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Abstract

Quantum error-correcting codes are necessary for realistic quantum computation. Topological quantum

error-correcting codes, such as the toric code, represent the primary candidates for physically implementing

error-correction. The toric code subspace can be produced by the Turaev-Viro-Barrett-Westbury topological

quantum field theory over the spherical fusion category of Z2-graded vector spaces, however this model

fails to adequately treat the projection mapping that is a key component of any quantum error-correction

process. It was shown by Carqueville, Runkel and Schaumann that the Turaev-Viro-Barrett-Westbury

topological quantum field theory is equivalent to the orbifold of the Reshetikhin-Turaev defect topological

quantum field theory over the category of finite-dimensional vector spaces. This defect theory contains

richer structure, and we investigate the utility of this structure in representing the projection map for the

toric code. The projection map for the toric code can be naturally considered as the composition of two

component projections. We show that the morphism defining the orbifold of the defect theory corresponds

precisely to one of these projections acting on the image of the other.
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Chapter 1

Introduction

The physical realisation of quantum computers would make tractable problems believed to be intractable

on classical computers. One key example of this is in simulating locally-interacting quantum systems, which

is known to take exponential time on a classical computer [Fey99; Llo96]. Such simulations could have

immediate and lasting benefit for development of quantum and other technologies.

However, for meaningful simulations and other algorithms to become feasible to implement in reality, quan-

tum computing architectures need to be scaled up in a robust fashion. Inherent to any architecture built

from quantum systems is the phenomenon of decoherence: the loss of information stored in the system due to

interactions with its environment. Fortunately, a key result commonly known as “the Threshold Theorem”

explains how the stored information can be protected provided the rate of error in the quantum architechture

is below a specific threshold error rate [AB08]. The information is protected by encoding, via a Quantum

Error-Correcting Code (QECC), information distributed across n physical qubits into information stored in

k logical qubits where k < n. The existence and early examples of such codes were detailed by Calderbank

and Shor [CS96], as well as Steane and others [Ste96; Got97].

In a landmark paper [Kit03], Kitaev introduced the toric code, a novel QECC defined for a qubit lattice

arrayed on a torus that encodes the information of the logical qubits using the topology of the torus, producing

a code robust to local errors. Under certain assumptions, the toric code, or rather its planar cousin the surface

code, represents one of the leading choices of quantum error-correcting codes to be implemented in a physical

architecture, with error threshold approaching 1% [FSG09]. The invention of the toric code commenced the

study of topological quantum computing as a significant area of research within the quantum computing

community. Currently, the search for new, high quality error-correcting codes is laborious, a problem that

will be exacerbated as quantum architectures continue to get larger, or start to be built from more exotic

quantum systems corresponding to non-trivial anyon models (such as those required for universal topological

quantum computation [FLW02]). It seems likely that a more general approach will be useful as the numbers,

and composition, of qubits in physical hardware progress.

4



Another significant component of any practical large-scale quantum computer, just as with any classical

computer, is a resource-efficient implementation of any program onto the specific architechture of the com-

puter, via a program compiler. Different error-correcting codes have different properties, and as such some

may be more suitable for certain aspects of a computation than others. Moreover, different codes require

different resources, for example, numbers of physical qubits and physical qubit operations to perform differ-

ent logical quantum circuit gates. A key feature of any quantum compiler will necessarily be the ability to

coherently map between different error-correcting codes on the same physical architecture (Chapters 5 and

6 of [NM+19] provide a thorough overview and list of resources relating to the current state of research on

quantum compiler optimisation).

So, does there exist a model for quantum error-correction that is general enough to naturally encapsulate

all physical realisations of qubits (or qudits), both topological and otherwise, while maintaining all desired

properties of known error-correcting codes and has predictive power for what new codes will look like? This

is an open question. The standard circuit model for quantum computation, though widely established,

seems to be insufficiently general to treat topological quantum error-correction in a natural way, and other

models, such as adiabatic quantum computing or quantum Turing machines, are unsuitable in other ways.

One context in which it is known that topological quantum error-correcting codes can be studied, and

the approach taken in this thesis, is that of Topological Quantum Field Theories (TQFTs) [Wit89; LW05;

FKW02].

There are different methods of formulating TQFTs and the method taken in this thesis is the functorial one:

a 3-dimensional TQFT is defined to be a functor

ZC : BordC3 → Vectk

from some category of 3-bordisms (surfaces and homeomorphism classes of 3-manifolds between them, pos-

sibly with extra structure) to the category of (infinite dimensional) k-vector spaces (we will take k to be C

going forward). The superscript C denotes the dependence of the bordism category BordC3 on a category C,
which, in the present context, is usually taken to be a spherical fusion category or a modular tensor category

and can be regarded as the choice of anyon model for the quantum system being represented by the TQFT.

Due to the categorical nature of TQFTs, they may provide ample machinery for describing maps between

error-correcting codes.

It has been shown that the Turaev-Viro-Barrett-Westbury TQFT [TV92; BW96], based on the category

of Z2-graded vector spaces and evaluated on the torus, produces the code space for Kitaev’s toric code;

see [KKR10; BK12] and references therein. However, the error-correction process requires more than just

knowledge of the code space, and depends rather heavily on knowledge of a projection map whose image is

the code space. The aim of this thesis is to reproduce both the code space and projection map

within a TQFT context. That is, we aim to identify a surface and morphism in an appropriate bordism

category of a given TQFT that evaluate to the code space and projection map of the toric code. Despite

some stark similarities between this projection map and the method by which the generalised version of

the Turaev-Viro-Barrett-Westbury TQFT, called the Turaev-Viro graph TQFT, evaluates a surface, there
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seems to be no natural way of producing the projection map from a morphism within Bord
col(Z2- vectC)
3 ,

the bordism category for the Turaev-Viro graph TQFT over Z2- vectC. Thus, the search for an appropriate

TQFT must be broadened.

There is in fact a more fundamental TQFT than the Turaev-Viro-Barrett-Westbury TQFT, namely the

Reshetikhin-Turaev TQFT. It is known that for a given modular tensor category C, the Turaev-Viro-Barrett-

Westbury TQFT over C evaluated on a bordism M is equivalent to the product of the Reshetikhin-Turaev

TQFT also over C evaluated on M with both possible orientations [Theorem VII.4.1.1, Tur16]. Furthermore,

there is another known result that relates the Turaev-Viro graph TQFT over a spherical fusion category

S to the Reshetikhin-Turaev TQFT over the categorical centre of S, Z(S) [Theorem 17.1, TV17]. Both

these results indicate that perhaps the Reshetikhin-Turaev TQFT is a more suitable candidate for modelling

quantum error-correction. At the very least, the Reshetikhin-Turaev TQFT warrants further investigation

in this context.

Our investigation actually proceeds by considering an extension to the Reshetikhin-Turaev TQFT. In a paper

due to Carqueville, Runkel and Schaumann [CRS18], it was shown that the Turaev-Viro-Barrett-Westbury

TQFT based on any spherical fusion category is equivalent to an orbifold of a different theory: the defect

Reshetikhin-Turaev TQFT based on vectC (where vectC denotes the category of finite-dimensional C-vector

spaces). The defect Reshetikhin-Turaev TQFT is a functor that acts on surfaces and (homeomorphism

classes of) 3-manifolds that contain specified 0-, 1-, 2-, and 3-dimensional labelled submanifolds, collectively

known as defects, in a compatible way. Within this thesis, these defects will be labelled by data internal

to the category vectC. The orbifold of the Reshetikhin-Turaev defect TQFT based on vectC proceeds by

evaluating an appropriately decorated cylinder over the surface under consideration. Certain elements of

the defect data are selected to label each 3-, 2-, 1- and 0-stratum of the Poincaré dual of the cylinder being

evaluated. When this orbifold data is selected based on a spherical fusion category, such as Z2- vectC, then

the orbifold produces the Turaev-Viro-Barrett-Westbury TQFT over Z2- vectC.

Just as the evaluation of the Turaev-Viro-Barrett-Westbury TQFT over Z2- vectC is strongly reminiscent

of the projection map for the toric code (or part thereof), so too is the orbifold map of the Reshetikhin-

Turaev defect TQFT acting on the torus, with orbifold data associated to Z2- vectC. This time however, the

projection map is actually produced from a valid morphism in the bordism category of the Reshetikhin-Turaev

defect TQFT. Furthermore, it is possible to analyse this morphism from the point of view of the component

parts that make up the projection map in the toric code, which may prove fruitful for application of the

Reshetikhin-Turaev defect TQFT to other topological quantum error-correcting codes. Another advantage

of the orbifold construction is its natural ability to handle different orbifold data, corresponding to different

spherical fusion categories (and hence different anyon models), in separate localised areas of the surface being

evaluated. This ability may also have utility in modelling a map between different error-correcting codes

within the same physical architecture.

While this thesis does not fully answer the question posed above regarding a general model for quantum

error-correction, it does take a step down what seems to be a viable path towards producing such a model.

Any practical implementation of any quantum error-correcting code requires a detailed understanding of
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both the code space and the projectors associated to the code. A general theoretic approach to constructing

these projectors for general anyon models and surfaces could play a key role in the development of topological

error-correcting codes. Typically, the literature that develops topological error-correction within a TQFT

framework pays little attention to these projectors. This thesis also represents the first use of defect TQFTs

and their orbifolds to produce projection maps for quantum error-correcting codes. It would be exciting to

see other error-correcting codes, such as the colour code or the surface code, treated similarly within the

framework of the Reshetikhin-Turaev defect TQFT.

This thesis is structured as follows. Chapter 2 introduces quantum error-correcting codes in general and

the toric code in particular, laying the notational and conceptual foundations for comparison to the Turaev-

Viro graph TQFT and Reshetikhin-Turaev defect TQFT in Chapter 5 (which represents the culmination

of this thesis). Chapter 3 introduces the Turaev-Viro graph TQFT and Reshetikhin-Turaev defect TQFT

via the bordism categories Bord
col(C)
3 and Borddf

3 (D) respectively, and Chapter 4 introduces the orbifold

construction as well as providing intuition behind the use of the terminology ‘orbifold’ in this case. The

full treatment of the content of both these chapters is technical and treated in the existing literature, so

many of the details are deferred to the appendices or referenced literature. As mentioned above, Chapter 5

is concerned with translating the toric code subspace and projection map from Chapter 2 into the context

of TQFTs. Firstly, the torus is evaluated by the Turaev-Viro graph TQFT over Z2- vectC which serves the

dual purpose of convincing the reader that this TQFT does indeed produce the code space for the toric code

as well as illuminate the similarities to the projection map. Then, essentially the same evaluation occurs for

a specific example in the context of the Reshetikhin-Turaev defect TQFT over vectC via the orbifold of the

torus and the advantages of this model are discussed.
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Chapter 2

Quantum Error-Correction

Just as with classical error-correction, there exists an established general theory of quantum error-correction

with many useful results such as outlining the conditions that a quantum error-correcting code must satisfy

in order to correct a given set of errors (see for example [Chapter 10 NC02] upon which much of the first half

of this chapter is based). However, much of this formalism is not relevant to this thesis, and so only the key

aspects are presented here. More specifically, this chapter commences by detailing the required definitions

and theorems that outline and emphasise the role in the error-correction process played by the projection

map onto the code space of a given quantum error-correcting code. Next, a class of quantum error-correcting

codes, called stabiliser codes, is quickly introduced since the toric code is a member of this class. The key

section of this chapter is Section 2.2 which describes the toric code for a general lattice, as well as through

an example for a lattice arising from the dual of a triangulation of the torus. The primary aim of this section

is to formalise the toric code in such a way to make as clear as possible the links to the Reshetikhin-Turaev

defect TQFT in later chapters.

2.1 Quantum Error-Correcting Codes

For the purposes of the exposition of this thesis, we define quantum error-correcting codes below. Throughout

this section, H denotes a finite-dimensional Hilbert space.

Definition 2.1.1. A quantum error-correcting code (QECC) is a pair (Hcode, Pcode) where Hcode,

called the code space, is a subspace of a Hilbert space H, called the state space, and Pcode : H → H is a

projector onto Hcode, that is Pcode(H) ⊆ Hcode.

Remark 2.1.2. (i). Often throughout this thesis, we will not explicitly see the inner product structure on

H, and hence H is largely presented simply as a vector space.

(ii). The literature commonly presents the theory of quantum error-correcting codes with the projector
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Pcode not included in the definition of a QECC but mentioned only as a remark. It has been included here

to emphasise the role it plays in the encoding procedure of Hcode, the error-correction procedure (as we shall

see shortly), and in later chapters of this thesis.

(iii). The quantum error-correction literature often uses “ket”-notation |ψ〉 for elements of the state and

code spaces, a convention we do not adopt here for the sake of consistency across all chapters. Elements of H

and Hcode will be written as lower-case Latin letters, for example x, y, etc, possibly bold-faced or underlined

in the case of basis vectors.

If x ∈ H is a unit of information that it is desirable to protect against errors in the quantum system, then

Pcode acts as the encoding map, to produce the encoded unit of information Pcode(x) ∈ Hcode. Due to the

properties of quantum mechanics, we thus require Pcode to be a unitary map H → H. The notion of errors

can be made precise via the following definitions.

Definition 2.1.3. A quantum operation is a map E : H → H such that for all x ∈ H

E(x) =

n∑
i=1

Ei(x)

for some finite set of linear operators Ei : H → H, 1 ≤ i ≤ n, called operation elements, that satisfy

n∑
i=1

E†iEi ≤ I

where I is the identity map. If the above equation is an equality, then the quantum operation is called

trace-preserving.

A quantum operation E is called an error if

E(x) /∈ Hcode

for at least some x ∈ Hcode. For a given error E , an error-correction procedure is a trace-preserving

quantum operation R such that

(R ◦ E)(x) ∝ x (2.1)

where the proprtionality here is dependent only on the error E , specifically whether or not it is trace pre-

serving, and no on the specific state x.

The above formulation of an error-correction procedure can be regarded as follows. The quantum operation

E is an error if it “rotates” an element x ∈ Hcode out of Hcode. Then the quantum operation R corrects this

error if it projects the result of this rotation back to something equivalent to x in the code space. There is

the possibility that either E(x) = y or (R ◦ E)(x) = y where y ∈ Hcode and y is distinct from x (and not
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proportional to it). In this case, a logical error is said to have occurred. Such errors are typically hard to

correct.

The following theorem, and in particular its proof, embody the key ideas of how the projector Pcode and the

error-correction process are related.

Theorem 2.1.1. [Thm 10.1, NC02] Let (Hcode, Pcode) be a QECC and suppose E is a quantum operation

with elements {Ei}ni=1. There exists an error-correction procedure R that satisfies Equation (2.1) if and only

if

PcodeE
†
iEjPcode = αijPcode

where (αij) is a Hermitian matrix over C.

The proof of the theorem makes use of the following lemma and theorem (see the listed reference and page

numbers for their proofs):

Lemma 2.1.2. [Thm 2.3, NC02] Let A be a linear operator on a vector space V . Then there exists a

unitary operator U and unique positive operators J and K such that

A = UJ = KU

where J and K are defined by J =
√
A†A and K =

√
AA†.

Theorem 2.1.3. [Thm 8.2, NC02] Suppose {E1, ..., Em} and {F1, ..., Fn} are operation elements defining

quantum operations E and F respectively. We can assume that m = n (otherwise append some 0 operators

to the smaller of the two sets). Then E = F if and only if there exist complex numbers uij such that

Ei =
∑
j uijFj and (uij) is an m×m unitary matrix.

Now to the proof of Theorem 2.1.1 (which has been modified slightly from the proof given in [Chapter 10,

NC02]). This proof is significant because it illuminates the role that the projector Pcode plays in the error-

correction process, specifically how it relates to the operation elements of the quantum operation R. It is

this relationship that justifies the projector for the toric code being the central focus in this thesis.

Proof. For the duration of this proof, the subscript ‘code’ will be dropped from Pcode for notational simplicity.

Suppose {Ei} is a set of operation elements for a quantum operation E satisfying

PE†iEjP = αijP

for some Hermitian matrix α = (α)ij . It follows that α can be diagonalised to some diagonal matrix with

real entries d = u†αu, with u unitary. Moreover, we can diagonalise α to a positive diagonal matrix d′ which

is related to d via the following

d = d′c
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where c is the diagonal matrix consisting of −1 and +1 entries such that dii = d′iicii and d′ii ≥ 0 for all i.

Thus, we can diagonalise α to d′ via

d′ = u†αuc†

Let Fk =
∑
i uikEi. By Theorem 2.1.3, the set {Fk} also describes E . We can then write

PF †kFlP = P
(∑

i

uikEi
)†(∑

j

uljEj
)
P

=
∑
i,j

u†ikuljPE
†
iEjP

=
(∑
i,j

u†ikαijulj
)
P

= dklP

= d′klcklP

= d′klP

where the last equality uses the fact that Peiθx = Px for all x in the state space and any phase factor eiθ.

Now let us consider the polar decomposition of the operator FkP . By Lemma 2.1.2 we can write

FkP = Uk

√
PF †kFkP

=
√
d′kkUkP

for some unitary Uk (not to be confused with the unitary u). We then define the projectors, for all k such

that d′kk 6= 0,

Pk = UkPU
†
k

=
FkPU

†
k√

d′kk

and note that these projectors define orthogonal subspaces, that is, for l 6= k, we see that

PlPk = P †l Pk

=
UlPF

†
l FkPU

†
k√

d′ll
√
d′kk

=
Uld
′
lkPU

†
k√

d′lld
′
kk

= 0

where the last equality follows from the fact that d′lk = 0 for l 6= k. Defining the correction procedure R by
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the set of operators {U†kPk}, we see that, for any x in the codespace,

R(E(x)) =
∑
kl

U†kPkFlx

=
∑
kl

U†kP
†
kFlPx (since x is in the codespace Px = x)

=
∑
kl

U†kUkPF
†
kFlPx√

d′kk

=
∑
kl

δkl

√
d′kkx

=
(∑

k

√
d′kk
)
x

∝ x

This finishes the first half of the proof, once we note that we can always append additional projectors to the

set {Pk}, in order to have a set of operation elements {U†kPk} that satisfies∑
k

PkUkU
†
kPk =

∑
k

Pk = I

Now, for the other direction, suppose {Ei} is a set of errors describing a quantum operation E that is

correctable by a trace-preserving error-correction operation R described by operation elements {Rj}. Define

a quantum operation E ′ such that

E ′(x) = E(Px)

Since Px is in the codespace for any x, we get that

R(E ′(x)) ∝ Px

In fact, we can show that the proportionality is constant and indpendent of x via the following argument.

Let x and y in H be arbitrary. Then consider

R(E ′(ax+ by)) = α(ax+ by)P (ax+ by)

= aα(ax+ by)Px+ bα(ax+ by)Py

where α(·) denotes the proportionality as a function of vectors. But quantum operations are linear, so

R(E ′(ax+ by)) = aR(E ′(x)) + bR(E ′(y))

= aα(x)Px+ bα(y)Py

Thus, by equating the above two expressions for R(E ′(ax+ by))

aα(ax+ by)Px+ bα(ax+ by)Py = aα(x)Px+ bα(y)Py
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we find that α must be a constant.

It follows from Theorem 2.1.3 that the operation elements {RjEi} are equivalent to the quantum operation

with the operation elements αP . Thus we have

RjEiP = βjiP

for βji ∈ C. We then get

PE†iR
†
kRkE

†
jP = β∗kiβkjP

=⇒
∑
k

PE†iR
†
kRkE

†
jP =

∑
k

β∗kiβkjP

=⇒ PE†i (
∑
k

R†kRk)E†jP =
∑
k

β∗kiβkjP

=⇒ PE†iEjP = γijP

where the last implication follows by noting that
∑
k R
†
kRk = I by trace-preservation and where γij =∑

k β
∗
kiβkj which is a Hermitian matrix.

Thus, we have seen that the error-correction procedure, if it exists, consists of operation elements PcodeU
†
k .

Hopefully this fact, along with the importance of Pcode as an encoding map, has successfully justified to the

reader the significance of Pcode in the definition of an error-correcting code.

Discussion of the general theory of quantum error-correction has been useful in establishing the importance

of the projector Pcode in the error-correction process, but the formalism of quantum operations will not be

needed for the remainder of this thesis. We do, however, need the formalism of stabiliser codes for treatment

of the toric code, and this is the subject of the next section.

2.1.1 Stabiliser Codes

The title ‘stabliser codes’ implies a relationship between these codes to stabilisers and orbits in group theory.

These codes are defined as the invariant subspace Hstab of a state space H under the action of a subgroup of

the generalised Pauli group (to be defined shortly), along with a projector Pstab built out of the generating

elements of this subgroup.
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Let us consider the following faithful representation of the Pauli group GPauli = 〈σ1, σ2, σ3〉:

Π : GPauli → G ⊂ U(2)

σ1 7→ X =

[
0 1

1 0

]

σ2 7→ Y =

[
0 −i
i 0

]

σ3 7→ Z =

[
1 0

0 −1

]

where G is simply the group generated by X,Y, Z and U(2) is the unitary group of 2 × 2 complex valued

matrices, which can be viewed as the allowed operation on a single qubit. We denote by I the identity matrix

in G. We note that X and Z anti-commute, this will be important.

We want to generalise the group G to be able to act on any number of qubits, which we do in the following.

Definition 2.1.4. For any n ∈ N, the generalised Pauli group, Gn, is given by the n-fold tensor product

of elements of G

Gn := {αA1⊗A2⊗ ...⊗An |Ai ∈ G,α ∈ {1,−1, i,−i}} ⊆ GL((C2)⊗n)

Definition 2.1.5. A stabiliser subgroup is a subgroup S of Gn such that (−1)I⊗n /∈ S and all elements

of S commute.

Remark 2.1.6. The criterion that (−1)I⊗n /∈ S guarantees that the eigenvalues for any g ∈ S are precisely

±1. This can be seen since the eigenvalues of X,Y, Z are ±1, so the only deviation from these values in an

n-fold tensor product must arise from the coefficient α. If there exists a g ∈ S with coefficient α equal to

either i or −i, then the product gg is (−1)I⊗n which is a contradiction. By similar reasoning, for any g ∈ S,

the element −g must not be in S, as the product (−g)g would give (−1)I⊗n.

We can now write down the definition of a stabiliser code.

Definition 2.1.7. Let S be a stabiliser subgroup of Gn. The associated stabiliser code is the quantum

error-correcting code (Hstab, Pstab) where

Hstab = {x ∈ H | gx = x, ∀g ∈ S}

Pstab =
1

2s

s∏
i=1

(I⊗n + gi)

where H = C2n is the state space, and s is the size of the set {g1, ..., g|S|} of generators for S.

There is a notion of independent generators for the subgroup S, based upon linear independence of vectors

in Z2n
2 corresponding to each g ∈ S (see [Section 10.5.1, NC02]), which allows one to obtain a minimal set
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of generators for S. We then define an [n, k]-stabiliser code as a stabiliser code (Hstab, Pstab) based on the

stabiliser subgroup S that has n− k independent generating elements. By the following proposition (again

see the given reference for the proof), we get that for an [n, k]-stabiliser code, Hstab is 2k-dimensional.

Proposition 2.1.4. [Prop 10.5, NC02] Let a stabiliser subgroup S be generated by n − k independent

elements. Then Hstab is 2k-dimensional.

2.2 The Toric Code

The toric code was introduced by Kitaev ([Kit03]) and marries together lattice models from condensed matter

physics with the stabiliser formalism for quantum error-correcting codes. The toric code is so named because

its initial presentation was defined via a lattice on a torus, but can be generalised to any closed surface, with

certain properties of the code, namely dimension of the code space, varying with the underlying surface. In

this section, we will also introduce the toric code via a lattice on a torus, and use the opportunity to set the

notational foundations for later chapters, so as to make the relationships between the toric code as presented

here, and the construction via TQFTs later, as clear as possible.

Let Σ denote the torus S1×S1, and let t denote a cellular decomposition of Σ, and t∗ its Poincaré dual. The

toric code can be defined for any cell decomposition, but in order to align more closely with later chapters,

we take as an example a triangulation t (in black) of Σ and its dual (in red) as shown in Figure 2.1.

