspecified inference
problem > (Definition 5.1). Then we consider a chain of specialisations, where each one adds a
single constraint.

> = P0 v P1 v P2 v . . . (23)

Each constraint corresponds to a tighter specification of the function which we demand the
solution compute. Therefore, at each stage the solution set (possibly) shrinks:

W =W0(>) ⊃ W0(P1) ⊃ W0(P2) ⊃ . . .

and the Bayesian posterior concentrates around the smaller set. As a proxy for this kind of
concentration, we have used the expected free energy, which measures the (minus log) average
of the posterior around a point — this is discussed in more detail in Appendix A. For large
sample sizes, the free energy is controlled by the RLCT, and solutions with a smaller local
RLCT will be favoured by the posterior.

In general, by Proposition 5.5 we expect that at certain stages the specialisation Pn v Pn+1

will increase the RLCT:
RLCTW(Pn;ϕ) < RLCTW(Pn+1;ϕ). (24)

Let wn and wn+1 be the solutions which achieve the minimum of Lemma 3.15, so that

RLCTW(Pn;ϕ) = RLCTNwn
(Pn;ϕ),

for a small neighbourhood Nwn (likewise for n+ 1). The inequality (24) implies that wn will be
the favoured solution to Pn, but not to Pn+1. By Section 4.3 and Proposition 4.19, the change to
a solution with larger RLCT can be interpreted as an increase in the complexity of the solution.

Supposing that our learning machine obtains a sequence of solutions w0,w1,w2, . . . , the
geometric information in the fibre ideals IPi encodes the process of refinement in the sequence
of solutions — or, in Turing’s language, the increasing organisation of the machine. By the
analysis of Appendix A the dynamical content of this process is a sequence of second-order
phase transitions.

5Turing’s formulation of “B-type machines” is remarkably similar to a neural network.
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This is compact approximation. Compact, because after n steps in (23), meaning n paper
modifications, we refine our machine to the solution of a compact inference problem Pn, which
applies n constraints:

|S+(Pn)| = n.

If the desired end result of the education process is a program w, then what we have described
is a directed limit:

∞∑
i=0

Pi = JwK.

To conclude, we sketch another example, where our proto-semantics could be used to distin-
guish, rather than identify, two algorithms.

Example 5.20. Fix a pseudo-UTM U , which we assume to be sufficiently powerful to encode
both the Karatsuba and ordinary multiplication algorithms [Ber01, KO62], and let w1 and w2

be their respective codes. Certainly these codes are syntactically different, but this doesn’t
necessarily illuminate the qualitative difference in their ideas (semantics). For example, it is not
immediately clear that the difference isn’t of the same kind as Example 5.13.

However, given that the two algorithms are indeed essentially different, if P is an inference
problem to which w1 and w2 are solutions, the local geometry of KP (or IP ) around w1 and
w2 will differ. If we view programs as the limit of a learning process, as in the previous remark,
then this difference encodes a qualitative difference between the algorithms. The programs will
be learned differently, so they are different.

Karatsuba multiplication is faster, but only for large numbers [KO62]. As such, by varying
the inputs and timeouts for the synthesis problem P , one or other of the codes w1,w2 may
be the only solution. For example, on small numbers there will be a timeout for which w1 is
not a solution, and vice-versa for large numbers. Understanding the way in which varying the
inference problem varies the solutions is the purpose of the lattice I(U , V, c). For example, the
intersection Jw1K ∩ Jw2K is an inference problem lax enough so that both codes are solutions,
and the same is true for any P for which P v Jw1K ∩ Jw2K.

We claimed, in the introduction, that by viewing programs as the limit of a learning process,
we can use SLT to understand semantic differences between programs. This section approaches
that goal, starting from Scott’s axiom that the objects of our theory should be complete lattices.
In this case, the elements of I(M,V, c) are viewed as approximations to codes w ∈ C (V, c). With
this in mind, program synthesis is equivalent to computation of a program (in the language of
[Sco77, pp.173-174]).