Figure 2.1: Example Triangulation (black) of a torus and its dual (red)

Denote by t(2), t(1), t(0) the sets of 2-, 1- and 0-cells of t respectively. The toric code is a stabiliser code, with

the elements of the stabiliser subgroup SΣt
belonging to two types: those related to elements of t(0), called
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vertex operators, and those related to elements of t(2), called plaquette operators. The notation Σt is

to denote that the stabiliser subgroup is dependent both on the surface Σ and the chosen triangulation t.

Later in this section, we will define these operators equivalently using the dual of the triangulation, via the

equivalences (t∗)(0) ≡ t(2), (t∗)(1) ≡ t(1) and (t∗)(2) ≡ t(0). This equivalence is not explictly needed until it

is discussed further in Remark 2.2.2 below.

To start to make this more precise, we consider each element of t(1) (and hence also (t∗)(1)) as having a qubit

“attached”, that is, there is a C2 factor for each element of t(1). Letting n = |t(1)|, the state space of Σ with

the cell decomposition t is thus

HΣt
=
⊗
e∈t(1)

C2 ∼= (C2)⊗n

and the stabiliser subgroup SΣt
, defined below, will be a subgroup of the generalised Pauli group Gn which

acts on (C2)⊗n in the natural way. The vertex operators, denoted Av where v ∈ t(0), are defined to be

Av =
⊗

e∈t(1),v /∈e

Ie ⊗
⊗

e∈t(1),v∈e

Xe (2.2)

where v ∈ e denotes that v is an endpoint of e, and Ie and Xe denote that the operators I and X act on the

C2 factor associated to edge e. In words, the vertex operator is the tensor product of X operations on all

qubits incident to a vertex v and identity elsewhere. Typically, we shall drop the tensor product of identity

I over all other edges to write the Av more concisely as

Av =
⊗

e∈t(1),v∈e

Xe

The plaquette operators are denoted Bp with p ∈ t(2), and are defined similarly, with the convention of the

product of identities on all non-significant edges being implied:

Bp =
⊗

e∈t(1),e∈p

Ze

Here e ∈ p denotes that e is an edge that bounds a plaquette p.

The vertex and plaquette operators are defined for all v ∈ t(0) and p ∈ t(2) respectively (and equivalently for

their dual counterparts). The subgroup SΣt
generated by these operators is clearly a subgroup of Gn, and

is in fact a stabiliser subgroup (as per Definition 2.1.5) as can be seen by the following. It has already been

noted that X and Z anti-commute, however since any vertex v shares exactly two incident edges with the

boundary edges of an adjacent plaquette p, so Av and Bp have X and Z tensor factors anti-commuting in

two locations, and so Av and Bp commute overall. Any two vertex operators (respectively any two plaquette

operators) commute since X (respectively Z) commutes with itself. Any two operators defined with no

common edges trivially commute. The other criterion for SΣt
to be a stabiliser group, that (−1)I⊗n, is also

satisfied since all the Av and all the Bp have coefficient α = 1, as does any product of Av’s and Bp’s.
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We can also ask about a generating set of independent elements of SΣt (in the sense mentioned in the

previous section). Since X2 = Z2 = 1, we get the following relations∏
v∈t(0)

Av = I⊗n

and ∏
p∈t(2)

Bp = I⊗n

since in the product over all v in t(0), every edge e has X applied exactly twice by vertex operators, and

similarly for Z’s applied by Bp’s. Thus, it is possible to write

Av0
=

∏
v∈t(0),v 6=v0

Av

Bp0 =
∏

p∈t(2),p6=p0

Bp

for any choice of v0 ∈ t(0) and p0 ∈ t(2), meaning that not all Av’s are independent, nor are all the Bp’s.

However, the sets {Av | v ∈ t(0) \ v0} and {Bp | p ∈ t(2) \ p0} are independent, and we can write SΣt as being

generated by |t(0)|+ |t(2)| − 2 independent operators:

SΣt
= 〈Av, Bp | v ∈ t(0) \ v0, p ∈ t(2) \ p0〉

Moreover, by Proposition 2.1.4, this tells us that

dim(Hcode) = 2|t
(1)|−(|t(0)|+|t(2)|−2)

= 22−χ(Σ)

= 4

where χ(Σ) denotes the Euler characteristic of Σ, and the above has been written in this way to highlight

the dependence of Hcode on Σ, specifically on its topology.

The topic of diagnosing and correcting errors for the toric code and associated surface code is rich and its

research is onging. Despite this topic not being the direct focus of this thesis, some comments should be

made on the specific dynamics of how correction is related to the vertex and plaquette operators. The error

syndrome is defined for a certain state x ∈ HΣt
by “measuring” all of the operators, which corresponds

to determining the eigenvalues of each operator as they act on x. As we know, if x ∈ Hcode, then each of

these eigenvalues are +1, but if x ∈ HΣt \Hcode, one or more of the eigenvalues of operators will be −1 (in

fact (−1)-eigenvalues always occur in pairs). The “locations” of these (−1)-eigenvalues (i.e. the vertices or

plaquettes defining the operators that produce (−1)-eigenvalues) provide knowledge of how x ∈ HΣt
differs

from the elements of Hcode and what operations are required to project x into Hcode. It is this projection,
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Pstab(Σt), that is of interest for this thesis, and that we turn to next, using the theory seen in the previous

section.

Recall from Definition 2.1.7 that we can write Pstab from a choice of a set of independent generators of the

stabiliser group S ⊂ Gm as follows:

Pstab =
∏

g∈Gen(S)

I⊗m + g

2

where Gen(S) denotes the given set of independent generators for S. Thus, for the toric code, we have

Pstab(Σt) =
∏

v∈t(0)\v0

(I⊗n +Av)

2
·
∏

p∈t(2)\p0

(I⊗n +Bp)

2

for a given v0 ∈ t(0) and p0 ∈ t(2). In fact, the projector Pstab is equivalent to

P ′stab =
( ∏
g∈Gen(S)

I⊗m + g

2

)(I⊗m + g′

2

)

where g′ =
∏
g∈GenS g (simply expanding the products shows Pstab and P ′stab are equivalent). It will be more

beneficial for Chapter 5 to take Pstab(Σt) to also be defined over a not fully independent set of generators

(we use the same notation for the equivalent projector):

Pstab(Σt) =
∏
v∈t(0)

(I⊗n +Av)

2
·
∏
p∈t(2)

(I⊗n +Bp)

2

The order of the products does not matter due to the commuting properties of the operators. For ease of

notation, we will write

Pv =
I⊗n +Av

2
(2.3)

Pp =
I⊗n +Bp

2
(2.4)

It will also be useful to make the following definition:

Definition 2.2.1. Let A ⊂ G|t(1)| denote the group

A = 〈Av | v ∈ t(0)〉

We write

Pvert =
∏
v∈t(0)

Pv =
1

|A
∑
g∈A

g (2.5)

Pplaq =
∏
p∈t(2)

Pp (2.6)
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where |A| = 2|t
(0)| by definition of the Av. The aim is to investigate the nature of Pstab(Σt) by investigating

Pv and Pp. Both Pv and Pp have eigenvalues 0 and 1 only, with a 0 eigenvalue corresponding to a −1

eigenvalue for the Av or Bp, and hence an error by the informal discussion above.

Let us fix a basis for HΣt
as follows. Let ei0 and ei1 be the vectors

ei0 =

[
1

0

]

ei1 =

[
0

1

]

in the ith tensor factor of HΣt
= (C2)⊗n (this choice of basis corresponds to the “computational basis” of

{|0〉, |1〉} in ket notation). Let us then denote a basis of HΣt
as

BΣt = {ej | j ∈ {0, 1}n}

where ej = e1
j1
⊗ e2

j2
⊗ ...⊗ enjn . We then write an x ∈ HΣt

as

x =
∑

j=(j1,...,jn)∈{0,1}n
cjej

where the cj are scalars in C and are properly normalised as appropriate for a quantum state (that is,∑
j |cj |2 = 1). Now, let us establish some notation regarding the action of the Av and Bp on some basis

vector ej that will simplify the discussion below regarding the projections Pv, Pp, Pvert and Pplaq. Let v be

a vertex incident to edges corresponding to the k1, ..., ks tensor factors of HΣ(t). Writing kv for the vector in

{0, 1}n that has 1’s in the entries corresponding to k1, ..., ks and 0’s elsewhere, we can then define the action

of Av on ej as

Av · ej = ej+kv (2.7)

where the entry-wise sum of j and kv is modulo 2. For the plaquette operators, let p be bounded by edges

corresponding to the l1, ..., lr tensor factors of HΣ(t). Similarly to kv, we write lp for the vector in {0, 1}n

with 1’s in the entries corresponding to l1, ..., lr and 0’s elsewhere. Then the action of Bp on ej is

Bp · ej = (−1)j·lpej

where j · lp is the dot product with addition modulo 2 (i.e. the bitwise dot product). This dot product can

be viewed as counting (modulo two) how many of the entries of j corresponding to the l1, ..., ls are 1.
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The action of Pv on x =
∑
j=(j1,...,jn)∈{0,1}n cjej for some vertex v is then

Pvx = Pv

(∑
j

cjej

)
=

1

2

(∑
j

cjej +
∑
j

cj+kvej+kv

)
=
∑
j

cj+kv + cj
2

ej+kv

The action of Pp on x for some plaquette p is

Ppx =
∑
j

cj + (−1)j·lpcj
2

ej (2.8)

It is then clear that for Pvx = x, we require cj+kv = cj for all j, and for Ppx = x, we need j · lp = 0 mod 2.

Extending this reasoning to Pplaq, we get that Pplaqx = x precisely when x =
∑
j=(j1,...,jn)∈{0,1}n cjej such

that for each j with cj 6= 0, j · lp = 0 mod 2 for all p ∈ t(2). We write this more succinctly as

Im(Pplaq) = span
{

ej | j · lp = 0 mod 2, ∀p ∈ t(2)
}

To make a similar comment about Pvert recall that the operators Av for v ∈ t(0) generate a subgroup of SΣt ,

A. Then for Pvertx = x, x must satisfy the following condition: for every ej such that cj is non-zero in x,

then every element of the orbit A · ej appears in x with a non-zero scalar and moreover all of these scalars,

including cj , are equal. We write

Im(Pvert) = span
{ 1√
|A|

∑
e∈A·ej

e | ej ∈ BΣt

}

It is important to note for later chapters, that Im(Pplaq) and Im(Pvert) can be seen as “intermediate”

spaces between the state space HΣt
and the codespace. We can in general write the codespace Hcode =

Im(Pstab(Σt)) = Im(Pplaq) ∩ Im(Pvert), however to write down a specific basis and to get a full intuition

of this codespace, it is prudent to restrict ourselves to an example, namely of the toric code defined on a

triangulation of the torus as in Figure 2.1. Before we do, we reformulate the operators Av and Bp, and

consequently Pv, Pp, Pvert, Pplaq and Pstab(Σt), in a different but equivalent way using the dual t∗ of the

triangulation t.

Remark 2.2.2. The reasoning behind this reformulation is due to the fact that the operators Pvert and

Pplaq under this reformulation more closely resemble those operators constructed during the evaluation of

the Turaev-Viro graph TQFT and Reshetikhin-Turaev defect TQFT in Chapter 5. Ultimately, the operators

are equivalent in either formulation but a judgement was made to recast the operators here in order to make

the exposition in Chapter 5 as clear as possible. We also note that this reformulation could also be performed

by considering each of the generators Av and Bp as being multiplied by a specific unitary matrix (namely

a tensor product of Hadamards), but again this was deemed less optimal than the following discussion (for

20



more details about the equivalence of error-correction procedures under the multiplication by a unitary see

Theorem 2.1.3 or more appropriately, the corresponding theorem in [NC02]).

This reformulation writes down the generators Av and Bp in terms of elements of the dual t∗. As mentioned

earlier, the nature of the Poincaré dual provides the following equivalences: (t∗)(0) ≡ t(2), (t∗)(1) ≡ t(1) and

(t∗)(2) ≡ t(0). So we can consider the vertex operators Av defined for some v ∈ t(0) as equivalently being

defined by some v ∈ (t∗)(2), and similarly for Bp with p ∈ t(2). At the risk of causing confusion, despite

the element in the dual t∗ corresponding to the vertex v ∈ t(0), which is a “plaquette” in the dual cell

decomposition, we will still refer to the Av operators as “vertex operators” and similarly for the plaquette

operators Bp. The edges incident to a vertex v ∈ t(0) correspond to the edges bounding the plaquette

v ∈ (t∗)(2), and vice versa for the edges bounding p ∈ t(2) and the edges incident to the vertex p ∈ (t∗)(0).

Essentially, this reformulation just replaced t(0) with (t∗)(2), t(1) with (t∗)(1) and t(2) with (t∗)(0) in the above

discussion of the Av and Bp operators, and the projections Pstab(Σt), Pvert, Pplaq, Pp and Pv.

Figure 2.2: The transformation of a vertex operator from being defined by the triangulation to being defined

by the dual.

Figure 2.3: The transformation of a plaquette operator from being defined by the triangulation to being

defined by the dual.

We now commence a specific example in this reformulation.
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Example 2.2.3. Let us consider the triangulation t of the torus as given in Figure 2.1 (repeated below in

Figure 2.4 for convenience), or rather its dual t∗.

Figure 2.4: A triangulation, and its dual, of a torus.

Throughout this example we will represent all vectors x graphically, for example an arbitrary x ∈ HΣt is

shown in Figure 2.5 where the cj are such that
∑
j |cj |2 = 1 and the picture stands for ej .

Figure 2.5: An arbitrary vector in the state space.

An example of a vector x that satisfies Pvx = x is shown in Figure 2.6 since the action of Av on the first

22



factor produces the second factor (and vice versa), and the coefficients of each factor are the same (Figure 2.6

and the figures that follow denote e0 and e1 by 0 and 1 for simplicity, and edges labelled by 1’s are also

coloured blue to emphasise the link between the basis vectors of Hcode and the non-trivial cycles of the torus

in later figures).

Figure 2.6: A vector invariant under Pv

Similarly, an example of a vector x that satisfies Ppx = x is shown in Figure 2.7

Figure 2.7: An vector invariant under Pp

Now we make the following observation which follows from the commuting properties of the Av and Bp. For

any given x that satisfies Ppx = x, the resulting vector from the action of any Av on x still satisfies this

property: Pp(Av · x) = Av · x . This extends also to Pplaq: for any x such that Pplaqx = x, then for any Av

(or product of Av’s), Pplaq(Av · x) = Av · x. This provides a method for producing vectors of the codespace

Hcode as follows. Select an ej such that Pplaqej = ej , then produce the following vector x:

x =
∑

xj∈A·ej

1√
|A|

xj (2.9)

where A is defined in Definition 2.2.1, and so |A| = 28 in this case (recall that the number of independent Av
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operators is 8). By the comments above, we know that Pplaqx = x, and moreover we can see that Pvertx = x

since the coefficients are all equal to 1√
|A|

(which satisfies the conditions of squares summing to 1) and since

it is the sum over the orbit A · ej . Thus, x ∈ Hcode. It is possible to produce a basis of Hcode by selecting

ea, eb, ec and ed such that each Pplaqei = ei for i = a, b, c, d and such that ei /∈ A · ej for all j 6= i, and then

proceeding as above by defining the basis elements as the sum over each of the orbits with equal coefficients.

In particular, we define ea, eb, ec and ed as in Figure 2.8.

Figure 2.8: The vectors of Im(Pplaq) that induce the basis vectors xa, xb, xc and xd of Hcode.

It can be shown that each of these vectors are indeed invariant under Pplaq and have disjoint orbits. It is

interesting to note that we start to see the topological influence here: each of the above vectors is related to

a homology class of the the torus. More explictly, eb and ec each have edges labelled by e1 that form a non-

trivial loop of the torus, while ed has edges labelled by e1 corresponding to the presence of both non-trivial

loops, and ea represents the absence of non-trivial loops. Denote by xa, xb, xc and xd the vectors produced

by the process of summing over the orbits of ea, eb, ec and ed respectively as in Equation (2.9), then a basis

for Hcode is {xa, xb, xc, xd} (this can be identified with the computational basis {|00〉, |01〉, |10〉, |11〉}.

Of course, it is possible to arrive at the same basis vectors by considering vectors invariant under Pvert
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first, and then filtering out by the Pplaq projection, but as shall be seen in Chapter 5, when computing the

Turaev-Viro graph TQFT the equivalent of Pplaq is applied first, followed by the equivalent of Pvert.
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Chapter 3

Topological Quantum Field Theories

This chapter is devoted to setting up the foundations required to describe the two key topological quantum

field theories (TQFTs) considered in later chapters. The two TQFTs are the defect TQFT, due to Car-

queville, Runkel and Schaumann [CRS18; CRS17; CRS19], which extends the Reshetikhin-Turaev TQFT

[Tur16], and the graph TQFT, which is an extension of the Turaev-Viro TQFT (in the form of Barrett and

Westbury) [TV92; BW96] and is due to Turaev and Virelizier [TV17].

An n-dimensional topological quantum field theory is a symmetric strong monoidal functor

ZC : BordCn → Vectk

where Bordn is a bordism category of dimension n, C is the category on which the definition of the bordism

category, and hence the functor ZC , depends, and Vectk is the category of (infinite-dimensional) vector

spaces over field k. Throughout this thesis, the notation Vectk (i.e. with capital ‘V’) denotes the category

of all vector spaces over k and vectk denotes the category of finite-dimensional k-vector spaces. We will

typically only consider the case k = C in any concrete examples.

This thesis primarily deals with 3-dimensional TQFTs (with the exception of Section 4.2 which briefly

discusses 2-dimensional defect TQFTs in order to aid a conceptual discussion) and their corresponding 3-

dimensional bordism categories will either be based on a modular tensor or spherical fusion category C. These

3-dimensional TQFTs all essentially evaluate surfaces and bordisms by evaluating graphs, often extended

in some way such as in the case of ribbon graphs, that have objects and morphisms of C assigned to edges

and vertices (or coupons in the case of ribbon graphs; see Section 3.2.1) respectively. These evaluations

largely proceed by manipulating a graphical calculus (see Appendix A) and either produce a vector space

homomorphism, or the vector space corresponding to the image of such a homomorphism, as a result.

Section 3.1 establishes the required theory for this thesis related to modular tensor and spherical fusion cat-

egories, and introduces the categories vectC of finite dimensional C-vector spaces and Z2- vectC of Z2-graded

finite dimensional C-vector spaces, upon which the TQFTs under consideration will be based. Section 3.2 in-
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troduces the bordism categories for the Turaev-Viro graph TQFT and the Reshetikhin-Turaev defect TQFT,

and the final two sections, Section 3.3 and Section 3.4, introduce the theories themselves. The Turaev-Viro

graph TQFT and the Reshetikhin-Turaev defect TQFT (including the Reshetikhin-Turaev TQFT upon

which it is based) are rather technical to treat in full generality, so many of the details are omitted from

this chapter and left to the appendices (and some are omitted from this thesis entirely). For a fuller under-

standing of the Turaev-Viro graph TQFT that may be useful for Chapter 5, one should consult Appendix B

alongside Section 3.3 (or better yet consult [TV17] and [Tur16]), and for a fuller understanding of the

Reshetikhin-Turaev defect TQFT one should consult Appendix C alongside Section 3.4 (or the literature

[CRS18; CRS17; CRS19] and [Tur16]).

3.1 Requisite Category Theory

3.1.1 Spherical Fusion and Modular Tensor Categories

The two primary types of categories that are relevant to later discussion are spherical fusion categories and

modular tensor categories. Below we highlight the key components of each of these types of categories that

are pertinent to the construction of the two TQFTs in later sections. A theorem due to Müger [Theorem 1.2,

Müg03] provides machinery to produce modular tensor categories from spherical fusion categories, a result

that can be leveraged to produce an equivalence between the Turaev-Viro graph TQFT and the Reshetikhin-

Turaev TQFT (see Theorem 3.3.1). The two main categories utilised in later TQFT calculations, vectC and

Z2- vectC, are introduced in a subsequent subsection and are shown to be modular and spherical fusion

respectively.

Unless otherwise stated, throughout this section let C denote a tensor category, and let α and λ and ρ denote

the associator and unital natural isomorphisms respectively:

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

λX : 1⊗X → X

ρX : X ⊗ 1→ X

where X,Y, Z ∈ C and 1 is the unit object. The isomorphisms are assumed to satisfy the coherence conditions

required for C to be a tensor category (these coherence conditions are listed in any standard category theory

textbook, such as [Mac]). The theory presented in this subsection is largely drawn from [Chapters 1 to 3,

TV17] with the exception of that regarding fusion categories which is drawn from [ENO05].

Definition 3.1.1. A rigid category is a tensor category C such that for every object X in C there is an

assignment, called a left duality, X 7→ (X∗, coevX : 1 → X ⊗X∗, evX : X∗ ⊗X → 1) and an assignment

called a right duality, X 7→ (∗X, c̃oevX : 1→ ∗X ⊗X, ẽvX : X ⊗ ∗X → 1), where X∗ and ∗X are objects
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of C and the maps coevX , evX , c̃oevX and ẽvX satisfy the following for all objects X:

ρX ◦ (idX ⊗ evX) ◦ αX,X∗,X(coevX ⊗ idX) ◦ λ−1
X = idX (3.1)

λX ◦ (evX ⊗ idX∗) ◦ α−1
X∗,X,X∗(idX∗ ⊗ coevX) ◦ ρ−1

X∗ = idX∗ (3.2)

λX ◦ (ẽvX ⊗ idX) ◦ αX,∗X,X(idX ⊗c̃oevX) ◦ ρ−1
X = idX (3.3)

ρ∗X ◦ (id∗X ⊗ẽvX) ◦ α∗X,X,∗X ◦ (c̃oevX ⊗ id∗X) ◦ λ−1
∗X = id∗X (3.4)

Definition 3.1.2. A pivotal category is a rigid tensor category C with a natural isomorphism γX : ∗X →
X∗ for all objects X in C.

Definition 3.1.3. A spherical category is a pivotal category (C, {γX}X∈Ob(C)) such that for all X ∈ C
and f ∈ HomC(X,X) the following holds:

evX ◦(idX∗ ⊗(f ◦ γ−1
X∗)) ◦ coevX∗ =: trLX(f) = trRX(f) := evX∗ ◦((γX∗ ◦ f)⊗ idX∗) ◦ coevX (3.5)

The maps trLX and trRX are called the left trace and right trace respectively. Taking tr = trL = trR, we

can define the dimension of an object X ∈ C by

dim(X) = tr(idX)

Definition 3.1.4. A fusion category is an abelian, k-linear, semisimple, rigid tensor category C with

simple unit object 1, finite-dimensional morphism spaces and finitely many isomorphism classes of simple

objects. We take k to be a field and I to be a representative set of simple objects of C. Thus, a spherical

fusion category is a fusion category C where the left and right duals of every object X are isomorphic, and

the left and right traces of each endomorphism f coincide.

Definition 3.1.5. The dimension of a spherical fusion category C is

dim(C) =
∑
i∈I

dim(i)2

where dim(i) is the dimension of the object i ∈ I.

Remark 3.1.6. There are a couple of things worth highlighting about the above definitions. Firstly, k-

linearity coupled with the fact that k is a field provides a natural way of producing finite-dimensional k-vector

spaces from hom-sets. In particular, EndC(1) = HomC(1,1) = k. This property is a key feature in evaluating

graphs labelled by objects (specifically the simple objects in I) and morphisms, and hence, as elaborated

upon in Appendix A, is ubiquitous in the Turaev-Viro graph TQFT and Reshetikhin-Turaev defect TQFT.

Semisimplicity is also used, in particular to split idempotents between objects in C and in considering the

isomorphism arising from the composition map

HomC(X,Yi)⊗HomC(Yi,W )→ HomC(X,W )

for any two objects X,W in C, and the Yi are in I. A consequence of sphericity that does not show itself

until later on, is the ability to take as equivalent the evaluation of a graph on a 2-sphere labelled by objects

in I with the evaluation of the projection of the same graph to the plane R2 (see Theorem A.2.2).
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In order to define a modular category, we also require knowledge of ribbon categories, as described in the

following sequence of definitions.

Definition 3.1.7. A braiding in a tensor category C is a natural family of isomorphisms

b = {bX,Y : X ⊗ Y → Y ⊗X}X,Y ∈Ob(C)

such that the following conditions hold for all X,Y, Z ∈ Ob(C)

bX,Y⊗Z = α−1
Y,Z,X ◦ (idY ⊗bX,Z) ◦ αY,X,Z ◦ (bX,Y ⊗ idZ) ◦ α−1

X,Y,Z (3.6)

bX⊗Y,Z = αZ,X,Y ◦ (bX,Z ⊗ idY ) ◦ α−1
X,Z,Y (idX ⊗bY,Z) ◦ αX,Y,Z (3.7)

A braided category is a tensor category C equipped with a braiding b. A braiding b is symmetric if, for

all X,Y ∈ Ob(C),

bY⊗X ◦ bX⊗Y = idX⊗Y : X ⊗ Y → X ⊗ Y

A braided category with a symmetric braiding is called a symmetric tensor category.

Definition 3.1.8. For a braided pivotal category C, a left twist of C is a family of morphisms

θl = {θlX}X∈Ob(C)

where

θlX := λX ◦ (evX ⊗ idX) ◦ α−1
X∗,X,X ◦ (idX∗ ⊗bX,X) ◦ αX∗,X,X ◦ (c̃oevX ⊗ idX) ◦ λ−1

X : X → X (3.8)

A right twist of C is a family of morphisms θr = {θrX}X∈Ob(C) defined similarly by

θrX := ρX ◦ (idX ⊗ẽvX) ◦ αX,X,X∗ ◦ (bX,X ⊗ idX∗) ◦ α−1
X,X,X∗(idX ⊗ coevX) ◦ ρ−1

X : X → X (3.9)

Definition 3.1.9. A ribbon category C is a braided pivotal category with twists, where the left twist

and right twist are equal and is denoted by θ, and the twist, braiding and rigid structure are compatible. A

twist θ, braiding b and rigid structure are compatible if the following equations are satisfied for all objects

X,Y ∈ C

θX⊗Y = bY,X ◦ bX,Y ◦ (θX ⊗ θY ) (3.10)

(θX ⊗ idX∗) ◦ coevX = (idX ⊗θX∗) ◦ coevX (3.11)

A consequence of the left and right twist coinciding is that for all X ∈ Ob(C), is

(θX)∗ = θX∗

Remark 3.1.10. It can be shown that all ribbon categories are spherical [Corollary 3.4, TV17].
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Definition 3.1.11. For a ribbon fusion k-category C with twist θ, the S-matrix is defined as follows.

Letting I denote a representative set of simple objects of C, the matrix elements Si,j are defined as

Si,j := tr(bj,i ◦ bi,j) ∈ EndC(1)

where i, j ∈ I.

Remark 3.1.12. Recall that in a spherical category C the left and right traces are equal, so we denote by

tr the trace of C. Also recall from the previous remark that any ribbon category is spherical, so it is valid

to talk about the trace in the above scenario. Some useful shortcuts for computing the S-matrix arise from

the symmetry of the trace, so that Si,j = Sj,i for all i, j ∈ I, and we can also use

S1,i = tr(id1) = dim(i)

for all i ∈ I. Up to bijection the S-matrix does not depend on the set I.

Definition 3.1.13. A ribbon fusion k-category C is modular if its S-matrix is invertible over k.

The following theorem provides insight into how to produce modular tensor categories from spherical fusion

ones (see reference for proof):

Theorem 3.1.1. [Thm 1.2, Müg03] Let k be an algebraically closed field and C be a spherical k-linear tensor

category with End(1) ∼= k. Assume that C is semisimple with finitely many simple objects and dim C 6= 0.

Then also the centre Z(C) has all these properties and is a modular category.

The consequences of this application for the Turaev-Viro and Reshetikhin-Turaev TQFTs is discussed in

Section 3.3.

3.1.2 The Categories vectC and Z2- vectC

The categories that will feature most prominently in the definition of the bordism categories in Section 3.2 are

vectC, the category of finite dimensional complex vector spaces, and Z2- vectC, Z2-graded finite dimensional

complex vector spaces. We shall shortly see that vectC is a modular tensor category but Z2- vectC is not,

due to having a singular S-matrix, but does satisfy the criteria for being a spherical fusion category. Both

categories have fairly trivial structure, but provide relevant perspectives for quantum computing, in particular

with regard to representing qubits. The category vectC also plays an important role in the orbifolding of the

Reshetikhin-Turaev defect TQFT associated to an arbitrary spherical fusion category (see Theorem 4.3.1),

so despite having trivial structure, is highly non-trivial in application.

Example 3.1.14. The category vectC is defined to have finite-dimensional complex vector spaces X,X ′ as

objects and vector space homomorphisms f : X → X ′ as morphisms. It is equipped with a tensor product

⊗ : vectC× vectC → vectC that is defined to be the usual tensor product of vector spaces and of vector space
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homomorphisms. The unit object of vectC is C as a vector space. The tensor structure on vectC is trivial,

so throughout this example we will drop the notation α, λ and ρ from any equations in which they feature.

Let us define a left duality for each object X to be the assignment X 7→ (X∗, coevX , evX) where X∗ is the

vector space dual to X, that is X∗ = HomvectC(X,C), and coevX and evX are defined as follows. Let the basis

vectors of X be denoted by ei for i = 1, ..., n = dim(X), with dim(X) here being the usual complex vector

space dimension, and similarly, the basis for X∗ be {e∗i }ni=1 such that e∗i (ej) = δi,j . Let x =
∑n
i=1 xiei ∈ X

and f =
∑n
i=1 fie

∗
i ∈ X∗, where xi, fi ∈ C. Then

coevX : C→ X ⊗C X
∗

1C 7→
n∑
i=1

ei ⊗C e
∗
i

evX : X∗ ⊗C X → C( n∑
i=1

fie
∗
i

)
⊗C

( n∑
i=1

xiei
)
7→

n∑
i=1

fie
∗
i (xiei) =

n∑
i=1

fixi

where it is understood that the definition of coevX above is extended by linearity. We define the right duality

to be the assignment X 7→ (∗X, c̃oevX , ẽvX) where we take ∗X to also be HomvectC(X,C) (and hence has

the same basis as X∗ above) and c̃oevX and ẽvX are defined as

c̃oevX : C→ ∗X ⊗X

1C 7→
n∑
i=1

e∗i ⊗C ei

ẽvX : X ⊗ ∗X → C( n∑
i=1

xiei
)
⊗C

( n∑
i=1

fie
∗
i

)
7→

n∑
i=1

fixie
∗
i (ei)

The maps coevX , evX , c̃oevX and ẽvX can be shown to satisfy Equations (3.1) to (3.4) essentially just by

following an arbitrary element through the required compositions and using linearity of the tensor product.

In doing so, we prove that vectC is a rigid category. Pivotality is immediate since X∗ = ∗X, so we take γX

to be the identity natural transformation for each X.

Sphericity is also easily shown since we identify, for all objects X ∈ vectC, X∗∗ and X via the identity γX∗ ,

which in particular means that {ei}i=1,...,n is a basis for X∗∗, and moreover, this basis is dual to that of X∗.

Thus, the required criterion regarding the left and right traces maps, namely Equation (3.5), holds in vectC.

Moreover, vectC is spherical fusion since it is C-linear and rigid, and has a single simple object C. We get

that vectC is semisimple since every object is isomorphic to Cn for some finite n ∈ N, and hence can be

written as the direct sum of the unit object. There is only one isomorphism class of simple objects, and for

each X,Y ∈ vectC, HomvectC(X,Y ) has finite dimension nm where the dimension of X is n < ∞ and that

of Y is m <∞. We have that vectC is abelian since it is pre-additive and satisfies the required criteria (i.e.

vectC admits a zero object, biproducts, kernels and cokernels, etc).
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We now attach a compatible ribbon structure to vectC by defining the braiding map and left and right twist

to all be identity maps. This ribbon structure is compatible with the rigid structure outlined earlier, and so

vectc is a ribbon fusion category. Finally, vectC has the non-singular S-matrix

S =
[
tr(bC,C ◦ bC,C)

]
=
[
1
]

since bC,C ◦ bC,C = idC and tr(idC) = 1 as per the definition of the trace. This proves that vectC is a modular

tensor category.

The category Z2- vectC of Z2-graded vector spaces is understandably very similar to vectC, with slightly more

interesting rigid and ribbon structures, but fails to satisfy the conditions on the S-matrix to be modular, as

we shall see below. This category is sometimes called the category of super vector spaces, and it is worth

working through its structure more carefully since this structure plays a more overt role in Chapter 5 than

that of vectC.

Example 3.1.15. The category Z2- vectC has as objects finite-dimensional complex vector spaces X together

with a direct sum decomposition

X = X0 ⊕X1

where X0, X1 are called the degree 0 and degree 1 parts of X respectively. The (non-zero) elements of X0

and X1 are called homogeneous, and we define the notation |·| to denote the parity of homogeneous elements,

that is |xi| = i, where i = 0, 1. Much of the structure defined below is done so for homogeneous elements

and makes use of the parity function, and then extended to the non-homogenous case by linearity. For any

objects X,Y ∈ Z2- vectC, the morphisms are degree 0 vector space homomorphisms f : X → Y , meaning

that f(Xi) ⊆ Yi for i = 0, 1. In particular, this means we can write f = f0 ⊕ f1 where fi : Xi → Yi.

The category Z2- vectC is given the structure of a tensor category by defining the tensor product as follows.

For X,Y ∈ Z2- vectC, we have

X ⊗ Y = (X0 ⊕X1)⊗ (Y0 ⊗ Y1)

= (X0 ⊗ Y0 ⊕X1 ⊗ Y1)0 ⊕ (X0 ⊗ Y1 ⊕X1 ⊗ Y0)1

where the subscripts 0 and 1 on the brackets help identify which factors are degree 0 and which are degree

1. Similarly, for morphisms f = f0 ⊕ f1 : X → X ′ and g = g0 ⊕ g1 : Y → Y ′, we have

f ⊗ g = (f0 ⊕ f1)⊗ (g0 ⊕ g1)

= (f0 ⊗ g0 ⊕ f1 ⊗ g1)0 ⊕ (f0 ⊗ g1 ⊕ f1 ⊗ g0)1

where fi ⊗ gj : Xi ⊗ Yj → X ′i ⊗ Y ′j is defined by xi ⊗ yj 7→ fi(xi) ⊗ gj(yj). The unit object of Z2- vectC is

1 = C in degree 0, and αX,Y,Z , λX : 1 ⊗X → X and ρX : X ⊗ 1 → X are again trivial so will be dropped

from any equations in which they feature throughout this example.
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For the rigid structure on Z2- vectC we will define the left and right duals of an object X ∈ Z2- vectC to be

the same, by noting that for any two objects W,Z ∈ vectC, HomvectC(W,Z) is a C-vector space and making

the following definition. We define the internal-hom, denoted by homZ2- vectC(X,Y ), as

homZ2- vectC(X,Y ) := HomvectC(X,Y )

that is, homZ2- vectC(X,Y ) is the space of all C-linear maps between X and Y . This is not a hom-set of

Z2- vectC since it contains more than just degree 0 maps, but can be shown to be an object of it, as follows:

homZ2- vectC(X,Y ) = HomvectC(X0 ⊕X1, Y0 ⊕ Y1)

=
(

HomvectC(X0, Y0)⊕HomvectC(X1, Y1)
)
⊕
(

HomvectC(X0, Y1)⊕HomvectC(X1, Y0)
)

Taking

(homZ2- vectC(X,Y ))0 = HomvectC(X0, Y0)⊕HomvectC(X1, Y1)

and

(homZ2- vectC(X,Y ))1 = HomvectC(X0, Y1)⊕HomvectC(X1, Y0)

we can clearly see that homZ2- vectC(X,Y ) is Z2-graded. So, for any X ∈ Z2- vectC, we define ∗X = X∗ =

homZ2- vectC(X,1). Since we view C as a degree 0 vector space, we get that for any X = X0 ⊕ X1, we

have X∗ = X∗0 ⊕X∗1 where X∗0 and X∗1 are the usual duals in vectC. Let {e0
i }
n+m
i=1 be a basis for X, where

{ei}n=dim(X0)
i=1 is a basis for X0 and {ei}n+m

i=n+1 is a basis for X1 (m = dim(X1)). The dual basis for X is again

denoted {e∗i }
n+m
i=1 . Denoting homogenous elements of X and X∗ by x and f respectively, the maps coevX ,

c̃oevX , evX and ẽvX as required to stipulate a rigid structure are defined by

coevX : 1→ X ⊗X∗

1C 7→
n+m∑
i=1

ei⊗ e∗i

c̃oevX : C→ X∗⊗X

1C 7→
n+m∑
i=1

(−1)|ei|e∗i ⊗ ei

evX : X∗⊗X → C

f ⊗x 7→ f(x)

ẽvX : X ⊗X∗ → C

x⊗ f 7→ (−1)|x||f |f(x)

Before outlining how the above maps satisfy the necessary equations to be a valid rigid structure (Equa-

tion (3.1) through Equation (3.4)), we make an observation regarding the coevaluation and evaluation maps
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that will be used in Chapter 5: if X is degree 0, for example if X = C0 which is the case most often seen in

Section 5.1.2, then both coevaluation maps and both evaluation maps are essentially the same since there is

no influence from the minus sign. Since coevX and evX are the same as the corresponding maps in vectC,

they satisfy Equation (3.1) and Equation (3.2) by the same reasoning. This reasoning also applies in the

case of c̃oevX and ẽvX and Equation (3.3) and Equation (3.4), but we check these details more explicitly in

order to show that the minus sign behaves nicely. By writing x =
∑n+m
j=1 xjej ∈ X, we follow x through the

composition of the left hand side of Equation (3.3):

n+m∑
j=1

xjej 7→
n+m∑
j=1

xjej ⊗ 1C

7→
n+m∑
j=1

xjej ⊗
n+m∑
i=1

(−1)|ei|e∗i ⊗ ei

=

n+m∑
i,j=1

(−1)|ei|xjej ⊗ e∗i ⊗ ei

7→
n+m∑
i,j=1

(−1)|ej ||ei|(−1)|ei|xje
∗
i (ej)⊗ ei

=

n+m∑
i,j=1

(−1)|ej ||ei|(−1)|ei|xjδi,j ⊗ ei

=

n+m∑
i=1

(−1)|ei||ei|(−1)|ei|xi1C⊗ ei

=

n+m∑
i=1

xiei

The term δi,j in the third last line arises from the term e∗i (ej) and the nature of the dual bases. The

condition j = i then removes any chance of a minus sign occuring and so x is recovered. The same reasoning

follows for Equation (3.4) by defining f =
∑n+m
j=1 fje

∗
j ∈ X∗, and so Z2- vectC is rigid. Since we once again

have defined the left and right duals of an object to be equal, Z2- vectC is automatically pivotal. Instead of

showing that Z2- vectC is spherical directly, we instead describe its ribbon structure and invoke the result in

Remark 3.1.10.

Define the braiding b for Z2- vectC, for all objects X,Y , by

bX,Y : X ⊗Y → Y ⊗X

x⊗ y 7→ (−1)|x||y|y⊗x

where again, we are taking x ∈ X and y ∈ Y to be homogeneous elements. We notice that this is a

symmetric braiding. The left and right twists of Z2- vectC are defined to be the identity on all objects, and

so Equation (3.10) and Equation (3.11) are immediately satisfied and thus Z2- vectC is a ribbon category

(and hence also spherical). Moreover, it is a fusion category by the same arguments as for vectC, instead
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now there are two isomorphism classes of simple objects, which we take to be represented by C in degree 0

and 1, denoted C0 and C1 respectively. We have the following

dim(C0) = 1

dim(C1) = 1

dim(Z2- vectC) = 2

However, Z2- vectC fails to be modular, since it has S-matrix

S =

[
1 1

1 1

]

which is clearly singular. We conclude this discussin of Z2- vectC by writing down the so-called fusion rules

and F -tensor that are used extensively throughout calculation in Chapter 5. The fusion rules describe the

behaviour of the simple objects under the tensor product:

C0 ⊗ C0 = C0

C0 ⊗ C1 = C1

C1 ⊗ C0 = C1

C1 ⊗ C1 = C0

These conditions can be written more succintly in one equation by considering simple objects Ci, Cj and Ck,

where i, j, k ∈ {0, 1}:

i+ j = k mod 2 (3.12)

The F -tensor describes how to treat a change in the ordering of fusion of multiple simple objects. A typical

picture used to define the F -tensor is shown in Figure 3.1. By a slight abuse of notation, we identify a simple

object Ci with its subscript i, and in doing so the left side of the diagram is to be interpreted as i⊗ j = m

and m⊗ k = l, or more succinctly (i⊗ j)⊗ k = l. If we want to change the order to consider i⊗ (j ⊗ k) and

still produce l, we need to consider all possible simple objects n such that j ⊗ k = n and i⊗ n = l are valid.

The F -tensor, currently denoted F ijklmn, enforces when each individual fusion is valid, so for the present case

of Z2- vectC we can use Equation (3.12) above to write

F ijklmn = δ(i+j=m mod 2) δ(m+k=l mod 2) δ(i+n=l mod 2) δ(j+k=n mod 2)

Furthermore, because the fusion rules are relatively trivial in this case, we can see that the sum disappears

since for any simple objects i, j, k, l and m for which i + j = m mod 2 and m + k = l mod 2, there

is only one simple n for which F ijklmn 6= 0. It will be useful for Chapter 5 to write this F -tensor slightly

differently using hom-spaces. Still considering Figure 3.1, let us note that HomZ2- vectC(i⊗ j,m) is non-zero

precisely when i+j = m mod 2 by definition (and similarly for the other fusions). In fact, these hom-spaces
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Figure 3.1: A change of basis via the F -tensor.

are 1-dimensional in this case, so we can identify them with a basis element, which we denote by λijm for

HomZ2- vectC(i⊗ j,m). We then define

F
λijm,λmkl

λinl,λjkn
:= F ijklkm

This change of notation is in order to be consistent with Section 5.2.2 which uses a slightly modified version

of the notation of the referenced work relevant to that subsection.

So we have seen one example each of a modular tensor category and a spherical fusion category but there

are many others and there is research being done to classify them, in particular unitary modular tensor

categories which are most commonly associated with the TQFT perspective of quantum computation [RW18].

The Reshetikhin-Turaev TQFT and the defect TQFT are based on modular tensor categories, and every

calculation made with the defect TQFT in this thesis will be using vectC. The Turaev-Viro graph TQFT

is based on spherical fusion categories, and all main calculations with this TQFT will be made both over

Z2- vectC. A key point that is discussed later in this chapter is the equivalence between the Turaev-Viro

graph TQFT based on a spherical fusion category C, and the Reshetikhin-Turaev TQFT based on the centre

of C, Z(C).

3.2 3-dimensional Bordism Categories

We can now commence the process of describing the TQFTs of interest for this thesis: the Turaev-Viro graph

TQFT and the defect Reshetikhin-Turaev TQFT. Each of these two TQFTs have slightly different source

bordism categories, respectively Bord
col(C)
3 , which is based on a spherical fusion category C, and Borddf

3 (D),

which is defined using defect data D arising from a modular tensor category D. Before we introduce these

specific bordism categories, let us discuss in more generality the notion of a bordism category.

An n-dimensional bordism category is a tensor category whose objects X,Y are (n − 1)-manifolds,

possibly with extra structure, and whose morphisms are homeomorphism classes of bordisms between objects.

Loosely speaking, a bordism is an n-dimensional manifold M , again possibly with extra structure, where

the boundary of M is X t Y and where the notion of homeomorphism is such that any extra structure

present is preserved by the homeomorphism. The composition of bordisms is by gluing of n-manifolds via

a homeomorphism between boundaries in a compatible way, such that any extra structure is composed
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compatibly and that passing to the homeomorphism class of the resultant manifold does not depend on the

specific details of the gluing (more comments on this in the 3-dimensional case below). The tensor structure

for the bordism category arises from the disjoint union of objects and bordisms, and the tensor unit is defined

to be the empty (n− 1)-manifold.

3.2.1 Bord
col(C)
3

The bordism category Bord
col(C)
3 , which is the topic of this subsection, is the source category for the functor

for the Turaev-Viro graph TQFT, which is denoted by | · |C . The Turaev-Viro graph TQFT generalises

the Turaev-Viro-Barrett-Westbury TQFT (which was the TQFT originally shown to produce the toric

code subspace) and correspondingly, Bord
col(C)
3 is a more general bordism categoery than that for the

Turaev-Viro-Barrett-Westbury TQFT (which won’t be formally defined in this thesis). The main difference

between the two bordism categories is regarding specified sets of points labelled with objects of Z(C) in

surfaces, and ribbon graphs extending these points in 3-manifolds (the bordism category for the Turaev-

Viro-Barrett-Westbury TQFT does not include these points or ribbons). The difference between the functors

for the Turaev-Viro graph TQFT and the Turaev-Viro-Barrett-Westbury TQFT are greater than just the

difference between their bordism categories; these differences will be discussed in Section 3.3. Throughout

this subsection, let C be a spherical fusion category (in fact, a pivotal category would suffice).

Definition 3.2.1. A C-coloured surface is a pair (Σ, A) such that Σ is a closed, oriented 2-manifold and

A ⊂ Σ is finite (and possibly empty) set where each element of A is labelled with an object of Z(C) (the

centre of C, as per the previous section), a non-zero tangent direction in Σ and a sign in {+,−}.

A simple example of a coloured sphere is shown in Figure 3.2.

Figure 3.2: A simple coloured sphere with five coloured points.

Remark 3.2.2. (i). The reasoning behind the definition of C-coloured surface having points labelled by

objects in Z(C) rather than in C ultimately has to do with the correspondence of the Turaev-Viro graph
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TQFT that is based off Bord
col(C)
3 and the Reshetikhin-Turaev TQFT based on a bordism category over

Z(C). When evaluating a surface with points labelled by objects in Z(C), these points are typically passed

through the forgetful functor F : Z(C)→ C and are treated as objects in C.

(ii). Despite its prevalence in this chapter so far, the centre Z(C) of a spherical fusion category hasn’t actually

been explicitly described. This is because we won’t actually have any need for it, other than perhaps for the

case where C is vectC in which case we know how to handle Z(C), since our calculations with the Turaev-

Viro graph TQFT over Z2- vectC will be on a coloured surface where A is empty. In terms of being able

to understand the forgetful functor F : Z(C) → C above, it suffices to say that the objects of Z(C) are the

objects of C equipped with a half-braiding, and that the forgetful functor outputs the object of C without

the half-braiding (see [Section 5.1.2, TV17]).

The following definition requires knowlegde of ribbon graphs, which are extensions of the usual notion of

graph to allow edges to contain twists by thickening each edge into a ribbon. Vertices also become 2-

dimensional by becoming rectangles (called coupons) where edges join either the top or bottom horizontal

edges of the rectangle. A C-coloured ribbon graph is a ribbon graph where each edge (ribbon) is assigned

an object of C and each vertex (coupon) is assigned a morphism of C. See Appendix A and the references

therein for more details.

Definition 3.2.3. A homeomorphism of C-coloured surfaces f : (Σ0, A0)→ (Σ1, A1) is an orientation

preserving homeomorphism of the uncoloured surfaces f ′ : Σ0 → Σ1 such that A0 is mapped to A1, and each

tangent direction, sign and object labelling an element in A0 is preserved under the mapping.

Definition 3.2.4. A bordism between C-coloured surfaces (Σ0, A0) and (Σ1, A1) is a triple (M,R, h)

where M is a compact oriented 3-manifold, R is a C-coloured ribbon graph in M , and h : (−Σ0) t Σ1 →
(∂M, ∂R) is a homeomorphism of C-coloured surfaces, where ∂R is the set of points of R∪∂M with non-zero

tangent direction and colour determined by the framing and colours of R.

Figure 3.3 shows an example of a bordism over the coloured surface from Figure 3.2, specifically the identity

bordism.