We have enriched Scott’s lattice by linking it to algebraic geometry, and Watanabe’s insights
[Wat09] allow us to extract information about how the learning process will play out in practice.
This can help us to understand qualitative differences between programs, as in Example 5.20.

On the other hand, it is natural to understand elements of a set as potential singularities of
some function [KS08, p.10]. The geometric perspective we provide on program synthesis realises
this, where a code (program) w is a singularity of the KL divergence associated to any inference
problem where P v JwK. Apart from being useful in a practical sense, in order to synthesise
programs, we have argued that this perspective can provide semantic information about codes.
To realise this, we need to pick an inference problem, in order to produce the ideal IP . This
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Figure 11: Two non-isomorphic germs of some analytic function K, with vanishing set marked
in green.

is the purpose of the lattice, which makes clear the relationships between different choices of
inference problem P .

Of course, the fact that we can define the lattice does not mean that it has any meaning.
However, given that its structure matches that of lattices in program semantics [Sco77], logic
(Remark 5.12) and geometry, it appears that this structure is somehow canonical. Beyond this,
the interpretation of Remark 5.19 fits into our claim that we should understand programs as the
limit of a learning process.

The discussion of this section offers directions for future work. Most importantly, we are
yet to consider morphisms of inference problems. Continuous functions on lattices are central
to Scott’s work, and morphisms between geometric objects are central in algebraic geometry.
Applying techniques from either of these areas to program synthesis could be very interesting.
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A Thermodynamics and Phase Transitions

As we briefly alluded to in Section 3.1, there is a strong analogy between statistical learning and
thermodynamics. In this section, we will make this analogy more precise, in order to discuss
phase transitions. Speaking loosely, the idea is to understand the way that the learning machine
chooses between solutions that are different in kind, as hyperparameters of the problem or
estimator are changed. This matches our intention from the introduction. We want to distinguish
between semantically different solutions to some inference problem, and thermodynamics allows
us to interpret these solutions as phases of a physical system. Given the discussion of the
previous section, we will focus on a hyperparameter which switches constraints on or off, like α
in Example 4.8.

Before we can think about learning and inference in this context, we will do significant
violence to the deep theory of thermodynamics and statistical mechanics, in order to give a brief
overview of the terms of reference. A systematic reference is [Cal85], and [Pen05, Chapter 27]
provides an excellent intuition for the idea of coarse graining, which we will use here.

The theory of thermodynamics deals with the macroscopic properties of a system, measure-
ments of which are “extremely slow on the atomic scale of time, and ... extremely coarse on
the atomic scale of distance.” [Cal85, p.5] Imagine, for example, the temperature of a volume
of gas, as opposed to the momentum of a specific particle. The microstate of such a system,
which might have on the order of 1024 coordinates, is rapidly changing, but the macroscopic
coordinates — energy, temperature, volume — are chosen to remain relatively stable. We can
interpret this, following [Pen05, §27.3], as dividing the phase space of the system into boxes of
macroscopically indistinguishable states. As such, everything else being equal, the system will
be found in the box with the largest volume. We quantify this using the entropy: for a state
R, we define SR = −kB log VR, where VR is the phase-space volume of all the microstates with
macrostate R, and kB is a constant. With this definition in hand, the vagaries of our discussion
become less important. As Penrose argues in §27.4, the logarithm in the formula means that
the entropy is not sensitive to the specific coarse graining we choose.

Figure 12: A coarse graining of some phase space, and some possible microscopic state transitions
of the associated system. With high probability the system will end up in the box with the largest
phase space volume.
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Thermodynamics Statistical Learning

Phase space Code space W

Energy H(w) := nKn(w)− 1
β logϕ(w)

Boltzmann distribution Bayesian posterior

Macrostate R Neighbourhoods Nw of solutions w ∈ W0

Microscopic state transitions Hamiltonian Monte-Carlo

Table 1: A thermodynamic dictionary for Singular Learning Theory.