Definition 3.2.5. A homeomorphism of bordisms between C-coloured surfaces (M,R, h) and

(M ′, R′, h′) is an orientation preserving homeomorphism f : M → M ′ such that f ◦ h = h′ and f(R) = R′

(up to isotopy).

Definition 3.2.6. The category Bord
col(C)
3 has C-coloured surfaces for objects and homeomorphism classes

of bordisms between C-coloured surfaces for morphisms. The composition of morphisms is given by gluing

of bordisms between C-coloured surfaces. If (M0, R0, h0) and (M1, R1, h1) are bordisms that represent

morphisms (Σ0, A0) → (Σ′, A′) and (Σ′, A′) → (Σ1, A1) respectively, then the gluing of M0 to M1 along

h1h
−1
0 : h0(Σ′) → h1(Σ1) is a bordism (M,R, h) where R is the union of the images R0 and R1 under the

embeddings M0 →M and M1 →M , and h = h0|Σ0
t h1|Σ1

.

Pursuant to the general comments made in the preamble at the beginning of this section, Bord
col(C)
3 can be

given the structure of a symmetric tensor category where the tensor product is given by the disjoint union of

38



Figure 3.3: The identity bordism on a coloured sphere

surfaces and bordisms. For full details of the composition of morphisms and the symmetric tensor structure

of Bord
col(C)
3 see [Section 15.2, TV17] (the bordism category there is denoted differently).

Remark 3.2.7. The main calculations using the Turaev-Viro graph TQFT in Chapter 5 are over coloured

surfaces where A is empty. As shall be seen below in Section 3.3, the evaluation of the Turaev-Viro graph

TQFT on a surface proceeds via consideration of a cylinder over that surface, which represents a morphism

in Bord
col(C)
3 . Since these surfaces all have empty sets A, these cylinders have no ribbon graphs in their

interior. Moreover, the evaluations of the Turaev-Viro graph TQFT and the Turaev-Viro-Barrett-Westbury

TQFT on these surfaces are precisely the same ([Section 13.1.2 TV17]). It is then reasonable to ask why the

Turaev-Viro graph TQFT is being introduced in this chapter rather than the Turaev-Viro-Barrett-Westbury

TQFT. The answer is simply that the evaluation of the Turaev-Viro graph TQFT on the torus in Chapter 5

provides a much clearer link to the projection map for the toric code from Section 2.2 than the corresponding

evaluation in the Turaev-Viro-Barrett-Westbury TQFT.

3.2.2 Borddf
3 (D)

Just as in the previous section with the Turaev-Viro graph TQFT and Bord
col(C)
3 , the Reshetikhin-Turaev

defect TQFT generalises the Reshetikhin-Turaev TQFT and so the bordism category Borddf
3 (D) for the

former accomodates much more structure than the bordism category for the latter. The bordism category

for the Reshetikhin-Turaev TQFT is essentially the same as that for the Turaev-Viro graph TQFT above,

that is with objects as surfaces with points labelled with objects of a modular tensor category, and mor-

phisms as homeomorphism classes of 3-manifolds with internal coloured ribbons. The category Borddf
3 (D)

39



is defined using stratified surfaces and stratified 3-manifolds where each stratum is labelled with specific

data from modular tensor category C, collectively known as defect data. The Reshetikhin-Turaev defect

TQFT ultimately evaluates these stratified surfaces and 3-manifolds by systematically transforming them

into surfaces with labelled points and bordisms with internal ribbon graphs respectively, and then evaluating

via the pure Reshetikhin-Turaev TQFT (more on this in Section 3.4).

Definition 3.2.8. An n-dimensional stratified manifold M is an n-dimensional topological manifold

with a filtration M = Mn ⊃ Mn−1 ⊃ Mn−2 ⊃ ... ⊃ M0 ⊃ ∅ where for each j ∈ {0, ..., n}, Mj \Mj−1 is a

j-dimensional submanifold of M . The connected components of Mj \Mj−1 are called j-strata of which there

are finitely many. An oriented stratified n-dimensional manifold is an n-dimensional stratified manifold

M such that the underlying n-dimensional manifold is oriented, each n-stratum has the same orientation as

M , and a choice of orientation has been made for each j-stratum for j < n. An n-dimensional stratified

manifold with boundary is an n-dimensional stratified manifold M where the underlying manifold M

has boundary such that each j-stratum either has empty boundary, or whose boundary lies entirely in the

boundary of M .

An example of a stratified surface is shown in Figure 3.4a and a simple stratified 3-manifold in Figure 3.4b.

(a) A stratified surface with a 2-stratum in blue, and 1-

and 0-strata in black. (b) A stratified 3-manifold.

Figure 3.4: Some examples of stratified manifolds.

Definition 3.2.9. A set of defect data D is a tuple D = (D3, D2, D1; s, t, j) where D3, D2, D1 are sets,

the elements of which label 3-, 2- and 1-strata respectively, and s, t, j are maps that impose compatibility

criteria on labellings (see [Section 3, CRS17]).

Definition 3.2.10. A D-decorated surface Σ is a stratified surface where each j-stratum for j ∈ {0, 1, 2}
is labelled by an element from Dj+1.
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By labelling the strata for the stratified manifold in Figure 3.4a by elements of D, specifically the 2-strata

by elements of D3, the 1-strata by elements of D2 and the 0-strata by D1, the stratified sphere shown would

become a D-decorated surface.

Remark 3.2.11. The index is shifted by one so when a cylinder over a surface is considered, the 1-, 2- and

3-strata are labelled with corresponding indices. There is also a set D0 that is lurking behind the scenes, the

elements of which label 0-strata in the interior of a stratified 3-manifold. However, this set is not explicitly

listed in the defect data, as the set D0 can be constructed by evaluating the defect TQFT on a sphere

surrounding the 0-strata in question. This process is called D0-completion and is discussed in Appendix C

but a more rigorous account is found in [Section 2.4, CRS19].

Definition 3.2.12. A Lagrangian subspace L of a symplectic vector space (H,ω) is a maximal isotropic

subspace of H. That is, the maximal linear subspace B ⊂ H such that B ⊂ Ann(B) where the annihilator

is with respect to the anti-symmetric bilinear form ω on H.

For more on isotropic and Lagrangian subspaces, see Appendix C.

Definition 3.2.13. A D-defect bordism between D-decorated surfaces Σ0 and Σ1 is a pair (N,φ) where

N : Σ0 → Σ1 is a compact, decorated stratified 3-bordism and φ : (−Σ0) t Σ1 → ∂N is a homeomorphism

of D-decorated surfaces.

Definition 3.2.14. The category Borddf
3 (D) has objects as pairs (Σ,L) where Σ is a D-decorated surface

and L ⊂ H1(Σ; R) is a Lagrangian subspace of first homology group of the unstratified 2-manifold underyling

Σ. The morphisms of Borddf
3 (D) are pairs ([N ],m) where N is a D-defect bordism between D-decorated

surfaces where [N ] denotes its homeomorphism class, and m ∈ Z is an integer satisfying the condition that

if N ∼= ∅ then m = 0. The composition of morphisms is again by gluing.

Remark 3.2.15. The inclusion of the Lagrangian subspace L and the weight m in the above definition

is required in order to make the definition of the defect Reshetikhin-Turaev TQFT anomaly-free (this is

elaborated upon in Appendix C). For more details on this, and on the symmetric structure of the category

Borddf
3 (D) (where tensor product is again by disjoint union), see [Chapter IV, Tur16] and [Section 2.2.2,

CRS19]

3.3 The Turaev-Viro Graph TQFT

Finally we arrive at the first substantial introduction of the Turaev-Viro graph TQFT seen in this thesis. As

noted a number of times, this TQFT generalises the Turaev-Viro-Barrett-Westbury TQFT which historically

precedes it. The Turaev-Viro-Barrett-Westbury TQFT is a state sum TQFT whereby the manifold being

evaluated is triangulated, with each simplex having an associated set of states, and the evaluation proceeds

by “averaging” over all these states. The evaluation does not depend on the specifics of the triangulation in

the interior of the manifold, only on the information that resides on the boundary.
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The Turaev-Viro graph TQFT, sometimes called simply the graph TQFT, will be denoted

| · |C : Bord
col(C)
3 → Vectk

where C is a spherical fusion category over base field k (in practice we will take k to be C). This TQFT

differs from the Turaev-Viro-Barrett-Westbury TQFT insofar as that instead of taking a triangulation of a

manifold, a more general decomposition can be taken. In Chapter 5 it will be seen that the calculation using

a specific choice of cell decomposition of the cylinder over the torus provides a clearer picture, and much

neater computation, than the corresponding calculation done in using the Reshetikhin-Turaev defect TQFT

(which is based on a triangulation).

A proper treatment of the graph TQFT is rather lengthy due to the amount of technical detail required

to rigorously describe its evaluation on objects and morphisms of Bord
col(C)
3 . The present section will not

concern itself with providing all this detail, but rather give an outline and intuition of how | · |C behaves

(more detail is provided in Appendix B, but still falls short of the full story, for which one should refer to

[TV17]). In particular, for Chapter 5 we only really require an understanding of the behaviour of | · |C on

Z(C)-coloured surfaces, which by definition basically requires knowledge of the behaviour of | · |C on the

cylinder over these surfaces. The full details of the evaluation of the graph TQFT on objects and morphisms

of Bord
col(C)
3 don’t differ too much from those presented below and in the appendices, however, they are

still deferred to references such as [TV17].

So, how does the Turaev-Viro graph TQFT actually work? In a sentence, the graph TQFT evaluates a

coloured surface Σ by first assigning a preliminary vector space to Σ via the use of homspaces, typically

involving the objects colouring the points of Σ, and then considering the image of the morphism represented

by the cylinder over Σ as a subspace of the preliminary vector space. It is this subspace that is the evaluation

of | · |C on the surface. The description of the graph TQFT below consequently mirrors these two steps, by

first describing the assignment of the vector space to Σ, then describing the evaluation of the cylinder CΣ.

Throughout this section, let C denote a spherical fusion category, I a representative set of simple objects of

C and Z(C) denote the centre of C.

3.3.1 Vector Spaces for Coloured Surfaces

As outlined above, the first step in understanding the evaluation of the graph TQFT on coloured surfaces

is the construction of the “naive” vector space assigned to a coloured surface (Σ, A). This assignment leans

heavily on the use of coloured graphs and their evaluations (see Appendix A).

Definition 3.3.1. Let G be a graph and let G(0) and G(1) denote the set of vertices and edges of G

respectively. A colouring of G is a map c : G(1) → I and a coloured graph is a pair (G, c) where c is a

colouring, often denoted Gc. A graph G is oriented if each element of G(1) is given an orientation.

Recalling that the points of A are labelled with a simple object of Z(C), a sign {+,−} and a tangent direction
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in Σ, we define a skeleton of (Σ, A) as follows.

Definition 3.3.2. A skeleton of the Z(C)-coloured surface (Σ, A) is an oriented graph G embedded in Σ

that satisfies the following:

1. each element a ∈ A lies in the interior of an edge ea ∈ G(1) such that the tangent direction at a is

transversal to the edge ea;

2. for each a ∈ A, the orientation of ea followed by the tangent direction of a determine the positive

orientation of Σ (that is, locally at a, the orientation of ea followed by the tangent direction of a looks

like the standard orientation of R2);

3. each v ∈ G(0) has valence greater than or equal to two;

4. each component of Σ \G is an open disk.

Let GA denote the oriented graph induced by G and the elements of A where the points a in ea are considered

as new vertices (and consequently, each edge ea is split into two edges), and these vertices are labelled by

F (Xa) where Xa is the object of Z(C) and F : Z(C)→ C is the forgetful functor (recall the comments from

Remark 3.2.2). These new vertices are called distinguished vertices, and denote the set of distinguished

vertices by G
(0)
A \G(0).

A choice of skeleton for the coloured surface in Figure 3.2 is shown in Figure 3.5. The points of A are now

shown in red, and by considering these points as new vertices on the black lines (not including the black

arrows), the graph GA is produced.

Figure 3.5: A choice of skeleton for a coloured sphere.

Definition 3.3.3. A colouring of the graph GA is a map c : G
(1)
A ∪ (G

(0)
A \ G(0)) → Ob(C) such that c

assigns to any e ∈ G(1)
A an object in I, and to every distinguished vertex va ∈ G(0)

A \G(0) the object F (Xa)

where F and Xa are as above. Denote a coloured graph by GcA and the set of colourings of GA by col(GA).
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We can now define the vector space assigned to the coloured surface (Σ, A) with embedded graph GA based

on a skeleton G:

|G; (Σ, A)|◦ :=
⊕

c∈col(GA)

H(GcA)

whereH(GcA) is defined as a tensor product of hom-spaces over the vertices, both distinguished and otherwise,

of GA, that is

H(GcA) =
⊗
v∈G(0)

A

Hv (3.13)

The rigorous definition of the Hv relies on taking an inverse limit of a projective system (as outlined in the

Appendix B), but for all intents and purposes we can take

Hv = HomC(1, c(e
v
1)ε(e

v
1) ⊗ c(ev2)ε(e

v
2) ⊗ ...⊗ c(evn)ε(e

v
n))

for all v ∈ G(0) (i.e non-distinguished vertices) and

Hv = HomC(1, c(e
a
out)⊗ F (Xa)ε(a) ⊗ c(eain)∗)

for all distinguished vertices a. In the above, ev1, ..., e
v
n are the edges incident to v with the numbering relative

to a chosen anti-clockwise cyclic ordering, the orientation of the edges with regard to v are encoded by the

map ε where ε(evi ) evaluates to + (respectively −) if evi is oriented away from (respectively towards) the vertex

v and similarly ε(a) is the given sign for the point a. An object X− is interpreted as X∗ while X+ = X. The

edges eaout and eain are the outgoing and incoming edges to the distinguished vertex ea respectively. Recall

that since C is spherical fusion, all hom-spaces are finite-dimensional C-vector spaces (see Definition 3.1.4).

Remark 3.3.4. (i). As seen in Appendix B, the inverse limit essentially allows one to remove any dependence

on a choice of cyclic ordering of edges incident to a vertex. The system over which the limit is taken consists

of isomorphisms, which is why, for any practical calculation, we can make a choice of ordering and produce

vector spaces as above.

(ii). It shall be seen that taking inverse limits is fairly ubiquitous in the evaluation of TQFTs, at least

in those considered in this thesis. A very similar procedure for producing vector spaces from hom-spaces

related to 2-cells incident to edges will be seen later (again, in Appendix B). This procedure also takes an

inverse limit to excise the dependence on a choice of cyclic ordering of 2-cells around the given edge.

Thus we are able to assign this “naive” vector space |G; (Σ, A)|◦ to a coloured surface Σ, which completes the

first step of understanding the graph TQFT. We next turn to the similarly naive assignment of a vector space

homomorphism to the cylinder CΣ between two copies of the coloured surface (Σ, A). The continued use of

the word “naive” here is to help distinguish these preliminary vector spaces and vector space homomorphisms

used to define the graph TQFT from those produced as the end product. It also alludes to the fact that

certain criteria for being a TQFT are not met by the construction above, and by the construction in the

next section (see [Section 15.7.3, TV17]).
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3.3.2 Vector Space Homomorphism Assigned to id(Σ,A)

Clearly, a major problem with the vector space |G; (Σ, A)|◦ as a candidate for what the graph TQFT | · |C
assigns to a coloured surface (Σ, A), is the dependence on the choice of skeleton G. The dependence on

this choice will once again be removed by way of an inverse limit. We state first the final definition of | · |C
evaluated on (Σ, A) in terms of this limit, then subsequently pick apart the pieces:

|(Σ, A)|C := lim
←

Im(| id(Σ,A), GA, GA|◦ : |G; (Σ, A)|◦ → |G; (Σ, A)|◦)

Once again, all discussion of the inverse limit is relegated to Appendix B since, by the nature of the system

over which the limit is taken, we have

|(Σ, A)|C ∼= Im(| id(Σ,A), GA, GA|◦)

for any valid choice of skeleton G of (Σ, A) and so can in practice proceed without knowledge of the specifics

of the limit. Thus, let us focus on the vector space homomorphism | id(Σ,A), GA, GA|◦. The construction

of this homomorphism is the most technical part of understanding the graph TQFT, and consequently, the

following discussion has the highest proportion of detail pushed to Appendix B.

We are considering id(Σ,A) : (Σ, A) → (Σ, A) as a morphism in Bord
col(C)
3 , in particular, the morphism

represented by the ribbon triple (CΣ, R, h) where CΣ is the cylinder over Σ, R is the ribbon graph defined

by A× [0, 1] where the framing for each strand is given by the tangent direction of each element a, and h is

the obvious homeomorphism of Z(C)-coloured surfaces

h : (−Σ,−A) t (Σ, A)→ (∂CΣ, ∂R)

Here, (−Σ,−A) is the coloured surface induced by (Σ, A) with opposite orientation to Σ and each element

a ∈ −A has opposite sign to the correpsonding element in A, with all other information kept the same. Let

G be a skeleton (Σ, A) which induces a skeleton Gop of (−Σ,−A). Note that if A is empty, then there is no

ribbon graph within CΣ (as will be the case in Chapter 5). Recalling that

|G; (Σ, A)|◦ =
⊕

c∈col(GA)

H(GcA)

we construct | id(Σ,A), GA, GA|◦ via

| id(Σ,A), GA, GA|◦ =
∑

c0,c1∈col(GA)

| id(Σ,A), G
c0
A , G

c1
A |
◦

The construction of | id(Σ,A), G
c0 , Gc1 |◦ draws some parallels to the construction of |G; (Σ, A)|◦ by considering

the underlying space CΣ with extra structure, which we call a 3-skeleton to distinguish it from the skeleton

G, and can essentially be thought of as “almost” a cellular decomposition of CΣ. A 3-skeleton P of CΣ is

required to satisfy a number of conditions that will not be fully set out here, but in particular is required to

be compatible with the skeletons of the boundary surfaces, that is, P |∂CΣ
= GA tGop

A .
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IfA is empty, and hence so too is the ribbon graphR, this definition is sufficient to evaluate | id(Σ,A), GA, GA|◦,
however when A is non-empty, we need to consider more structure on CΣ. A neat, positive diagram (P, d)

is an extension of the definition of 3-skeleton in such a way as to encode how the 3-skeleton P of CΣ and the

ribbon graph R interact. The formal definition of this structure is delayed until Appendix B, but in essence,

a neat positive diagram is a 3-skeleton P with a (non-ribbon) graph embedded in its 2-cells that corresponds

to the ribbon graph R. This embedded graph d is required to satisfy certain criteria, for example that edges

of the graph d must meet 1-cells of P transversally and that d avoids all 0-cells of P . The crossings of edges

of d and 1-cells of P are called switches.

We then define the set of faces of (P, d), denoted (P, d)(2), to be the set of 2-dimensional connected com-

ponenets of P \(P (1)∪d(1)), the set of nodes to be the set consisting of 0-cells of P , vertices of d and switches,

and finally the set of edges to be the set of closures of any connected component of the complement of nodes

in P (1) ∪ d(1). A node is internal if it lies in the interior of CΣ. A colouring of the neat positive diagram

(P, d) is a map from the set of faces to I the set of representative simple objects of C, such that the colours

of the faces adjacent to edges of (Gop
A )c0 and Gc1A (of which there is precisely one face adjacent to each edge

by the conditions of P being a 3-skeleton) are consistent with the colours of the edges of GA and Gop
A . The

set of colours of (P, d) is denoted col(P, d).

It again seems prudent to write down the full expression for | id(Σ,A), G
c0 , Gc1 |◦ and then discuss each

component:

| id(Σ,A), G
c0
A , G

(c1)
A |◦ :=

dim(C)#(Σ\G)−#(CΣ\P )

dim(c1)

∑
c∈col(P,d)

dim(c)(Vc ⊗ idH(GR))(∗c)

Firstly, all the components related to dimension are as follows:

• dim C is the categorical dimension, that is
∑
i∈I dim(i)2;

• dim(c1) is defined to be the product over the dimension of all objects assigned to each edge of GA

under the colouring c1:

dim(c1) :=
∏
e∈Gc1

A

dim(c1(e));

• and similarly, dim(c) is the product over all objects assigned to each face of (P, d) by the colouring c

also taking into account the Euler characteristic of the face:

dim(c) :=
∏

r∈(P,d)(2)

dim(c(r))χ(r).

Next, the notation #(·) denotes the number of connected components of the argument, that is, the number

of 2-dimensional connected components of Σ\G and the number of the 3-dimensional connected components

of CΣ \ P .
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Finally, consider the term (Vc ⊗ idH(GR))(∗c). Here GR = h((Gop
A )c0 tGc1A ). Once again, the formal details

of the map Vc and the so-called contraction vector ∗c are left to Appendix B and presently we undertake

a more heuristic discussion. In essence, the map Vc⊗ idH(GR) acting on ∗c enforces a notion of compatibility

in building the bordism CΣ from the elements of (P, d)(2). The map Vc acts by evaluating graphs on spheres

around each internal node of (P, d), where each graph is formed from the intersection of the faces adjacent

to the given node with the sphere around the node. Evaluation is by the Penrose calculus (see Appendix A),

and since each node-graph has no “free ends”, it evaluates to an element in EndC(1,1) = k.

Now the contraction vector ∗c is basically just the vector that consists of unit elements of the objects

associated to each face, and hence each edge of the graph being evaluated. The evaluation then outputs

either 0 or 1 in k depending on whether the labelling of the edges of the graph (or equivalently the labelling

of the faces of (P, d)) are compatible in terms of the fusion rules for C.

We can take the perspective that

(Vc ⊗ idH(GR))(∗c) ∈ k⊗H(GR) ∼= H(GR) ∼= H(Gc0A )∗ ⊗H(Gc1A ) ∼= Homk(H(Gc0A ),H(Gc1A )) (3.14)

and so (Vc ⊗ idH(GR))(∗c) is a vector space homomorphism from H(Gc0A ) to H(Gc1A ), and it is the image of

this map that | · |C assigns to Σ. More details are provided in Appendix B and more completely in [Chapter

15, TV17].

Remark 3.3.5. The 6j-symbols which are used to calculate the Turaev-Viro-Barrett-Westbury TQFT can

be recovered in the Turaev-Viro graph TQFT context from the graphs obtained from spheres around internal

nodes in a specific choice of skeleton (see [Section 13.1.2, TV17]).

This section is concluded with some comments regarding the links to the toric code and why it is necessary

to consider other topological field theories in order to model error-correction properly. The dimension of

the code space of the toric code does not depend on the specifics of the lattice used to define it, that is,

the dimension is independent of the number of physical qubits in the state space. However, there are other

properties of the code, such as code distance (basically the number of errors the code can correct for) that

do depend on the specifics of the lattice. Many of these properties can be obtained from knowledge of the

projection map onto the code space, especially when the code is a stabiliser code and hence the projection

map is written as a product of operators defined from the lattice.

As will be seen in Chapter 5, the Turaev-Viro graph TQFT produces the correct code space for the toric

code, but doesn’t really retain any other information about the code. One could argue that by taking

|Σ|C ∼= Im(| id(Σ,A), GA, GA|◦), we can regard the skeleton G as the lattice defining the code, but this

perspective isn’t quite correct for the following reasons. Firstly, the presence of a qubit (or qudit or more

generally an anyon) is modelled by the labelled points of A with the type of particle corresponding to the

simple object that label these points. However, there are no marked points in the evaluation of the torus that

produces the toric code subspace. Secondly, we aren’t really “allowed” to consider the skeleton G because it

only really exists as a tool in defining the Turaev-Viro graph TQFT. For example, if we wanted to express
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a logical operation on the code space by a morphism in Bord
col(C)
3 , then this is a morphism with boundary

components as two copies of the unlabelled torus; there is no skeleton G involved at all.

So it seems like what we need is a TQFT whose bordism category can handle this extra required structure.

Fortunately, we have seen that the category Borddf
3 (D) for the Reshetikhin-Turaev defect TQFT does

precisely this, and so this seems like a prudent avenue to explore. This is only bolstered by the following

theorem and subsequent comments:

Theorem 3.3.1. [Thm 17.1, TV17] The graph TQFT over spherical fusion category C and the Reshetikhin-

Turaev TQFT over Z(C) are isomorphic (as TQFTs).

In the next section, the Reshetikhin-Turaev defect TQFT is defined, and it will be seen that it evaluates

defect surface and bordisms by reducing to bordisms with ribbon graphs and labelled points, and then

passing to the original Reshetikhin-Turaev TQFT. In light of the above theorem, it seems plausible that we

would be able to manufacture a Z(Z2- vectC)-coloured surface whose evaluation by the Reshetikhin-Turaev

TQFT produces precisely the toric code subspace, and also has an interpretation in terms of a defect surface

in Borddf
3 (D′) where D′ is defect data arising from Z(Z2- vectC). In actual fact, we will consider a defect

surface in Borddf
3 (D) where D is defect data from vectC, that replicates the Turaev-Viro-Barrett-Westbury

TQFT on the underlying non-defect surface by orbifolding (see the next section and also Chapter 4).

3.4 The Defect Reshetikhin-Turaev TQFT

The discussion at the end of the previous section provides the motivation for seeking 3-dimensional TQFTs

that are powerful enough to be able to evaluate manifolds with extra structure. There are a couple of

different ways to modify existing TQFTs in order to accomodate this extra structure: one can appeal to

higher category theory and consider the improved TQFTs as higher functors, or one can modify the bordism

category and functor of the original TQFT and stay within the 1-categorical setting. The Reshetikhin-Turaev

defect TQFT of Carqueville, Runkel and Schaumann takes the second approach, although ultimately there

are equivalences between the two approaches and the higher categorical setting plays a role in Chapter 4.

It is necessary to introduce the Reshetikhin-Turaev TQFT first before turning our attention to the defect

TQFT.

The evaluation of the Reshetikhin-Turaev TQFT (and hence of the Reshetikhin-Turaev defect TQFT) differs

to that of the Turaev-Viro graph TQFT, since instead of summing over a decomposition of a manifold, the

Reshetikhin-Turaev TQFT appeals to surgery theory to produce an invariant. To each surface and each

3-manifold, a ribbon graph in R3 can be assigned, and it is the evaluation of coloured versions of these

graphs that the Reshetikhin-Turaev TQFT outputs. Consequently, the Reshetikhin-Turaev TQFT and

Reshetikhin-Turaev defect TQFT are based on modular tensor categories in order for the ribbon graphs to

be well-defined and able to be evaluated. Again, the full treatment of the Reshetikhin-Turaev TQFT and

defect TQFT requires more technical detail than is appropriate in this chapter, so much is left to Appendix C
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and references such as [Chapter IV, Tur16]. Let C be a modular tensor category throughout this section,

and I a representative set of simple objects.

3.4.1 The Reshetkhin-Turaev TQFT

The form of the Reshetikhin-Turaev TQFT presented here is the anomaly-free version, but there are other

somewhat preliminary versions of this TQFT that aren’t anomaly-free (the reference [Chapter IV, Tur16]

defines the Reshetikhin-Turaev TQFT by first introducing the most basic form, which represents the largest

conceptual element of the TQFT, then makes small successive modifications to arive at the anomaly-free

version). It was mentioned during the discussion of the bordism category for the Reshetikhin-Turaev defect

TQFT that certain aspects of definitions of objects and morphisms of that category exist precisely to deal

with the occurrence of anomalies; the same goes for the bordism category BordCwt for the anomaly-free

Reshetikhin-Turaev TQFT here. We write the Reshetikhin-Turaev TQFT as

ZRT,C : BordCwt → Vectk

where the category BordCwt is the bordism category with objects as extended surfaces and morphisms

(bordisms) as homeomorphism classes of weighted extended 3-manifolds between extended surfaces. Similarly

to the objects of the bordism category for the Reshetikhin-Turaev defect TQFT an extended surface is

a pair (Σ,L) where Σ is a closed oriented surface with a finite family of disjoint marked arcs and L is a

Lagrangian space L ⊂ H1(Σ; R). A marked arc is a simple oriented arc in Σ labelled by an object of C and

a sign. By taking the perspective that a marked arc signifies a tangent direction to a point (the source of

the oriented arc) in Σ, we basically regain the definition of C-coloured surface in the previous subsection. A

homeomorphism of extended surfaces is a homeomorphism of the underlying surfaces that preserves the

arcs, their orientations, their objects and signs, and induces an isomorphism of 1-homologies that preserves

the Lagrangian subspace.

A weighted extended 3-manifold is a pair (M,m) where M is an extended 3-manifold and m ∈ Z satisfies

only the criterion that if M = ∅ then m = 0. An extended 3-manifold is a compact oriented 3-manifold

with extended surfaces as boundary and a C-coloured ribbon graph in the interior, that meets the boundary

in a compatible way (i.e. along the arcs with the colours of strands consistent with the objects of the arcs).

A homeomorphism of weighted extended 3-manifolds is a map (M,m) → (M ′,m′) where m = m′

and the map is a homeomorphism of the underlying 3-manifolds that sends the coloured ribbon in M to the

coloured ribbon in M ′ and restricts to a homeomorphism of extended surfaces on the boundary.

In order to define how ZRT,C evaluates an extended surface (Σ,L) we need to quickly introduce the notion of

a standard surface Σstd, which is an extended surface without the Lagrangian subspace (that is an extended

surface that hasn’t been extended), and the corresponding preliminary version of the Reshetikhin-Turaev

TQFT, which will be denoted ZCRT , that evalautes standard surfaces. An extended surface (Σ,L) is said to

be parametrised by a standard surface Σstd if a homeomorphism f : Σstd → Σ that preserves marked arcs is

given (the pair (Σstd, f) is called a parametrisation). Ultimately, ZRT,C evaluates (Σ,L) via an inverse limit
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over parametrisations of (Σ,L), but before we make any further comments on that, let us denote what ZCRT
assigns to standard surfaces.

We consider a standard surface Σstd as a canonical marked surface of a certain type t = (g; (X1, ε1), ..., (Xn, εn))

where g is the genus of Σstd and the (Xi, εi) denote the objects and signs associated to the marked arcs in

some order. We then consider a bordism from ∅ to Σstd with an internal ribbon graph consisting of one

coupon and n+ g strands. An example for a standard surface of type t = (1; (Xa1 ,−), (Xa2 ,+), (Xa3 ,+)) is

shown in Figure 3.6.

Figure 3.6: An example of the ribbon graph used to compute ZCRT (Σstd).

The strands that encode the genus of Σstd and the single coupon are uncoloured, and so by summing over

the colourings by simple objects, ZCRT assigns the following vector space to Σstd:

ZCRT (Σstd) =
⊕

(V1,...,Vg)∈Ig
HomC(1, X

ε1
1 ⊗ ...⊗Xε1

n ⊗
g⊗
r=1

(Vr ⊗ V ∗r ))

The projective system by which ZRT,C is defined is constructed as follows. Let f0 : Σstd
0 → Σ and f1 :

Σstd
1 → Σ be two homeomorphisms from parametrisations of (Σ,L). Then there is a homeomorphism

f−1
1 f0 : Σstd

0 → Σstd
1 which induces an isomorphism

φ(f0, f1) : ZRT,C(Σstd
0 )→ ZRT,C(Σstd

1 )

This isomorphism involves some factors that require more theory than can be presented here and depend on

C, Σ, Σstd
0 and Σstd

1 in non-trivial ways in general (for the case of vectC these isomorphisms are somewhat

simpler; see Appendix C.1.3). We then set ZRT,C(Σ,L) to be the inverse limit over the ZRT,C(Σstd) along the

‘intertwiners’ φ(f0, f1) over all parametrisations of Σ. Similarly to the inverse limit mentioned for the Turaev-

Viro graph TQFT, for any parametrisation (Σstd, f) there is an isomorphism ZRT,C(Σ,L) → ZRT,C(Σstd),

and this is how ZRT,C is computed in practice.

Defining the evaluation of ZRT,C on a weighted extended 3-manifold (M,m) also requires some non-trivial
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groundwork which has been relegated to the Appendix C (and references therein). The evaluation of mor-

phisms is where the appeal to a result from surgery theory comes into play, and the general gist is as follows.

First consider a closed 3-manifold with internal ribbon graph. A known result states that every closed, con-

nected and oriented 3-manifold can be obtained from a 3-sphere via surgery on a link. A intimate knowledge

of what ‘surgery on a link’ means is not necessary for this thesis; it suffices to know that we can evaluate

the ribbon graph in the original closed 3-manifold by considering the same ribbon graph, with an extra

uncoloured link corresponding to the surgery, as residing in the 3-sphere, and equivalently in R3. This graph

is evaluated via the usual method (see Appendix A) by summing over simple objects of C for the uncoloured

link.

Remark 3.4.1. The calculations done with the Reshetikhin-Turaev defect TQFT in the next chapter are

more or less reduced to this point at some stage. However, since we are considering the defect TQFT over

vectc, the only simple object is C. Furthermore, the braiding on vectC is trivial, so we can in fact, by

subsequent applications of the braiding, “pull” the link corresponding to the surgery out of the ribbon graph

so the two are disjoint. At this point, since C is the ground field as well as the simple object, this tensor

product (disjoint union) of the ribbon graph and the link coloured by C, evaluates to something that is

equivalent to the evaluation of the ribbon graph on its own. Thus, we are able to largely ignore the effects

of the surgery in the next chapter, and basically consider the ribbon graph in the 3-manifold as a ribbon

graph in R3.

To get an idea of how a 3-manifold with boundary is evaluated by ZRT,C , we note that any such 3-manifold

can be transformed into a closed 3-manifold by gluing a 3-manifold of a similar form to that in Figure 3.6

to each component of the boundary, and then proceeding as above. This produces a morphism between the

vector spaces assigned to the boundaries surfaces via ZCRT (and hence ZRT,C).

For a proof that ZRT,C as per (the more rigorous version of) the discussion above is an anomaly-free, non-

degenerate TQFT see [Theorem IV.9.2.1 Tur16].

3.4.2 The Defect TQFT

It has already been mentioned that the defect Reshetikhin-Turaev TQFT, denoted Zdf
RT,C evaluates objects

and morphisms in Borddf
3 (D) by transforming them so that they can be evalauted by the original Reshetikhin-

Turaev TQFT from the previous subsection. By comparing the bordism category Bord3
wt above with the

bordism category Borddf
3 (D) in Section 3.2.2, the similarities between objects and morphisms are stark.

In fact, the defect TQFT transforms both D-decorated surfaces and D-decorated bordisms into weighted

extended 3-manifolds, before passing to the anomaly-free Reshetikhin-Turaev TQFT.

Before we look at the details of this reduction process, we need to look more closely at what information is

packed into the defect data D [Section 2.1, CR12]. Again, throughout C denotes a modular tensor category

over a field k.

Definition 3.4.2. The set of defect data D = (DC3 , D
C
2 , D

C
1 , s, t, j) associated to a modular tensor category
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C is as follows

• DC3 is the one element set {C};

• DC2 is the set of ∆-separable symmetric Frobenius algebras in C;

• DC1 is defined to be the disjoint union

DC1 := tn∈Z≥0
Ln

where L0 = {X ∈ C|θX = idX} and for n > 0

Ln = {((A1, ε1), (A2, ε2), ..., (An, εn),M)}

with the Ai ∈ DC2 , the εi ∈ {+,=} and M is a cyclic (Aε11 , ..., A
εn
n )-multi-module;

• s(A,±) = t(A,±) = C for all A ∈ DC2 ;

• j(M) = C for n = 0 and for n > 0,

j((A1, ε1), ..., (An, εn),M) = ((A1, ε1), ..., (An, εn))/Cn

where Cn denotes the cyclic group.

Pursuant to Remark 3.2.11, there is also the set D0 that is relevant to the evaluation of Zdf
RT,C on bordisms

with internal 0-strata, which is commented upon below, but most of the details are again suppressed until

the appendices.

For the set DC2 , we need the following definition:

Definition 3.4.3. A Frobenius algebra in C is a tuple (A,∇, η,∆, δ) where A is an object of C, (A,∇, η)

is an associative unital algebra, (A,∆, δ) is a coassociative counital coalgebra, and

(∇⊗ idA) ◦ (idA⊗∆) = ∆ ◦ ∇ = (idA⊗∇) ◦ (∆⊗ idA)

A Frobenius algebra is symmetric if δ ◦ ∇ = δ ◦ ∇ ◦ cA,A ◦ (idA⊗θA) and is ∆-separable if ∇ ◦∆ = idA.

By describing how the defect TQFT evaluates surfaces (Σ,L) ∈ Borddf
3 (D), we gain insight on how to

produce the set of defect data D0. This evaluation proceeds as follows. Consider the cylinder CΣ = Σ× [0, 1]

where any 1- and 0-strata of Σ are extended to 2- and 1-strata respectively of CΣ. To each 1-strata labelled

by ((A1, ε1), ..., (An, εn),M), associate a ribbon labelled by M (where the framing of the strand is compatible

with the cyclicity of the module M - this is made precise in [CRS17] but doesn’t feature heavily in this thesis).

For each 2-strata labelled with Frobenius algebra Ai, triangulate the 2-strata, then decorate the (oriented)

Poincaré dual of this triangulation with Ai for each edge, and either ∇ or ∆ to each point depending on the

orientations of the incoming and outgoing edges. Thicken these lines to ribbons. Note that the triangulation
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of the 2-strata of CΣ induces a triangulation t of the 1-strata in Σ and turn CΣ into a bordism between two

surfaces with marked points. To the intersections where the A-ribbons connect with an adjacent M -ribbon,

associate the action ρ : Ai ⊗M →M or ρ : M ⊗Ai →M depending on the orientations.

In this way, CΣ has become a weighted extended 3-manifold (we can just assign a 0 weight to the cylinder)

and hence can be evaluated by ZRT,C to produce a morphism ψΣ
t,t′ : ZRT,C(Σt,L)→ ZRT,C(Σt′ ,L), where Σt

and Σt′ are the extended surfaces in the boundary of CΣ with coloured points induced by the triangulations

above. Once again an inverse limit construction over the ZRT,C(Σt) and ψΣ
t,t′ defines Zdf

RT,C , and again we

can take

Zdf
RT,C(Σ) ∼= Im(ψΣ

t,t)

for any triangulation t.

The defect data set D0 can be produced by evaluating defect spheres around internal 0-strata using the

above method. That is, by inserting a sphere around a 0-stratum in the interior of a defect bordism, one can

consider the intersection of the 2- and 1-strata incident to this 0-stratum as 1- and 0-strata on the sphere,

turning it into a defect surface ready to be evaluated (see Appendix C.2.2 or [Section 2.4, CRS19] for more

details). The elements of D0 seen in this thesis (as part of the orbifold data introduced in the next chapter)

can typically be viewed as morphisms between tensor products of multi-modules, or simply as elements of

the ground vector space (that is, an element of the evaluation of Zdf
RT,C on the undecorated sphere).

The evaluation on an arbitrary bordism in Borddf
3 (D) proceeds in a similar fashion, just now with the added

data for 0-strata. By the same construction regarding labelling the Poincaré dual of triangulations of 2-

strata and by thickening lines into ribbons, a weighted extended manifold with a C-coloured ribbon graph

inside it is produced which can then be passed to ZRT,C . This construction can be shown to be independent

of triangulations of the 2-strata that don’t meet the boundary, and the effect of the triangulation on the

boundary surfaces can be removed by an inverse limit.

Remark 3.4.4. One may have noted that the Lagrangian space L that makes up part of the definition of

an object of Borddf
3 (D) doesn’t make its presence felt in the above discussion. The role of the Langragian

space resides entirely in the realm of the original Reshetikhin-Turaev TQFT and plays no further part with

respect to defects and the evaluation of Zdf
RT,C other than when this is reduced to ZRT,C . As a result, L will

largely be dropped from consideration, especially in the calculations of Chapter 5.
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Chapter 4

Orbifolds of TQFTs

The aim of this chapter is to introduce the orbifold construction of the defect Reshetikhin-Turaev TQFT

mentioned briefly in the previous chapter and required for the next (the best references to become ac-

quainted with the orbifold construction are [CRS19; CRS17; CRS18]). This orbifold construction produces

an equivalence between the defect TQFT evaluated over vectC and the Turaev-Viro graph TQFT evaluated

over Z2- vectC and represents the key motivation for considering the Reshetikhin-Turaev defect TQFT as

a potential model for quantum error-correcion. Before detailing the orbifold construction in the context of

TQFTs, we take a moment to introduce orbifolds in their initial context in order to generate some intuition

as to why the term ‘orbifold’ is appropriate in the TQFT setting, and why an orbifold of a defect TQFT

might output something that is similar to a state sum TQFT like the Turaev-Viro-Barrett-Westbury TQFT.

Orbifolds of 2-dimensional TQFTs are marginally easier to understand than the 3-dimensional case, so they

are examined first as a stepping stone to the 3-dimensional case. For a more rigorous approach to the usual

notion of orbifolds generally, see [Thu79], and for orbifolds of defect TQFTs specifically, see [CRS19; CR12].

4.1 Orbifolds

The concept of an orbifold, first introduced in a slightly different form by Satake [Sat57] and then by

Thurston [Thu79] in a closer form to the following, is a generalisation of the concept of a manifold to include

a group acting on the underlying topological space. Let G be a finite group that acts faithfully and properly

discontinuously on Rn such that for all g ∈ G and U ⊂ Rn, g(U) ⊂ U . Let U/G denote the topological

space defined as the space of orbits of U under G and given the quotient topology. Paralleling the definition

of manifold, an orbifold is a topological Hausdorff space X such that for each element U of a set of open

sets U that cover X, there is a homeomorphism φU : U → U/G, such that all U and φU satisfy certain

compatibility conditions ([Thu79]).

Instead of considering G acting on Rn, if we considered G acting (properly discontinuously) on the manifold
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X directly, then X/G has the structure of an orbifold ([Proposition 13.2.1, Thu79]). Denote by ρ : X → X/G

the quotient map (which is continuous). Let Y be another topological space, and denote by C(X,Y ) the set

of all continuous maps from X to Y . Consider the following map:

H : C(X/G, Y )→ C(X,Y )

f 7→ f ◦ ρ

In particular, this means that for f ∈ C(X,Y ) and all g ∈ G and x ∈ X, f(x) = f(gx), or in other words, f

is constant on orbits.

Now since G acts continuously on X, each g ∈ G defines a homeomorphism g : X → X. We can then define

a right G-action on C(X,Y ) as follows:

C(X,Y )×G→ C(X,Y )

(f, g) 7→ f ◦ g

Since f ∈ C(X,Y ) is constant on orbits if and only if f ◦ g = f , we can identify

Im(H) = C(X,Y )G

where C(X,Y )G denotes the G-invariant subset of C(X,Y ). This induces a bijection natural in Y :

C(X/G, Y ) ∼= C(X,Y )G. (4.1)

We now take the first step in the process that will allow us to generalise this perspective of orbifolds. Recall

a functor F ′ : C → Set is representable if there exists an object R ∈ C, called the representing object

such that F is naturally isomorphic to HomC(R, ·). Let us denote the category of topological spaces, that is,

the category with objects as topological spaces and morphism as continuous maps between them, by Top,

and the category of sets by Set. Let us consider the following functor

F : Top→ Set

Y 7→ C(X,Y )G

The orbifold X/G is a representing object for this functor by Equation (4.1)

More generally, if C is a category, G is a finite group and X ∈ C is an object with a G-action

α : G→ AutC(X)

an orbifold of X ∈ C by the action of G is a pair (X/G, ρ) consisting of a representing object X/G of the

functor

HomC(X, ·)G : C → Set

Y 7→ HomC(X,Y )G
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where HomC(X,Y )G is the subset of G-invariant maps f : X → Y , and ρ : X → X/G corresponds under

the bijection HomC(X/G,X/G) ∼= HomC(X,X/G)G to 1X/G.

The representing object X/G need not exist in C but it is possible to embed C in a “bigger” category Ĉ that

does contain X/G as an object (and ρ as a morphism), which leads to the notion of the orbifold completion

of a category C.

We discuss one more abstraction in the present context as preparation for the next two sections. The group

G and its action on an object X ∈ C can be reformulated as follows. We can consider G as a catgeory G

that has a single object ∗, and morphisms such that HomC(∗, ∗) = G. The group homomorphism α above is

then viewed as a functor A:

A : G→ C

∗ 7→ X

g 7→ A(g) = α(g) ∈ AutC(X)

This abstraction doesn’t buy us anything in the present context, but generalises in a useful way, as we shall

shortly see.

4.2 Orbifolds of 2-dimensional Defect TQFTs

Up until now, 2-dimensional defect TQFTs have not made an appearance within this thesis, nor are they

pertinent to any other section than the current one. The reason that they have been included here is to

conceptually bridge the gap between orbifolds as presented earlier and orbifolds of 3-dimensional defect

TQFTs in the next section. The finer details of 2-dimensional defect TQFTs Zdf are not explictly needed

beyond a few comments regarding 2-dimensional defect data D and the corresponding defect bordism category

Borddf
2 (D), which are the 2-dimensional analogues of those introduced in the preceding chapter.

A set of defect data for a 2-dimensional defect TQFT is a tuple (D2, D1; s, t) where D2, D1 are sets whose

elements label 2- and 1-strata respectively, and s, t are maps that enforce compatibility of adjacent labellings.

For the present discussion, we need only know a little more about the set D2, which is a set of “phases” or

“theories”. Just as for the defect data associated to the Reshetikhin-Turaev defect TQFT outlined in the

previous chapter, there is a set D0 for labels on 0-strata, which can be computed directly from the TQFT

Zdf and the tuple given above (see Appendix C).

This entices us to consider the orbifold of a theory Zdf
C as the orbifold of the element C ∈ D2 viewed as an

object in some category, just as in the end of the previous section. However, the defect TQFT Zdf
C encodes

much more information than just the category upon which it is based, so it is not enough to consider C as

an object in a 1-category, but rather we need a formulation in a higher category, namely a strictly pivotal

bicategory [Section 3.2, CR12]. Let us quickly introduce bicategories before discussing their equivalence to

2-dimensional defect TQFTs.
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A bicategory B consists of the following data:

• a class of objects a ∈ B;

• for each a, b ∈ B, there is a category B(a, b) whose objects are 1-morphisms f, g : a → B and whose

morphisms are called 2-morphisms φ : f → g;

• 1-morphisms are composed via the family of functors

κabc : B(b, c)× B(a, b)→ B(a, c)

where a, b, c run over the objects of B. For a, b, c ∈ B, 1-morphisms f, f ′ : a→ b and g, g′ : b→ c, and

2-morphisms φ : f → f ′ and ψ : g → g′, we write f ⊗ g = κabc(f, g) and ψ ⊗ φ = κabc(ψ, φ);

• for any triple of composable 1-morphisms f, g, h, there is a 2-isomorphism αf,g,h : (f ⊗ g) ⊗ h →
f ⊗ (g ⊗ h), called the associator, and for every a ∈ B there is a unit 1-morphism 1a ∈ B(a, a) along

with natural 2-isomorphisms

λf : 1b ⊗ f → f

ρf : f ⊗ 1a → f

for every f ∈ B(a, b). The 2-isomorphisms satisfy coherence conditions that are not currently impor-

tant, and are deferred to [Chapter 7, Bor94].

An adjunction f ` g in a bicategory B is a pair of 1-morphisms f ∈ B(a, b) and g ∈ B(b, a) together with

2-morphisms ε : f ⊗ g → 1b and η : 1a → g⊗ f that satisfy certain conditions (see [Section 2.1, CR12]). B is

a bicategory with left adjoints if for every f ∈ B(a, b) there is a †f ∈ B(b, a) and a choice of adjunction
†f ` f , and similarly for a bicategory with right adjoints. B is a bicategory with adjoints if it has left and

right adjoints. Analogously to the 1-categorical case, B is pivotal if the left and right adjoints coincide for

every 1-morphism, and the chosen adjunctions satisfy certain conditions (again see [CR12]). The adjective

‘strict’ in the case of 2-categories is also analogous to that of 1-categories, in that the associator α and the

left and right unit maps λ and ρ are identity in strict 2-categories, as opposed to simply isomorphism as

with general bicategories.