We can match this formulation with our theory of statistical learning, using a canonical
ensemble. The only difference is that now the energy of microstates is allowed to vary, so we
use a probability measure on the phase space, where a microstate x with energy Ex is assigned
probability proportional to e−Ex/(kBT ). This is the Boltzmann distribution [Cal85, Chapter 16].
Then, the relevant “potential” associated to a macrostate R is (writing β = (kBT )−1):

FR(T ) := −kB log

∫
x∈R

dx e−βEx .

This is termed the Helmholtz free energy6, which we recognise as the same sort of free energy
integral we have already considered. To match it up more precisely, Table 1 provides a thermo-
dynamic dictionary for SLT, following [Mur20a]. In particular, the family of microstates that the
thermodynamic system transitions through could correspond to the family of samples generated
by a Hamiltonian Monte Carlo process (Remark 3.4).

With this analogy in mind, we can reason about different kinds of solutions, rather than
sticking to specific points in the code space W. As for the canonical ensemble, the learning
machine will pick the solution with the smallest local free energy: but this choice may vary as
hyperparameters of the learning problem are changed. The right formulation of this is in the
language of phase transitions.

Example 4.8 provides a good intuition for this concept. At α = 0, define two solutions
ŵ0 = (1, 1) and ŵ1 = (0, 1) of the inference problem P0. Recall that these values of (h, k) ∈ [0, 1]2

correspond to believing, respectively, that the initial tape configuration is (where the underline
indicates the head position):

. . . � 2AAA� . . .

. . . � 0AAA� . . .

Then, after two time steps the configurations will be:

. . . � 1AAA� . . .

. . . � 0AAA� . . .

6Here the only coordinate that F depends on is T . We can introduce others, say a volume V , which provide
their own version of coarse graining by restricting the integral to V (x) = V .
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Figure 13: A plot of the free energy integrated over the boxes of a coarse graining on W.
Numerical integration uses SciPy [VGO+20].

The constraint applied by the problem P0 is that the tape square to the right of the head is an
A, so both ŵ0 and ŵ1 are solutions, but in different ways. This is what we mean by solutions
different in kind: we have a strong intuition that there may be qualitatively different ways of
computing the same function, ways that differ semantically. In the smooth case, we postulate
that kinds of solutions correspond to local minima of the KL divergence — this is vindicated
by the shift machine example. This is, granted, a simpler example than fully fledged program
synthesis, but we expect the shape of the general theory to be similar. We will refer to different
kinds of solutions as phases. This refers both to the solution ŵ, and to the associated macroscopic
state, identified with a neighbourhood Nŵ.

As we have discussed, the posterior favours ŵ0, which is detected by its smaller local RLCT.
By this we mean that, for large enough n ,the free energy around ŵ0 will be significantly lower
than around ŵ1, so a random sample from the posterior is overwhelmingly more likely to be near
ŵ0 (Figure 13). With respect to some coarse graining of the code space, we expect that system
will be found in the state, or phase, which contains ŵ0. Lemma 3.15 vindicates our assumption
that the specifics of this coarse graining are not especially important.

Now we imagine continuously changing the parameter α, which determines the weighting
over the inputs on squares 2 and 3:

s(x) = (1− α) · (A,A) + α · (A,B).

Evaluated on the second input (which we called x(1) in Example 4.8), the respective tape con-
figurations after two time steps are:

. . . � 1AAB� . . .

. . . � 0AAA� . . .

Therefore, for any α > 0, the “preferred” phase ŵ0 is no longer a solution, so as we continuously
change α, there is some value at which the macroscopic phase of the system changes to ŵ0. This
is a phase transition. The reason that this process is interesting is that, at least for small enough
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α, the “identity” of the phase ŵ0 is preserved, as a local minimum of F . We can demonstrate
this as follows. First approximate the local free energy F̄i around ŵi as [Wat13]:

F̄αi (n) ≈ nβKα(wi) + λi log(n) + (θi − 1) log log(n).

(Roughly, this comes from applying the usual asymptotic methods to Kα(w) −Kα(wi).) Here
the local RLCT (λi, θi) is of the level set:

{w | Kα(w) = Kα(wi)},

and as such might vary with α. However, since λ is rational and F varies continuously with α,
λi is locally constant (likewise θi is an integer). Since wi is a local minimum of Kα, it is a local
minimum of F̄ as claimed. Then, as we raise α, the local (and global) minimum of F at ŵ0

bifurcates into two, around the two phases. This identifies the phase transition as second-order.
The crux of this example was that Pα adds constraints not present in P0, so we have a

specialisation P0 v Pα. More generally, suppose that Q0 v Q1 is some specialisation, and that
Q0 admits simpler solutions than Q1, in the sense that:

RLCTW(Q0;ϕ) < RLCTW(Q1;ϕ).

In full generality the RLCTs may be equal, but using our analysis of the Kolmogorov complexity,
it is reasonable to consider a situation where the more specific problem requires a more complex
(longer) program. Let ŵi ∈ W be the solution of Qi which realises the minimum in the statement
of Lemma 3.15. That is, for a small neighbourhood Ni of ŵi:

RLCTW(Qi;ϕ) = RLCTNi(Qi;ϕ).

Now we define an inference problem Qα, for α ∈ (0, 1), which has the same support and target
state as Q1, but with weighting:

sα(z) = (1− α)s0(z) + αs1(z).

Then we have precisely the same situation as our shift machine example. At α = 0 both ŵ0 and
ŵ1 are solutions, as P0 v P1. Since the local RLCT of ŵ0 is smaller than that of ŵ1, the former
is favoured by the posterior, and we have a unique local minimum of the free energy. Increasing
α slightly, the minimum bifurcates as ŵ0 is no longer a solution, but maintains its identity as a
phase.

Example A.1. In a synthesis problem, specialisation corresponds a tighter specification of the
synthesised program. We can return to the problem detectA of Example 4.29 to illustrate this.
Recall that, in the general case we bounded the RLCT by observing that a solution w can vary
within a codimension-12 submanifold ofW, which we schematically represented by the following
table:

� A B

reject (�, reject,−) (−, accept,−) (B, reject, 1)

accept (−, accept,−) (−, accept,−) (−, accept,−)
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Now suppose that detectA′ is the inference problem defined in the same way, but limiting
the input strings to length one. This relaxes the constraints on our solution, as the simulated
machine Mw no longer needs to scan the whole string. Before, we required that δ3(B, reject) = 1,
so that Mw moves rightwards through the string. If this is no longer necessary, a new table
could be:

� A B

reject (�, reject,−) (−, accept,−) (B, reject,−)

accept (−, accept,−) (−, accept,−) (−, accept,−)

(25)

This decreases the codimension of the submanifold in question, so that the new bound is:

RLCTW(detectA′;ϕ) ≤ 5.

This is the situation we have discussed. Increasing the bound on the lengths defines a special-
isation detectA′ v detectA, which we expect will increase the RLCT. We can impose these
restraints continuously, by defining a family of weightings sα(x) over the inputs x ∈ {A,B}∗:

sα =
1− α

2
· [A+B] +

α

b

b∑
l=1

∑
x∈{A,B}l

2−l · x.

Let ŵ0 be the solution of detectA′ described by (25) with δ3(B, reject) = 0. Let ŵ1 be identical,
apart from setting δ3(B, reject) = 1. For α small and positive, ŵ1 is not a solution, but fails
only for a small number of samples from the true distribution q — as the weighting on sequences
longer than 1 letter is small. As such, at α = 0 we have a local minimum of the free energy
around ŵ0, which undergoes a second-order phase transition for α > 0.

Semantically different solutions wi ∈ W0 have different local geometry, as detected by the
germs (wi,K). This implies that they are learned differently, as discussed in the earlier sections.
As we add constraints to a synthesis problem, the algorithm required to solve it may change:
if the timeouts get shorter, then we might require a more efficient algorithm. The argument
of this section demonstrates that the passage from a simpler to a more complex solution is a
second-order phase transition.
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