According to Theorem 3.2 in [CR12], every 2-dimensional defect TQFT Zdf
C : Borddf

2 (D)→ vectC gives rise

to a strictly pivotal 2-category DZ . This pivotal 2-category is defined roughly as follows. The set of objects

of DZ is the set D2 from the defect data, which we take to consist of a single element C. The 1-morphisms

are defined to be finite formal sums of sequences of composable elements of D1 with associated signs, where

composable has a formal definition (not presented here) in terms of compatibility via the source and target

maps s and t. The identity 1-morphism is the empty sequence and the product ‘⊗’ is concatenation of

sequences. The 2-morphism spaces, compositions and adjunction maps are all defined by evaluating Zdf
C on

specific objects of Borddf
2 (D), namely the circle S1 with marked points of various particular labellings (again

see [CR12] for more details).
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We now have a way of expressing our to-be-orbifolded TQFT Zdf
C in terms of a bicategory, but we still need

to detail what is meant by the action of a finite group G on this bicategory, which we do via the bicategorical

version of the construction at the end the previous section. Before doing so, let us introduce the concept of

orbifold data, which is simply a choice of elements from each set of the defect data D such that the evaluation

of a specific defect bordism labelled solely by this choice of data is equivalent to the evaluation of a related

bordism by a different TQFT (more comments on this are made below). We will then discuss how this

orbifold data arises from a specific type of 2-functor from the bicategory associated to a finite group G to

the bicategory associated to Zdf
C .

Definition 4.2.1. An orbifold datum for a 2-dimensional defect TQFT Zdf : Borddf
2 (D) → Vectk is a

tuple A = (C, A,∇,∆) where C is the single element in D2, A ∈ D1 is a ∆-seperable symmetric Frobenius

algebra (see Definition 3.4.3), and ∇,∆ ∈ D0 are the multiplication and comultiplication maps of A respec-

tively. The unit and counit maps can be produced by evaluating Zdf on appropriately decorated surfaces

(see [CR12]).

Remark 4.2.2. In the literature regarding orbifolds of TQFTs (e.g. [CR12; CRS19; CRS18]) the orbifold

datum above is called special as a more general definition of orbifold datum can be given.

The condition that A be a ∆-separable symmetric Frobenius algebra is equivalent to imposing the condition

that Zdf evaluated on the Poincaré dual of a triangulation of a 2-manifold labelled by A,∇ and ∆ is invariant

under the (dual of the) Pachner moves [Proposition 3.4, CR12]. This pre-empts how the orbifold theory is

computed, by labelling the Poincaré dual of a triangulation by the orbifold datum A.

Returning to the action of a finite group G on the bicategory DZ , let us define the bicategory G similarly to

the category G: let G be the bicategory with a single object ∗, the space of 1-morphisms Hom(∗, ∗) is the

group G, and all 2-morphisms are identity. Due to the richer structure of bicategories, there is a more varied

class of 2-functors between them. In particular, we want to define the action of G on DZ by considering a

lax-oplax functor from G to DZ , which will be denoted by A in order to emphasise the relation to the

orbifold datum above. The precise definition of a lax-oplax functor is not given here (see instead [Bor94])

but in essence a lax-oplax functor Φ : B → D is a type of 2-categorical analogue of a functor with some

equalities relaxed to hold up to isomorphism or more generally, and consists of the following data:

• a function from the objects of B to those of D;

• a functor from the category B(a, b) to D(Φ(a),Φ(b)) for all objects a and b in B;

• 2-morphisms relating 1φ(a) and φ(1a) for all objects a in B;

• a family of natural transformations;

all of which is required to satisfy certain coherence relations.

In particular, a lax-oplax functor A : G → DZ specifies an object of DZ , of which there is only one choice

C, an object A of DZ(C, C), 2-morphisms η and δ, and natural transformations ∇ and ∆. The coherence

relations precisely correspond to the conditions making (A,∇, η,∆, δ) into a Frobenius algebra.
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Remark 4.2.3. It seems as though the extra conditions of symmetry and ∆-separability that are placed

on the Frobenius algebra A are additional to those conditions enforced by the lax-oplax functor. More work

is required to investigate the origins of these conditions within this functorial framework, however this is

beyond the scope of this thesis.

The action of G on an object x of DZ is then defined similarly to the end of the previous section as A
where A(g) ∈ DZ(x, x). The orbifold of x by G is also defined similarly to above, this time as a representing

object of a pesudofunctor from DZ to the bicategory Cat. Once again, this representing object may not be

contained in the bicategory DZ , but rather in a related category Dorb
Z .

4.3 Orbifolds of 3-dimensional Defect TQFTs

In this final section, we comment briefly upon the analogous situation to the previous section on 2-dimensional

TQFTS for the 3-dimensional defect TQFT of interest: the Reshetikhin-Turaev defect TQFT. A rigorous

treatment of the details presented here is beyond the scope of this thesis. This section does, however, provide

a perfect opportunity to introduce the orbifold data for the Reshetikhin-Turaev defect TQFT based on vectC

required for the next chapter, as well as the equivalence between this defect TQFT and the Turaev-Viro-

Barrett-Westbury TQFT for a given spherical fusion category.

Recall from Definition 3.4.2, that the defect data for the Reshetikhin-Turaev defect TQFT is a tuple D =

(D3, D2, D1, D0, s, t, j) where D3, D2 and D1 are the sets {C}, the set of ∆-separable symmetric Frobenius

algebras in C, and a set of tuples based on multi-modules resepctively, and where s, t and j are maps that

enforce compatibility of labellings of strata by elements of D3, D2 and D1. The set D0 consists of maps

between tensor products of multi-modules (see [CRS18]).

In the following chapter, we consider the Reshetikhin-Turaev defect TQFT over vectC, so we are taking

C = vectC in the above defect data. For a given spherical fusion category S, we can write down the orbifold

datum internal to vectC and associated to S. Let I be a representative set of simple objects for S.

Definition 4.3.1. The orbifold datum AS of Zdf
RT,vectC

associated to S is

• A3 = vectC;

• A2 =
⊕

i∈I C, where C is considered as a (∆-separable symmetric) Frobenius algebra;

• A1 =
⊕

i,j,k∈I HomS(i ⊗ j, k) considered as a multi-module and where A2 acts on each factor by the

kth factor C on the left and by the tensor product of the ith and jth factors C⊗ C on the right;

• A+
0 ,A

−
0 : A1 ⊗A2

A1 → A1 ⊗A2
A1 are maps based on the fusion rules of S (see below) that label

0-strata at the intersection of 1-strata; and

• ψ2 and φ in D0 label 0-strata in the interior of 2- and 3-strata respectively, and where ψ2 is an |I|× |I|
diagonal matrix with entries the dimensions of the elements i ∈ I, and where φ = dim(S).
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To define the maps A±0 , let us denote basis elements of the first tensor factor T of the domain by λ and λ′

and basis elements of the second factor by µ and µ′. Then

A+
0 : λ⊗ µ 7→

∑
i∈I,λ′,µ′

(dim i)−1Fλλ
′

µµ′ · λ′ ⊗ µ′

where the sum is over all elements of I and basis elements of each factor T . Similarly, the map A−0 is defined

by

λ⊗ µ 7→
∑

i∈I,λ′,µ′
(dim i)−1(F−1)λλ

′

µµ′ · λ′ ⊗ µ′

Remark 4.3.2. In the above two equations, the factor F is the F -tensor associated to fusion rules (an

example is given in Example 3.1.15), and is not to be confused with say the functor also labelled F earlier

in this chapter.

From the point of view of generalised orbifolds taken in this chapter, we want to be able to consider the

Reshetikhin-Turaev defect TQFT in some categorical sense, and then consider an object corresponding to

invariance under the action of a finite group, just as in the 2-dimensional case above. It turns out that every

3-dimensional defect TQFT gives rise to a variation of a tricategory, namely a Gray category with duals

[Theorem 1.1, CMS16]. It is also possible to define a Gray category G from the finite group G in a parallel

fashion to the bicategory G from the previous section, where all 3-morphisms are also taken to be identity.

Here we become most conjectural, and, to reiterate the comments made at the start of this chapter, the

following paragraph is simply an attempt to provide intuition regarding orbifolds of the Reshetikhin-Turaev

defect TQFT. If we consider the orbifold data for the 2-dimensional defect TQFT and the Reshetikhin-

Turaev defect TQFT it is possible to see some similarities (in fact the orbifold data for n-dimensional defect

TQFTs are similar for all n due to the recursive nature of their definitions [Definitions 2.4 and 3.5, CRS19]).

In particular, Frobenius algebras appear in both sets of data. As we have seen above, in the 2-dimensional

case, these Frobenius algebras arise naturally from the structure of the lax-oplax functor G→ DZ , and so it

seems reasonable to suspect that a generalisation of such a functor to the Gray category setting may produce

similar results, encapsulating much of the orbifold data for the Reshetikhin-Turaev defect TQFT. Assuming

such a generalisation is possible, then the definition of the orbifold of the Reshetikhin-Turaev defect TQFT

would proceed as it has done in the bicategory setting above.

We end this chapter by stating a result due to Carqueville, Runkel and Schaumann that provides part of

the motivation for considering defect TQFTs in the context of error-correction, and the foundation of the

following chapter:

Theorem 4.3.1. [Theorem 4.5, CRS18] For any spherical fusion category S there is a natural isomorphism

between the Turaev-Viro-Barrett-Westbury TQFT based on S and the AS-orbifold of the Reshetikhin-Turaev

defect TQFT based on vectC.

In the next chapter we will see how to actually compute the orbifold of the Reshetikhin-Turaev defect TQFT

via a specific example, the orbifold of a defect torus, but we pre-empt some of those details here in order
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to round out our intuition as to why the orbifold produced something similar to a state sum. Recalling the

comments made at the start of Section 3.3, the Turaev-Viro-Barrett-Westbury TQFT evaluates a manifold

by triangulating it and averaging over the states assigned to each component of the triangulation. In practice,

the orbifolding of the Reshetikhin-Turaev defect TQFT proceeds in a similar fashion: the orbifold data is

assigned to the Poincaré dual of a triangulation of a 3-manifold, and then evaluated by the TQFT, which is

paramount to “averaging” over this data.
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Chapter 5

The TQFT Picture for the Toric Code

The entire basis for this thesis rests upon a known result relating the toric code and the Turaev-Viro-Barrett-

Westbury TQFT: the Turaev-Viro-Barrett-Westbury TQFT over the spherical fusion category Z2- vectC

evaluated on the torus produces the code subspace of the toric code (this result was first encountered in

the development of this thesis in [KKR10] but the introduction of [BK12] provides a clear overview of the

relationship between Kitaev’s models and the Turaev-Viro-Barrett-Westbury TQFT). This result is written

succinctly as the following theorem, the proof of which is the topic of Section 5.1.

Theorem 5.0.1. We have

|(Σ, A)|Z2- vectC
∼= Hcode

where Σ ∈ Bord
col(Z2- vectC)
3 is the torus, A is empty and Hcode is the code subspace for the toric code.

However, as Chapter 2 attests, there is more to quantum error-correction than just the code subspace,

in particular knowledge of the projection map onto that subspace is vital. Unfortunately, there does not

seem to be any natural way of formulating this projection mapping within the confines of the Turaev-Viro-

Barrett-Westbury TQFT, that is, from a morphism in Bord
col(Z2- vectC)
3 that contains enough structure to

describe the projection mapping for the toric code defined on a specific lattice. So in order to model quantum

error-correction via a topological quantum field theory, we need to search further afield. Firstly, the Turaev-

Viro-Barrett-Westbury TQFT generalises slightly to the Turaev-Viro graph TQFT but this generalisation

is regarding how the TQFT is evaluated and rather than what it evaluates, so is equivalent to the Turaev-

Viro-Barrett-Westbury TQFT and hence still not powerful enough for our needs (though the generalisation

does simplify the proof of Theorem 5.0.1 slightly). Now, it is known that the Turaev-Viro-Barrett-Westbury

TQFT based on a modular tensor category C and evaluated on a closed oriented 3-manifold M is equivalent

to the following product involving the Reshetikhin-Turaev TQFT, also based on C [Theorem VII.4.1.1, Tur16]

|M |C = ZRT,C(M)ZRT,C(−M)
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where −M denotes the manifold M with opposite orientation. This result speaks to the fact that the

Reshetikhin-Turaev TQFT is the more fundamental of the two TQFTs. The relationship between the

Reshetikhin-Turaev TQFT and Turaev-Viro graph TQFT is strengthened by the more general equivalence

between the Turaev-Viro graph TQFT based on a spherical fusion category C and the Reshetikhin-Turaev

TQFT based on the modular tensor category Z(C) (the centre of C) [Theorem 17.1, TV17]. So it seems

prudent to consider the Reshetikhin-Turaev TQFT as a candidate model for error-correction with the toric

code. This investigation proceeds by making use of the Reshetikhin-Turaev defect TQFT, which extends the

Reshetikhin-Turaev TQFT and, utilising the result from the end of the preceding chapter, leads us to the

main theorem of this thesis:

Theorem 5.0.2. Let Σt
∗,AZ2- vectC ∈ Borddf

3 (D) be the D-decorated torus with stratification arising from the

dual of the triangulation t of the torus as defined in Figure 2.1 and labelled by the orbifold datum AZ2- vectC .

Then

(i) Im(Zdf
RT,vectC

(C
t∗,AZ2- vectC
Σ )) = Hcode, and

(ii) Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) = Pvert ◦ f ,

where C
t∗,AZ2- vectC
Σ ∈ Borddf

3 (D) is the morphism used to define the AZ2- vectC -orbifold of Zdf
RT,vectc

on the

undecorated torus, f is a projection from the domain of Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) to Im(Pplaq), Hcode is the

code subspace of the toric code defined on t∗, and Pvert is the component of the projection map Pcode defined

on the plaquettes of t∗.

The structure of this chapter is as follows. Section 5.1 is devoted to proving Theorem 5.0.1 and discussing the

links to the projection map Pcode of the toric code. This proof proceeds in two parts, written in Section 5.1.1

and Section 5.1.2. Section 5.1.1 relates the domain of the map | id(Σ,A), G,G|◦ (recall Section 3.3.2) for Σ

the torus, A the empty set and G a skeleton of Σ, to the vector space Im(Pplaq) where Pplaq is defined as the

product of Pp projectors for p ∈ G(0) (recall Section 2.2 for the definitions of Pplaq and Pp). The remainder

of the proof is completed in Section 5.1.2 by showing that | id(Σ,A), G,G|◦ is precisely the projection Pvert,

where Pvert is defined by the projectors Pv of Section 2.2 also defined from G. Section 5.1.3 makes some

concluding remarks about Theorem 5.0.1 and highlights the key features that are also present in the proof

of Theorem 5.0.2.

Section 5.2 is concerned with the proof of Theorem 5.0.2, with Section 5.2.1 laying some foundation for

the bulk of the proof which is contained in Section 5.2.2. This proof has many similarities with that of

Theorem 5.0.1, however the domain of the map Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) differs to that of | id(Σ,A), G,G|◦

in that it contains Im(Pplaq) as a proper subset (it is partly this feature that supports the choice of the

defect TQFT over the Turaev-Viro graph TQFT as a model for error-correction). Section 5.2.1 outlines

how the domain | id(Σ,A), G,G|◦, and hence Im(Pplaq) can be recovered in the defect TQFT framework, and

Section 5.2.2 relates the morphism Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) to Pvert. Section 5.3 concludes this chapter with

a discussion of the advantages and disadvantages of an error-correction model based on TQFTs in general,

and the Reshetikhin-Turaev defect TQFT in particular.
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5.1 The Turaev-Viro Graph TQFT and the Toric Code Subspace

Let (Σ, A) ∈ Bord
col(Z2- vectC)
3 be the coloured surface where Σ is the torus and A is empty. Recall from

Section 3.3.2 that the Turaev-Viro graph TQFT evaluates (Σ, A) by considering the isomorphism

|(Σ, A)|Z2- vectC
∼= Im(| id(Σ,A), GA, GA|◦) (5.1)

where GA is a graph defined from a skeleton G of Σ that interacts with A in a specific way (see Defini-

tion 3.3.2). In this case, since A is empty, GA = G. The specific choice of G can be interpreted as a choice

of lattice for defining the toric code as in Section 2.2. For example, one could take G to be the Poincaré

dual (in red) of the triangulation t of the torus shown in black in Figure 5.1. Doing so would make the links

between the proof of Section 5.1 and the toric code as in Example 2.2.3 most clear.

Figure 5.1: A skeleton G of the torus is denoted in red.

Remark 5.1.1. Neither the definition of the toric code in Section 2.2 nor the Turaev-Viro graph TQFT in

Section 3.3 (and Appendix B) is required to be defined using a triangulation (or its dual), but can instead

be defined on any cellulation of the torus. We will take G to be an arbitrary skeleton of Σ throughout this

section, however it is necessary to note that the orbifold of the defect TQFT is defined via the Poincaré dual

of a triangulation, and Theorem 5.0.2 is stated and proved for the specific t and t∗ in Figure 5.1, so it may

be useful to keep this example skeleton in mind.

Let us recall two things. Firstly, the map | id(Σ,A), G,G|◦ is a map from
⊕

c∈col(G)H(Gc) to itself (Sec-

tion 3.3.1), and secondly the code subspace Hcode for the toric code in Section 2.2 can be defined to be the

image of the Pvert acting on Im(Pplaq). In consideration of these points and Equation (5.1), we state the

following two propositions that constitute the proof of Theorem 5.0.1:

64



Proposition 5.1.1. The vector spaces
⊕

c∈col(G)H(Gc) and Im(Pplaq) are isomorphic, where Pplaq =∏
p∈G(0) Pp.

Proposition 5.1.2. The map | id(Σ,A), G,G|◦ is equal to Pvert = 1
|A|
∑
g∈A g where A is the group generated

by operators Av (see Definition 2.2.1) with v ∈ G(2).

Recall that operators Av and projectors Pp from Equation (2.7) and Equation (2.4) respectively. The

notation G(2) is incorrect but useful; we take it to mean the set of connected components of Σ \G, that is,

the “plaquettes” of G. The proof of these propositions is precisely the proof Theorem 5.0.1 since Hcode and

|(Σ, A)|Z2- vectC are then computed by the image of the same map from the same domain vector space.

5.1.1 The Domain of | id(Σ,A), G,G|◦

The proof of Proposition 5.1.1 commences by analysing
⊕

c∈col(G)H(Gc). Recall Equation (3.13):

H(Gc) =
⊗
p∈G(0)

Hp

where Hp is as in Section 3.3.1 (though in that subsection, the subscript used was v) and c is a colouring of

G. Since A is empty, G has no distinguished vertices (distinguished vertices were defined in Definition 3.3.2),

and so we can write

H(Gc) ∼=
⊗
p∈G(0)

HomZ2- vectC(1, c(ep1)ε(e
p
1) ⊗ ...⊗ c(ep|p|)

ε(ep|p|))

where the epi are the incident edges of p ∈ G(0), |p| is the valence of p and ε encodes the orientation of these

edges towards or away from p (we are using ‘p’ instead of ‘v’ for the vertices of G in order to be consistent

with the notation for Pplaq; recall the comments made in Remark 2.2.2). The isomorphism in the above

equation is a specific cone isomorphism which is related to the projective system that is used to remove any

dependence on the choice of cyclic ordering of edges when defining Hp as discussed in Remark 3.3.4 and in

more detail in Appendix B. Now, the simple objects of Z2- vectC are C0 = 1 and C1 which we know are

isomorphic to their duals, so we can ignore the ε(epi ) and write

HomZ2- vectC(1, c(ep1)ε(e
p
1) ⊗ ...⊗ c(ep|p|)

ε(ep|p|)) ∼= HomZ2- vectC(C0,Ci1 ⊗ ...⊗ Ci|p|)

where the ipk ∈ {0, 1} for k = 1, ..., |p| are defined by c(epk) ∼= Cipk and again the superscript p is to emphasise

the relation to p ∈ G(0). The claim here is that these hom-spaces associated to vertices enforce the same

conditions as the plaquette projectors Pp for the toric code.

Recall from Example 3.1.15 the fusion rules of Z2- vectC and the definition of morphisms as being degree 0

maps. The fusion rules produce an isomorphism

HomZ2- vectC(C0,Cip1 ⊗ ...⊗ Cip|p|)
∼= HomZ2- vectC(C0,Cip1+...+ip|p| mod 2)
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where Cip1+...+ip|p| mod 2 is the result of sequential applications of the fusion rules to Ci1⊗ ...⊗Cin (this follows

from Equation (3.12) and by noting that the result of successive application of the fusion rules of Z2- vectC

is independent of the order in which they are applied). Now, by the definition of hom-spaces fpr Z2- vectC

as being degree 0 maps, for HomZ2- vectC(C0,Cip1+...+ip|p| mod 2) to be non-zero we require ip1 + ... + ip|p| = 0

mod 2. If we denote by i ∈ {0, 1}|G(1)| the vector with entries ik defined by c(eik) ∼= Cik for all eik ∈ G(1),

and denote by lp ∈ {0, 1}|G
(1)| the vector with entries with value 1 correpsonding to the edges incident to p

and 0’s everywhere else, we get that i · lp = ip1 + ...ip|p| and so the condition ip1 + ...ip|p| = 0 mod 2 is precisely

the condition i · lp = 0 mod 2 imposed by Pp (see the discussion surrounding Equation (2.8)).

Using i defined from the colouring c as in the preceding paragraph, we can write⊕
c∈col(G)

H(Gc) =
⊕

c∈col(G)

⊗
p∈G(0)

HomZ2- vectC(C0, c(e
p
1)ε(e

p
1) ⊗ ...⊗ c(epn)ε(e

p
n))

∼=
⊕

i∈{0,1}|G(1)|

⊗
p∈G(0)

HomZ2- vectC(C0,Cip1 ⊗ ...⊗ Cip|p|)

Applying the reasoning above regarding the conditions requried for these hom-spaces to be non-zero, we get⊕
i∈{0,1}|G(1)|

⊗
p∈G(0)

HomZ2- vectC(C0,Cip1 ⊗ ...⊗ Cip|p|)
∼=

⊕
i∈{0,1}|G

(1)|,

i·lp=0 mod 2,∀p∈G(0)

⊗
p∈G(0)

HomZ2- vectC(C0,Cip1 ⊗ ...⊗ Cip|p|)

since for all other values of i, at least one factor HomZ2- vectC(C0,Cjp1 ⊗ ...⊗Cjp|p|) will be zero. By observing

that HomZ2- vectC(C0,C0) ∼= C0, and applying the fusion rules to each tensor product
⊗

p∈G(0) HomZ2- vectC(C0,Cip1⊗
...⊗ Cip|p|) we get ⊕

c∈col(G)

H(Gc) ∼=
⊕

i∈{0,1}|G
(1)|,

i·lp=0 mod 2,∀p∈G(0)

⊗
p∈G(0)

C0
∼=

⊕
i∈{0,1}|G

(1)|,

i·lp=0 mod 2, ∀p∈G(0)

C0 (5.2)

This vector space is precisely that of Im(Pplaq) from Section 2.2. This completes the proof of Proposi-

tion 5.1.1.

Remark 5.1.2. Let us emphasise the importance of the convention of relating i ∈ {0, 1}|G(1)| to the colours

of edges that results in Equation (5.2) since it used throughout this chapter. Writing the basis vector for the

factor C0 corresponding to i ∈ {0, 1}|G(1)| such that i · lp = 0 mod 2 for all p ∈ G(0) by ei, the equivalence

between colourings of G and the basis vectors of Im(Pplaq). In the next subsection, this equivalence is

extended to include colourings of faces of the 3-skeleton of the cylinder over Σ representing | id(Σ,A), G,G|◦

incident to edges of G. This extended equivalence also features in Section 5.2.

5.1.2 The Maps | id(Σ,A), G,G|◦ and Pvert

The analysis of the map | id(Σ,A), G,G|◦ relies heavily on Appendix B, particularly Appendix B.2, and

partially upon Appendix A, so the reader may find it useful to peruse those appendices in parallel to the
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proof of Proposition 5.1.2 in this subsection.

The map | id(Σ,A), G,G|◦ :
⊕

c0∈col(G)H(Gc0) →
⊕

c1∈col(G)H(Gc1) is computed by considering the restric-

tion to each summand in the domain and codomain. These component maps, denoted | id(Σ,A), G
c0 , Gc1 |◦ :

H(Gc0) → H(Gc1) for c0, c1 ∈ col(G), are computed from bordisms (CΣ, R, h) where CΣ is the 3-manifold

arising from the cylinder over Σ, R is a ribbon graph internal to CΣ defined by A × [0, 1] (so is the empty

ribbon in the present case), and h is a homeomorphism

h : (−Σ,−A) t (Σ, A)→ (∂CΣ, ∂R)

Here −Σ is the torus with opposite orientation and −A, and hence ∂R, is empty. It is understood that Gc0

induces a coloured skeleton (Gc0)op on −Σ and Gc1 is a coloured skeleton on Σ. Recall from Section 3.3.2,

the map | id(Σ,A), G
c0 , Gc1 |◦ ∈ HomVectC(H(Gc0),H(Gc1)) is computed by the formula

| id(Σ,A), G
c0 , Gc1 |◦ =

dim(Z2- vectC)#(Σ\G)−#(CΣ\P )

dim(c1)

∑
c∈col(P,d)

dim(c)(Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ))(∗c) (5.3)

where (P, d) is a choice of coloured neat positive diagram for CΣ (see Definition B.2.10, Definition B.2.11, and

Definition B.2.17) that extends (Gc0)op and Gc1 on the boundary, and all the components of the equation

are recalled as they are discussed below.

Let us first make a choice of neat positive diagram (P, d) for (CΣ, R). Since R is the empty ribbon, we

actually only require P = (P, d) to be a 3-skeleton of (CΣ, (G
c0)op tGc1) (see Definition B.2.6, noting that,

for G taken as in Figure 5.1, (Gc0)op tGc1 does indeed satisfy the required criteria, in particular that each

vertex has valence greater than or equal to 2). We define P by considering three copies of G in CΣ = Σ×[0, 1]:

one in Σ × {0} corresponding to (Gc0)op, one in Σ × {1/2} and one at Σ × {1} corresponding to Gc1 . The

copy of G in Σ× { 1
2} is considered without any orientations. A portion of the 3-skeleton so defined for the

choice of G in Figure 5.1 is shown in Figure 5.2 where the red edges at the base and top of the figure denote

incidence with edges of (Gc0)op and Gc1 respectively.

We specify P by detailing its sets of vertices, edges and faces, denoted P (0), P (1) and P (2). Only the elements

of P (2) are given orientations at this stage (orientations aren’t shown in Figure 5.2). Orientations of edges in

P (1) are considered later in defining the contraction vector ∗c. We take the set P (0) to be the set of vertices

of each copy of G:

P (0) =
{
G(0) × {0}

}
∪
{
G(0) × {1/2}

}
∪
{
G(0) × {1}

}
We make special note here of the set of vertices {G(0) × {1/2}} as these are the internal nodes of P (see

Definition B.2.12) and are required in defining the map Vc in Equation (5.3). We denote this set of internal

nodes by P̂ (0). The set of edges of P , which are currently viewed as unoriented, is

P (1) =
{
G(1) × {0}

}
∪ {G(1) × {1/2}

}
∪
{
G(1) × {1}

}
∪
{
G(0) × [0, 1/2]

}
∪
{
G(0) × [1/2, 1]

}
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Figure 5.2: A portion of the 3-skeleton P that extends t∗ in Figure 5.1.

In words, the edges of P are the edges of each copy of G, as well as edges joining each vertex in one copy of

G with the corresponding vertex in the next copy of G. Finally, the set of faces of P is

P (2) =
{
G(1) × [0, 1/2]

}
∪
{
G(1) × [1/2, 1]

}
∪
{
G(2) × {1/2}

}
where again we slightly misuse notation and take G(2) × {1/2} to mean the connected components of Σ ×
{1/2} \G× {1/2}. Note that the connected components of (−Σ) \ (Gc0)op and Σ \Gc1 are not included in

the set of faces of P (this can be seen in Figure 5.2 since there is no face connecting the red edges in either

boundary). The polyhedron P so defined is indeed a 3-skeleton since P is ∂-cylindrical (see Definition B.2.4)

and since ∂P = (Gc0)op t Gc1 and CΣ \ P is homeomorphic to
(
∂CΣ \ ((Gc0)op t Gc1)

)
× [0, 1) (as per

Definition B.2.6).

We can now start to simplify Equation (5.3). The dimension of Z2- vectC is 2 and the notation #(·) counts

the connected components of the argument so the numerator of the first term of Equation (5.3) is

dim(Z2- vectC)#(Σ\G)−#(CΣ\P ) = 2#(Σ\G)−2#(Σ\G) =
1

2|G(2)|

since for our choice of P , CΣ \ P has has twice the number of connected components as Σ \ G. Next, the
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denominator dim(c1) is defined to be

dim(c1) =
∏

e∈G(1)

dim(c1(e)) = 1

since dim(C0) = dim(C1) = 1. Thus, the first term of Equation (5.3) is 1

2|G
(2)|

= 1
|A| (recall the definition of A

from Definition 2.2.1), so we can already start to see the resemblance between the maps | id(Σ,A), G
c0 , Gc1 |◦

and the projection map Pvert of Section 2.2.

Similarly to dim(c1), dim(c), where c is a colouring of (P, d), is defined to be

dim(c) =
∏

r∈P (2)

dim(c(r))χ(r) = 1

where χ(r) denotes the Euler characteristic of the face r. The product is again equal to 1 by the same

reasoning as above regarding the dimensions of the simple objects of Z2- vectC. All that remains to complete

the computation from Equation (5.3) is to understand the contraction vector ∗c and its image under the

map Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ). This represents the key step that relates | id(Σ,A), G,G|◦ to Pvert (recall

Equation (2.5)).

The claim is as follows: ∑
c∈col(P,d)

(Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ))(∗c) =
∑
g∈A

g

To prove this claim we first need to understand what is meant by a colouring c of (P, d). As outlined

in Definition B.2.17, c is a map from the faces of (P, d) to the set of simple objects of Z2- vectC, that is,

c : P (2) → I, with the added constraint that for the faces f ∈ P (2) incident to edges e of (Gc0)op (respectively

Gc1), c(f) = c0(e) (respectively c(f) = c1(e)). By the definition of P (2), for given colourings c0 and c1 of G,

the colouring c is only able to freely colour the faces in G(2) × {1/2}.

Next, we extend the convention from Section 5.1.1 as per the comments made in Remark 5.1.2. We call the

elements of the subset {G(0) × [0, 1/2]} ∪ {G(0) × [1/2, 1]} ∪ {G(1) × {1/2}} ⊂ P (1) internal edges. Let an

internal edge be denoted by ê. Note that this subset excludes edges of P that lie entirely in the boundary

of CΣ, but does include edges that have one vertex in the a copy of G. Denote by E the set of all internal

edges equipped with orientations, and denote by E∂ ⊂ E those oriented internal edges that have one vertex

p in the boundary of CΣ and are oriented away from that vertex.

Recalling the hom-spaces Hp from the previous subsection, we have the following for a given c ∈ col(P, d)

and for each ê ∈ E∂ :

Hp
∼= HomZ2- vectC(C0, c(f

ê
1 )⊗ ...⊗ c(f ê|p|)) =: Hê (5.4)

where the f êj are the faces of P incident to the edge ê. This isomorphism is guaranteed by the definition

of P and the fact that the colouring of c is required to be consistent with the colouring of the of G in the
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boundary. That is, ê also has valence |p| and c(fj) is isomorphic to the object assigned to the edge of G to

which fj is incident. We are once again are able to ignore the influence of the relative orientations of the fj

and internal edge ê due to the isomorphism between the simple objects of Z2- vectC and their duals (please

note a more thorough treatment of these hom-spaces and internal edges resides in Appendix B.2 which in

particular accounts for the choice of cyclic ordering of faces around ê).

Let us denote by E0
∂ ⊂ E∂ the set of internal edges with source vertex in (Gc0)op. It then follows from

Proposition 5.1.1 and Equation (5.4) that

Im(Pplaq) ∼=
∑

c∈col(P,d)

⊗
ê∈E0

∂

Hê.

An equivalent statement can be made for E1
∂ defined as the internal edges with souce vertex in Gc1 . This

means that we can consider a colouring c of P restricted to the faces incident to the inwardly oriented and

outwardly oriented boundary components of the boundary of CΣ respectively as vectors ein and eout in

Im(Pplaq). This perspective will be useful in discussing the map Vc below.

We can use Equation (5.4) to write, for a given c ∈ col(P, d) that extends the colourings c0 and c1 of copies

of G on the boundary, ⊗
ê∈E

Hê
∼=
( ⊗
ê∈E\E∂

Hê

)
⊗
(
H(Gc0)∗ ⊗H(Gc1)

)

In this form, it is clear that the map Vc acts on E \E∂ . This set of oriented internal edges consists of precisely

those with source vertex an internal node of P . The map Vc is defined be evaluating link graphs associated

to these internal nodes (see Appendix B.2 for the definition of a link graph). Figure 5.3 depicts an internal

node (red vertex) and its incident faces and edges for the 3-skeleton over G = t∗. The sphere used to produce

the link graph Γv is shown in Figure 5.4a, and its planar equivalent is shown in Figure 5.4b.

For the purposes of evaluation, we can simply consider the link graph in R2 instead of in S2 due to the fact

that the evaluation of the graph is up to isotopy and since we are working over a spherical category Z2- vectC

(see Theorem A.2.2 specifically and Appendix A more generally).

By Appendix A, we evaluate Γv via the function Fv :
⊗

u∈Γ
(0)
v
Hu → EndZ2- vectC(1) ∼= k, where Hu is the

vector space assigned to vertex u of Γv by the usual hom-space of incident edges. There is once again a

correspondence between the vector spaces assigned to vertices u of Γv and those assigned to the internal

oriented edges of (P, d) they correspond to. The map Vc is then defined to be the image of
⊗

v∈P̂ (0) Fv under

this correspondence (see the end of Appendix B.2 for a more rigorous treatment of the map Vc).

Next, we consider Vc localised to the internal nodes bounding a face in (P, d) corresponding to a plaquette

in G×{1/2}, such as in the example in Figure 5.3. We label faces in G×{1/2} by k and label vertical faces

these systematically: for a vertical face incident to an edge el from above is labelled by fjl and a vertical

face incident from below is labelled fil . We proceed by analysing Vc in the case shown in this figure since it

is sufficient to discuss the conceptual points and the extension to the general case is simple.
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Figure 5.3: The 3-skeleton of CΣ localised to an element of G(2)×{1/2} (in pink) corresponding to a plaquette

v of the skeleton G.

For our choice of skeleton P , every internal node v produces the same (uncoloured) graph Γv, where the

labelling of edges is produced by the colouring c localised to the faces incident to v. The only influence of

the choice of skeleton G is with regard to the number of vertices u of the graph that correspond to edges

in G × {1/2}, and each such vertex is treated the same way. Thus, in the analysis of the link graph for v1

in Figure 5.3, which is the link graph in Figure 5.4b, we make special note of the vertices u1, u2 and u3 as

these are the vertices coresponding to edges incident to horizontal faces.

For the map Vc to be non-zero, we require Fv to be non-zero for all internal nodes v, which in turn requires

all of the Hu for u ∈ Γ
(0)
v to be non-zero. Since these Hu are hom-spaces of tensor products of simple objects

of Z2- vectC, we know precisely when they are non-zero from the fusion rules detailed in Example 3.1.15. The

requirement that the hom spaces Hu0
, Hu1

, Hu2
, Hu3

and Hu4
be non-zero imposes the following conditions
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(a) A sphere inserted around v1.

(b) The link graph Γv1 .

Figure 5.4

on the colouring c:

c(fi1)⊗ c(fi7)⊗ c(fi6) ∼= C0

c(fj1)⊗ c(fk1
)⊗ c(fi1)⊗ c(fk2

) ∼= C0

c(fj6)⊗ c(fk7)⊗ c(fi6)⊗ c(fk1) ∼= C0

c(fj7)⊗ c(fk2
)⊗ c(fi7)⊗ c(fk7

) ∼= C0

By writing c(fil) = Cil and similarly for the j and k indices, we can recast these conditions as

i1 + i6 + i7 = 0 mod 2

j1 = k1 + k2 + i1 mod 2

j6 = k1 + k7 + i6 mod 2

j7 = k2 + k7 + i7 mod 2

Note that the vector space Hu4
is guaranteed to be non-zero if the above criteria are satisfied since

j1 + j6 + j7 = i1 + i6 + i7 mod 2

and i1 + i6 + i7 = 0 mod 2 by assumption. At the moment we are interested in just the conditions related

to the face k1 in Figure 5.3. By a similar process for the link graphs for v2 through v6, and by ignoring the

72



conditions that do not include the term k1, we arrive at the following list of conditions:

j1 = k1 + k2 + i1 mod 2

j2 = k1 + k3 + i2 mod 2

j3 = k1 + k4 + i3 mod 2

j4 = k1 + k5 + i4 mod 2

j5 = k1 + k6 + i5 mod 2

j6 = k1 + k7 + i6 mod 2

In the case of a general skeleton G, the number of conditions produced by similar analysis is equal to the

number of edges bounding the plaquette. By the identification c(fil) = Cil , let us write i ∈ {0, 1}|G(1)| for

the vector with entries il arising from all vertical faces incident to edges el in G × {1/2} from below. By

Remark 5.1.2 and the proof given in the previous section more generally, we can identify the colouring c0

with this vector i and thus with a copy of C0 as in Equation (5.2) (we are assuming c0 is such that H(Gc0)

is non-zero). Let us denote the basis vector of this copy of C0 as ei (this is also a basis vector in Im(Pplaq)).

Denoting by j the vector in {0, 1}|G(1)| corresponding to the faces fjl by a similar process, our aim is to

analyse which vectors j survive under the map Vc localised to the face fk1 for a given input vector i. That is,

we rewrite j in terms of i and k1 by using the rules produced above by the evaluation of link graphs of the

internal nodes of fk1
(we ignore the influence from the other horizontal faces for the time being, by taking

the values k2, ..., k6 to be zero in the above equations). We can see that j = i if k1 = 0 (i.e. if c(fk1
) = C0)

and j = i + lk1 when k1 = 1 (i.e. when c(fk1) = C1), where lk1 ∈ {0, 1}|G
(1)| is the vector with 1’s in the

entries corresponding to the edges bounding fk1
and 0’s elsewhere. Thus, the colouring of face fk1

by the

simple object C1 produces conditions that look very similar to those imposed by the vertex operators Av1

(where we take Av1
to be short hand for the vertex operator corresponding to the plaquette k1 and recall

the discussion of the vertex operators in Section 2.2).

This reasoning can be extended to all other the faces in G(2) × {1/2}, and by recalling Equation (3.14) we

can take the following perspective. For a given colouring c of (P, d), the map Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ) is

from
(⊗

ê∈E\E∂ Hê

)
⊗
(
H((Gc0)op) ⊗H(Gc1)

)
to C ⊗ HomVectC(H(Gc0),H(Gc1)) whose image is the set of

maps that are proportional to the action of the element
∏|G(2)|
r=1 Akrvr of A where kr ∈ {0, 1} is such that

c(fkr ) = Ckr , A0
vr is the identity map, and we are again using the short hand for vertex operators Avr . To

select precisely the map with proportionality equal to 1, we are required to evaluate Vc⊗ idH((Gc0 )op)⊗H(Gc1 )

on the contraction vector ∗c.

To define ∗c (see Definition B.2.19 and surrounding theory) we note that the vector space
⊗

ê∈E Hê contains

two factors related to each (unoriented) internal edge ê, namely Hê and H−ê, where the minus sign denotes

the opposite orientation. These vector spaces are dual to one another, and hence induce a non-degenerate

pairing (see Appendix B.2) and hence has an inverse. The contraction vector is constructed from the image

of 1 ∈ C under these inverses, namely as the tensor product of such images for all internal edges e.
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Now, we know from the fusion rules and the definition of duality in Z2- vectC that for each internal edge

ê, either Hê is the zero vector space or Hê is isomorphic to C0. Clearly, any contraction vector ∗c defined

from a colouring c that produces Hê = 0 for one or more edges ê, will be 0, and so is evaluated to 0 by

Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ). For colourings c such that all Hê are isomorphic to C0, then the non-degenerate

pairings are evC0 (or ẽvC0 , but these are equivalent in this case) and so ∗c is the image of 1 under coevC0

(equivalently c̃oevC0
) for each edge e. Thus, ∗c is a tensor product of basis elements of Hê for each e.

Thus, we have that (Vc⊗idH((Gc0 )op)⊗H(Gc1 ))(∗c) is the map defined by the action g =
∏|G(2)|
r=1 Akrvr . Returning

to Equation (5.3), we can write

| id(Σ,A), G,G|◦ =
∑

c0,c1∈col(G)

dim(Z2- vectC)#(Σ\G)−#(CΣ\P )

dim(c1)

∑
c∈col(P,d)

dim(c)(Vc ⊗ idH((Gc0 )op)⊗H(Gc1 ))(∗c)

=
1

|A|
∑

c∈col(P,d)

(Vc ⊗ idH((Gc′0 )op)⊗H(Gc′1 )
)(∗c)

=
1

|A|
∑
g∈A

g

where c′0 and c′1 in the second line denote the only valid colouring of G in the inward and outward boundary

components of CΣ for a given c such that H(Gc
′
0) and H(Gc

′
1) are both non-zero. This completes the proof

of Proposition 5.1.2.

5.1.3 A Summary of the Key Points

It seems worthwile to provide a quick summary of some of the key components of the above proofs that

will also appear in Section 5.2. Firstly, we saw that the starting point for evaluation of the Turaev-Viro

graph TQFT was a vector space equivalent to Im(Pplaq) and moreover, this vector space was produced by

considering hom-spaces of objects assigned to edges incident to vertices. This vector space also appears in

the context of the Reshetikhin-Turaev defect TQFT albeit under slightly modified circumstances, as seen in

the proof of Proposition 5.2.1 below. Next, we saw a correspondence between the objects assigned to faces

incident to the edges of the skeletons in the boundary components of the cylinder and the objects assigned

to those edges, allowing us to identify the labels for the faces with the vector space Im(Pplaq). The action

of the projection Pvert was implemented at the vertices of faces “parallel” to plaquettes in the boundary

surface, and the labelling of such faces were related to the elements of the group A. This phenomenon

appears in the proof of Proposition 5.2.2 in Section 5.2.2, however this proof is required to consider the dual

of a triangulation of the cylinder rather than a nice choose of cellular decomposition like the 3-skeleton P

above, which slightly alters the treatment of the projections corresponding to the elements of A.

5.2 The AZ2- vectC-Orbifold and Pvert

In this section, we prove Theorem 5.0.2 which is restated here:
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Theorem 5.0.2. Let Σt
∗,AZ2- vectC ∈ Borddf

3 (D) be the D-decorated torus with stratification arising from the

dual of the triangulation t of the torus as defined in Figure 2.1 and labelled by the orbifold datum AZ2- vectC .

Then

(i) Im(Zdf
RT,vectC

(C
t∗,AZ2- vectC
Σ )) = Hcode, and

(ii) Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) = Pvert ◦ f ,

where C
t∗,AZ2- vectC
Σ ∈ Borddf

3 (D) is the morphism used to define the AZ2- vectC -orbifold of Zdf
RT,vectc

on the

undecorated torus, f is a projection from the domain of Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) to Im(Pplaq), Hcode is the

code subspace of the toric code defined on t∗, and Pvert is the component of the projection map Pcode defined

on the plaquettes of t∗.

Most of the work presented here is regarding part (ii) of the thereom, since part (i) is a direct consequence

of Theorem 5.0.1, Theorem 4.3.1 and the definition of the orbifold of the Reshetikhin-Turaev defect TQFT

[Construction 3.8, CRS19] (this is elaborated upon shortly).

The proof of Theorem 5.0.2 (ii) proceeds in two parts, which we again present as two propositions where

C
t∗,AZ2- vectC
Σ is as in the statement of Theorem 5.0.2 above:

Proposition 5.2.1. Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) = π ◦ f where π is a projection and f is as in the statement of

Theorem 5.0.2.

Proposition 5.2.2. The projection π is Pvert restricted to Im(Pplaq).

Before commencing the proofs of these propositions, let us give a description of C
t∗,AZ2- vectC
Σ , which will

be elaborated upon in Section 5.2.2. The underlying 3-manifold is the cylinder CΣ over the torus (which

mirrors the underlying manifold for the identity bordism in the Turaev-Viro case above), but given we are

now working in the context of Borddf
3 (D), this cylinder is provided with extra structure. We take Ct

∗

Σ to be

CΣ equipped with the stratification arising from τ∗, where τ is a triangulation of the CΣ that extends the

triangulation t of Σ, supplemented by 0-strata in the interior of each 2- and 3-stratum. Then C
t∗,AZ2- vectC
Σ is

the defect bordism obtained from Ct
∗

Σ by labelling its 3-, 2-, 1- and 0-strata by the orbifold datum AZ2- vectC .

We recall from Definition 4.3.1 that this data consists of:

• A3 = vectC assigned to 3-strata;

• A2 = C2 as a Frobenius algebra (with multiplication and pairing assigned from the direct sum of trivial

Frobenius algebras C), assigned to 2-strata;

• A1 =
⊕

i,j,k∈I HomZ2- vectC(i⊗j, k), where I is a representative set of simple objects for Z2- vectC. This

is an object of vectC by the fact that Z2- vectC is spherical fusion, and moreover, is a C2-(C2 ⊗ C2)-

bimodule (for more on multi-modules, see [Section 2, CRS17]). This object T := A1 labels 1-strata.
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• A±0 , ψ and φ, which label 0-strata in the interior of CΣ. The maps A±0 are maps in HomvectC(T ⊗C2

T, T ⊗C2 T ) and will be relabelled as α (for A+
0 ) and α (for A−0 ) for consistency with the referenced

literature (e.g. [CRS18]).

By [Construction 3.8, CRS19] and Theorem 4.3.1 (which is [Theorem 4.5, CRS18]) we have that

Im(Zdf
RT,vectc(C

t∗,AZ2- vectC
Σ )) ∼= |(Σ, A)|Z2- vectC

where A is empty, and so by applying Theorem 5.0.1 we have shown part (i) of Theorem 5.0.2.

Throughout this section, we will refer to Zdf
RT,vectc

(C
t∗,AZ2- vectC
Σ ) as ‘the orbifold morphism’.

5.2.1 The Orbifold Morphism as a Composition of Projections

The proof of Proposition 5.2.1 relies on the manipulation of ribbon graphs, in particular regarding the vertical

composition of ribbon graphs corresponding to composition of the morphisms represented by these graphs.

Before we elaborate on these points, let us consider the following lemma:

Lemma 5.2.3. For Σt
∗,AZ2- vectC ∈ Borddf

3 (D) the decorated torus with 2-, 1- and 0-strata given by (t∗)(2),

(t∗)(1) and (t∗)(0) and labelled by A3, A2 and A1 respectively, we have

Zdf
RT,vectC

(Σt
∗,AZ2- vectC ) ∼=

⊕
c∈col(t∗)

H((t∗)c)

where the vector space on the right is that of Section 5.1.1 for the skeleton G = t∗ (where t∗ is shown in red

in Figure 5.1).

The vector space Zdf
RT,vectC

(Σt
∗,AZ2- vectC ) is not the domain of Zdf

RT,vectc
(C

t∗,AZ2- vectC
Σ ), however the domain

of the latter and the domain of the morphism used to define Zdf
RT,vectC

(Σt
∗,AZ2- vectC ) (see below) are the same

which motivates the consideration of Lemma 5.2.3. The morphism used to define Zdf
RT,vectC

(Σt
∗,AZ2- vectC )

will become the projection f in the statement of Proposition 5.2.1. To the proof of the lemma.

Proof. We know from Section 3.4.2 and Appendix C.2 how to evaluate the decorated surface Σt
∗,AZ2- vectC .

Since it has 2-, 1- and 0-strata labelled by vectC, C2 (as a Frobenius algebra) and T respectively, we evaluate

Σt
∗,AZ2- vectC by considering a (different) defect cylinder Ĉ over Σt

∗,AZ2- vectC with 3-, 2- and 1-strata also

labelled by vectC, C2 and T respectively. These strata 3-, 2- and 1-strata arise from the 2-, 1- and 0-strata

of Σt
∗,AZ2- vectC as per the discussion of the cylinder over Σ in Section 3.4.2. Thus, we note that Ĉ differs

from C
t∗,AZ2- vectC
Σ in that the latter has 0-strata in the interior where as the former doesn’t.

The ribbon graph associated to Ĉ is prescribed as follows. The 2-strata in ĈΣ are triangulated, and ribbons

and coupons labelled by the algebra C2 and its multiplication and comultiplication respectively, are asso-

ciated to the duals of these triangulations. Since the result of the evaluation is independent of the choice
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of triangulation of each 2-stratum (see [Section 5, CRS17] in particular Lemma 5.6 and the discussion sur-

rounding Equation (5.16)), we take the simplest one (such as that shown in black on the the left hand side

of Figure 5.5). Next the 1-strata are thickened to ribbons labelled T , and the C2-ribbons from the 2-strata

meet these T -ribbons at coupons labelled by the action of C2 on T (the left and right actions of C2 on T

are denoted ρL and ρR respectively in Figure 5.5). Each 2-stratum then produces a piece of ribbon graph as

seen on the right in Figure 5.5 (the boundary circles of the cylinder in this figure are meant to be interpreted

as a patch of the surface Σt
∗,AZ2- vectC and not its entirety).

Figure 5.5: The ribbon graph from a 2-stratum.

Due to the regularity of the decorations on Σt
∗,AZ2- vectC , and hence the ribbon graph induced in Ĉ, we can

proceed by evaluating the cylinder Ĉ with just one 2-stratum labelled by C2 bounded by two 1-strata labelled

by T . This analysis then generalises to the full case of Ĉ. By denoting the weighted extended manifold

corresponding to Ĉ with ribbon graph for one 2-stratum by C, and the extended surface corresponding to

the base of the cylinder by Σ, we have

Zdf
RT,vectC

(Σt
∗,AZ2- vectC ) ∼= Im

(
ZRT,vectC(C) : ZRT,vectC(Σ)→ ZRT,vectC(Σ)

)
From Section 3.4.1 and Appendix C.1, we can write down the vector space ZRT,vectC(Σ):

ZRT,vectC(Σ) ∼= HomvectC(1, T ⊗ C2 ⊗ T ⊗ (C⊗ C∗))

∼= T ⊗ C2 ⊗ T

where the T and C2 factors correspond to the marked points in Σ and the (C ⊗ C∗) term arises from the

genus of the underlying manifold of Σ. The reduction to T ⊗ C2 ⊗ T follows since C is the unit of vectC.

The claim now is that Im
(
ZRT,vectC(C)

)
is T⊗C2T , that is, the tensor product of two C2-(C2⊗C2)-bimodules
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T over a common algebra C2 (see [Section 3.1, CRS18] for more details). The proof of this claim follows

from [Lemma 5.10, CRS17]:

Lemma 5.2.4. [Lemma 5.10, CRS17] We have

Zdf
RT,vectc(SM,N ) ∼= HomA1⊗...⊗An

(M,N)

where SM,N is a sphere with two 0-strata labelled by multi-modules A1...AnM and A1...AnN connected by n

1-strata labelled by the algebras A1, ..., An.

The notation HomA1⊗...⊗An(M,N) ⊆ Homvectc(M,N) denotes the space of multi-module maps (we are

taking the multi-modules M and N , and algebras Ai, to be internal to vectc as this is relevant to our case,

but in general they can be internal to any modular category; for more details on multi-modules and multi-

module maps see [Section 2, CRS17] in particular Definitions 2.2 and 2.3). For our purposes, M and N are

copies of T and we take just one 1-stratum and hence one algebra A = C2. The proof of Lemma 5.2.4 [Lemma

5.10, CRS17] proceeds by analysing the ribbon graph that is used to evaluate the Reshetikhin-Turaev defect

TQFT on the surface SM,N . By the comments made in Remark 3.4.1, the evaluation of this ribbon graph is

precisely the same as the evaluation of the ribbon graph in the interior of CΣ despite Σ and S being different

(non-homeomorphic) surfaces. Thus, we have Zdf
RT,vectc

(Σ) ∼= HomC2(T, T ), which is then isomorphic to

T ⊗C2 T by the definition of multi-module maps in vectC.

The proof of Lemma 5.2.4 can be extended to determine the evaluation of the decorated surface Σt
∗,AZ2- vectC

(see [Lemma 3.2, CRS18] and the remarks preceding it). In particular, we get

Zdf
RT,vectC

(Σt
∗,AvectC ) ∼= T ⊗C2 ...⊗C2 T (5.5)

where each pair of bimodules T that label 0-strata joined by a 1-stratum of Σt
∗,AZ2- vectC , appear in the tensor

product on the right hand side of Equation (5.5) as a tensor product over the algebra C2 labelling the shared

1-stratum.

Writing T as the direct sum T =
⊕

i,j,k∈I HomZ2- vectC(i⊗ j, k) we note that

T ⊗C2 T =
⊕

i,j,k,l,m∈I

HomZ2- vectC(i⊗ j, k)⊗HomZ2- vectC(k ⊗ l,m)

by the definition of the action of C2 (see [Definition 4.2, CRS18]). By extending this reasoning to the full

tensor product in Equation (5.5), we can write

Zdf
RT,vectC

(Σt
∗,AvectC ) ∼=

⊗
x∈(t∗)(0)

⊕
ix,jx,kx∈I

HomZ2- vectC(ix ⊗ jx, kx) (5.6)

where we are taking as in implicit in this tensor product the compatibility of the objects between copies of

T joined by 1-strata. This compatiblity across the entire stratification t∗ allows us to rewrite the right hand
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side of Equation (5.6) to sum over possible assignments of objects to the 1-strata of (t∗)(1):⊗
x∈(t∗)(0)

⊕
ix,jx,kx∈I

HomZ2- vectC(ix ⊗ jx, kx) ∼=
⊕

(i1,i2,...,i|(t∗)(1)|)∈I
|(t∗)(1)|

⊗
x∈(t∗)(0)

HomZ2- vectC(ixs1 ⊗ i
x
s2 , i

x
s3)

where the objects ixs1 , ixs2 and ixs3 are the objects of (i1, i2, ..., i|(t∗)(1)|) corresponding to the 1-strata incident

to the 0-strata x. By noting that HomZ2- vectC(i ⊗ j, k) ∼= HomZ2- vectC(1, k ⊗ i ⊗ j) for simple objects i, j

and k, and that each (i1, i2, ..., i|(t∗)(1)|) ∈ I |(t
∗)(1)| is equivalent to a choice of map c : (t∗)(1) → I, we recover

precisly the space ⊕
c∈col(t∗)

H((t∗)c)

from Section 5.1.1 where t∗ is consider as a skeleton of the torus.

We now prove Proposition 5.2.1 by considering the Zdf
RT,vectC

(C
t∗,AZ2- vectC
Σ ) as a composition of morphisms,

one of which arises from the cylinder Ĉ. Recall that C
t∗,AZ2- vectC
Σ differs from Ĉ by the presence of the

0-strata in the interior of the cylinder, namely at the intersection of 1-strata and in the interior of 2- and 3-

strata. Now, by the definition of C
t∗,AZ2- vectC
Σ with stratification arising from τ∗, there is a neighbourhood of

the boundary component Σt
∗,AZ2- vectC that is homeomorphic to Σt

∗,AZ2- vectC × [0, 1] = Ĉ (this neighbourhood

cannot contain any internal 0-strata at the intersection of 1-strata). Since the Reshetikhin-Turaev defect

TQFT is anomaly free, and by the properties of the the ribbon graphs used to evaluate it, we can write

Zdf
RT,vectC

(C
t∗,AZ2- vectC
Σ ) = Zdf

RT,vectC
(C ′) ◦ Zdf

RT,vectC
(Ĉ)

where C ′ ∈ Borddf
3 (D) is such that the gluing of C ′ to Ĉ is homeomorphic to C

t∗,AZ2- vectC
Σ .

Now from [Construction 3.8, CRS19] we have that Zdf
RT,vectC

(C
t∗,AZ2- vectC
Σ ) is a projection, and from [Con-

struction 5.5, CRS17] that Zdf
RT,vectC

(Ĉ) is too, so it follows that Zdf
RT,vectC

(C ′) must be a projection. Writing

π = Zdf
RT,vectC

(C ′) and f = Zdf
RT,vectC

(Ĉ), and applying Lemma 5.2.3 completes the proof of Proposition 5.2.1.

We conclude this subsection with a few comments regarding Lemma 5.2.3 and its consequences for the

analysis of the projection π in Section 5.2.2. We saw in the proof of Lemma 5.2.3 that the effect of the

components of the ribbon graph corresponding to the 2-strata of Ĉ is to enforce the copies of T bounding

the 2-strata to share simple objects in their constituent hom-spaces. This holds more generally for the

components of the ribbon graph corresponding to C
t∗,AZ2- vectC
Σ . In Section 5.2.2, we will be analysing this

ribbon graph more closely, and this analysis is made much simpler by omitting the ribbons corresponding

to the 2-strata of C
t∗,AZ2- vectC
Σ and instead keep track of the common labels between copies of T .

5.2.2 The Projections π and Pvert

We now turn to the proof of Proposition 5.2.2 which proceeds by a close analysis of the ribbon graph

associated to C
t∗,AZ2- vectC
Σ .
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Let us consider a specific stratification τ∗ for C
t∗,AZ2- vectC
Σ that extends t∗ which is reproduced below in

Figure 5.6 in red. We require t∗ to be oriented so we consider the triangulation t (in black) with a total

ordering on its vertices, and with edges oriented accordingly. The dual t∗ is then oriented such that the

orientation of the edge of t followed by the orientation of the corresponding edge in t∗ produces the standard

orientation of R2. The labels u1 through u8 are used for discussion regarding the ribbon graph associated to

the plaquette 5 below.

Figure 5.6: An oriented and ordered triangulation of a torus.

To define τ∗ we extend the triangulation t of Σ to a triangulation τ of C
t∗,AZ2- vectC
Σ , and consider its dual.

We will construct τ and τ∗ piece by piece, with each piece corresponding to a black square in Figure 5.6. We

notice that there are four different occurrences of square as determined by the orientations of their edges, as

shown in Figure 5.7a. Their relative locations in the torus are shown by Figure 5.7b.

We then consider cylinders over each of these four squares, and triangulate them in a compatible way so

that all vertices of τ are vertices of the triangulations of the boundary components of C
t∗,AZ2- vectC
Σ , and so

that when considered together they produce a valid cylinder over Σt
∗,AZ2- vectC . We take the triangulation

of the outgoing boundary copy of Σt
∗,AZ2- vectC to have total ordering 10, ..., 18 such that vertex n of the

incoming copy of t lies directly below vertex n+ 9 in the outgoing copy of t for all n = 1, ..., 9. This means

that all edges of τ in the interior of C
t∗,AZ2- vectC
Σ will be oriented from incoming boundary to outgoing. The

diagonally vertical edges of τ in the interior mirror the orientations of the corresponding edges of each copy

of t, that is, for an edge oriented from vertex n to vertex m in the incoming copy of t (and equivalent edge

from n+ 9 to m+ 9 in the outgoing copy of t), the diagonally vertical edge is oriented from n to m+ 9. The

triangulations of the cylinders over the four types of square constructed in this fashion are compatible, and

are shown in Figure 5.8.
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(a) The types of squares in the triangulation. (b) The location of the different types of squares in the

triangulation.

Figure 5.7

For the purposes of brevity and clarity, from this point onwards, we will only treat the cylinder over square

(1) since we will calculate the portion of the ribbon graph associated to the plaquette labelled 5 (that is,

the plaquette in (t∗)(2) corresponding to the vertex labelled 5 in t(0)). The analysis of the other squares and

other plaquettes follows via similar methods and reasoning.

The next step is to start to analyse τ∗ for the portion corresponding to Figure 5.8a. We need to label the

3-, 2-, 1- and 0-strata of τ∗, which in particular requires us to be able to systematically assign α or α to

each 0-strata corresponding to a tetrahedron of τ based on its orientation (the other strata are fixed to

a single choice of label). The maps α and α are elements of the vector spaces that Zdf
RT,vectC

assigns to

specific decorated spheres, namely those in Figure 5.9, where the sphere Figure 5.9a corresponds to α and

Figure 5.9b to α (see also [Equation 2.16, CRS18]).

We comment here on the 0-strata that do not explictly arise from the dual τ∗ but reside in the interior of

3- and 2-strata disjoint from all other strata. These 0-strata are called point insertions and are labelled by

φ for those 0-strata within 3-strata, and ψ for those within 2-strata. The factor contributed by each ψ to

the evaluation of the defect TQFT is the product of the dimensions of simple objects of Z2- vectC, which we

know from Section 5.1.2 also features in the calculation of the Turaev-Viro invariant, but is equal to 1 so we

will relieve it of any further consideration in this section. The factor contributed by φ is 1
dim Z2- vectC

= 1
2

for each 3-stratum, which we also saw in the Turaev-Viro case. In fact, the factor φ is only for each full

3-stratum in C
t∗,AZ2- vectC
Σ , and instead a factor φ

1
2 is present for each 3-stratum that is “cut-off” by the

boundary.

We can relate the defect spheres Figure 5.9a and Figure 5.9b to the tetrahedra of τ as follows. By considering

the boundary of a tetrahedron as a triangulated sphere, we can orient the edges so that the defect sphere
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(a) The cylinder of the square (1).

(b) The cylinder over the square (2). (c) The cylinder over the square (3). (d) The cylinder over the square (4).

Figure 5.8: The cylinders of the squares of the triangulation.

is stratified by the dual of the triangulated sphere, using the same rule regarding orientations as for t and

t∗. This process is shown diagrammatically in Figure 5.10. This figure gives us a reference by which we can

assign α and α to the tetrahedron of the cylinder over square (1), and hence to the corresponding 0-strata

of τ∗ in this cylinder, an assignment which is denoted by a rectangular tag in Figure 5.11 (this tag names

the 0-strata first, by u or u′ with subscripts, the denotes the associated label).

The next task is to catalogue all the 2-cells of τ∗ corresponding to the cylinder over square (1), which is

done in Figure 5.12. This figure denotes the 1-strata of τ∗ in red (where the 0-strata for each half of the
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(a) The defect sphere associated to α. (b) The defect sphere associated to α

Figure 5.9

(a) The correspondence between α and the orientation of a tetrahedron.

(b) The correspondence between α and the orientation of a tetrahedron.

Figure 5.10

cylinder have been denoted as being colinear for diagrammatic simplicity) and the constituent 2-strata in

black. These 2-strata are oriented accordingly with respect to the modified stratification and located in the
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Figure 5.11: The components of the triangulation of the cylinder over square (1) and their associated labels.

diagram close to their location in the stratification. The labels BF, FF, RF, and LF stand for Back Face,

Front Face, Right Face and Left Face respectively and indicate where the 1-strata join other squares.

Recall the comments made at the end of the previous subsection regarding how keeping track of how 2-strata

connect 1-strata labelled by T relates to the removal of the ribbons associated with those 2-strata. With

this in mind, we can present the reduced ribbon graph of just the T -ribbons associated to the cylinder over

square (1), shown in Figure 5.13. The same notation is used regarding connections to other squares.

By referring back to Figure 5.6 and Figure 5.7b if needed in order to get straight how these pieces of ribbon

graph connect, we can present the (reduced) ribbon graph associated to the plaquette labelled 5, as in

Figure 5.15. Again this ribbon graph just shows the T -ribbons; the role played by the C2-ribbons is filled by

the cataloguing of faces, which is presented in Appendix D. The diagram in Figure 5.14 simply shows the 1-

and 0-strata of τ∗ associated to the plaquette 5 and is meant to be used alongside Appendix D to identify

which faces are incident to which 1-strata.
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Figure 5.12: A catalogue of the faces of τ∗ for the cylinder over square (1).

Note: The labels of faces in Appendix D are capital Latin letters supplemented by captial Latin letters with

an overline. There is no relationship between a letter and the same letter with an overline. An alphabet of

43 letters was required to label all faces and this seemed like a valid way of producing one. Any occurence

of labels with same base letter on faces that are incident to the same edge is simply coincidence.

We are now close to being able to evaluate the ribbon graph in Figure 5.15, but it will be useful to make a

few comments first. Notice that some vertical strands between coupons are oriented downwards and some

oriented upwards. In our calculations below, we will reverse the orientations of the downward strands by

assigning T ∗ to them instead of T (see Appendix A.2 for the rules on manipulating ribbon graphs). The

big ribbon graph in Figure 5.15 will be computed in pieces, one piece for each vertex ui of the plaquette 5

(as depicted in Figure 5.6). By invoking the isomorphism T ∼= T ∗ (objects of vectC are isomorphic to their

duals), we will orient all strands for each ribbon graph piece to be generally upwards, where all strands for

a piece are labelled either by T or T ∗ (this becomes clearer in the Figure 5.16 through Figure 5.21). The

pieces of ribbon graph will be evaluated by analysing how the corresponding piece of the morphism acts on

basis element of T and T ∗, denoted by λABC ∈ HomZ2- vectC(A⊗B,C) and λ̂ABC ∈ HomZ2- vectC(C,A⊗B)

respectively (these basis vectors are identified under the isomorphism). We will use the capitalised letters to

denote both the label for a given 2-cell of τ∗ as well as the simple object corresponding to it in a hom-space

of T .

With this notation, we then write down formula for the maps α and α for both T and T ∗, which make use of

the F -tensor (and its inverse) for Z2- vectC (see Example 3.1.15), and allows for straightforward calculations
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Figure 5.13: The reduced ribbon graph corresponding to τ∗ over square (1).

below. We have

α : T ⊗C T → T ⊗F T

λABC ⊗C λCDE 7→ FλABC ,λCDE

λAFE ,λBDF
λAFE ⊗F λBDF (5.7)

α : T ⊗C T → T ⊗F T

λACE ⊗C λBDC 7→ F−1 λABF ⊗F λFDE (5.8)

α : T ∗ ⊗C T ∗ → T ∗ ⊗F T ∗

λACE ⊗C λBDC 7→ F−1 λABF ⊗F λFDE (5.9)

α : T ∗ ⊗C T ∗ → T ∗ ⊗F T ∗

λABC ⊗C λCDE 7→ FλAFE ⊗F λBDF (5.10)

where the F -tensor here has been boldified to distinguish it from the label F (and the sub- and super-scripts

dropped after the first occurence). We notice that α and α for T ∗ are equivalent to α and α for T respectively

(with λ’s replaced by λ̂’s). These maps are defined in [Equations (4.37) and (4.38), CRS18] where the image

of each map is summed over all possible simple objects F , but for the case at hand, there will always be

exactly one simple object of Z2- vectC that satisfies the F -tensor. The role of the F -tensor is to ensure that

the hom-spaces that the λ generate are non-zero in both the domain and codomain of the maps α and α. That

is, for α : T⊗CT → T⊗F T above, the F -tensor enforces that HomZ2- vectC(A⊗B,C), HomZ2- vectC(C⊗D,E),

HomZ2- vectC(A ⊗ F,E) and HomZ2- vectC(B ⊗ D,F ) are all non-zero (where A,B,C,D,E, F are all simple
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Figure 5.14: A diagram of the 1-strata of τ∗ for the plaquette 5.

Figure 5.15: The reduced ribbon graph for the plaquette 5.
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objects). Just as in Example 3.1.15 we can write

FλABC ,λCDE

λAFE ,λBDF
:= δ(A+B=C mod 2) δ(C+D=E mod 2) δ(A+F=E mod 2) δ(B+D=F mod 2)

where the equations defining the Kronecker deltas arise from the fusion rules of Z2- vectC.

We analyse the ribbon graph by considering a tensor product of basis vectors of each of the copies of T (or

T ∗), that is λABC (or λ̂ABC) which are labelled by the superscript ‘in’ in Figure 5.15. The labels of these

basis elements are constrained by the tensoring of the T over C2, meaning that basis elements of copies of T

that share an incident 2-stratum, will share the label corresponding to that 2-stratum.

We now analyse the piece of ribbon graph corresponding to u1. This piece of the graph is shown in Figure 5.16

and the corresponding diagram chase is as follows, where we are making use of the formula for α and α from

Equation (5.7) through Equation (5.10) (note that the ribbon depicted in Figure 5.16 indicates which 2-

strata is common between the T -ribbons incident to a coupon by the subscript on the ‘
⊗

’ symbol between

ribbons). The following equations describe the path of the basis vector λin
IHJ

through the ribbon graph:

Figure 5.16: The reduced ribbon graph localised at u1.
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λin
IHJ
⊗J λJRJ

α7−→ δH+I=J δJ+R=J δH+R=D δI+D=J λIDJ ⊗D λHRD

λIDJ ⊗D λAKD
α7−→ δI+D=J δA+K=D δI+A=G δG+K=J λIAG ⊗G λGKJ

λSLG ⊗G λGKJ
α7−→ δL+S=G δG+K=J δL+K=K δS+K=J λSKJ ⊗K λout

LKK

The subscripts on the δ are still regarded modulo two, the notation was dropped for simplicity. For λLKK to

be non-zero, the following have to be satisfied (not all of the equations pertain directly to the labels L,K,K;

the list below represents all the constraints enforced by the graph at u1):

H + I = J (5.11)

J +R = J

H +R = D (5.12)

I +D = J

A+K = D (5.13)

I +A = G (5.14)

G+K = J

L+ S = G (5.15)

L+K = K (5.16)

S +K = J

The analysis of the vertices u2, ..., u6 proceeds in exactly the same fashion, whilst noting that for u2, u4 and

u6 the ribbons are labelled with T ∗ instead of T . The portion of the ribbon graphs associated to u2 through

u6 are depicted in Figure 5.17 through Figure 5.21 (where the same convention for denoting which labels are

common between ribbons T as Figure 5.16 is used) and the corresponding calculations are below.

The diagram chase for the ribbon graph at u2 (Figure 5.17) is:

λ̂in
HLT

⊗T λ̂TUB
α7−→ δH+L=T δT+U=B δH+V=B δL+U=V λ̂HVB ⊗V λ̂LUV

λ̂HVB ⊗V λ̂RWV
α7−→ δH+V=B δR+W=V δH+R=D δD+W=B λ̂HRD ⊗D λ̂DWB

λ̂AKD ⊗D λ̂DWB
α7−→ δA+K=D δD+W=B δA+X=B δK+W=X λ̂AXB ⊗X λ̂out

KWX

which produces the conditions (any redundancy of conditions imposed with regard to the current portion of

the ribbon graph or to previously analysed portions of the ribbon graph is accounted for by only listing new
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Figure 5.17: The reduced ribbon graph localised at u2.

conditions):

H + L̄ = T

T + U = B (5.17)

H + V = B

L̄+ U = V (5.18)

R+W = V (5.19)

D + V = B

A+X = B (5.20)

K +W = X

The diagram chase at u3 (Figure 5.18) is:

λin
MMT

⊗T λTUB
α7−→ δM+M=T δT+U=B δM + U = Y δM+Y=B λMYB ⊗Y λMUY

λMYB ⊗Y λZAY
α7−→ δM+Y=B δZ+A=Y δM+Z=E δE+A=B λMZE ⊗E λEEB

λNAE ⊗E λEAB
α7−→ δN+A=E δE+A=B δA+X=B δN+A=X λAXB ⊗X λout

NAX
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Figure 5.18: The reduced ribbon graph localised at u3.

which produced the (new) conditions:

M + M̄ = T (5.21)

M̄ + U = Y

M + Y = B

Z + Ā = Y

E + Ā = B

N +A = E (5.22)

N + Ā = X (5.23)

M + Z = E (5.24)

The diagram chase at u4 (Figure 5.19) is:

λ̂in
OMN

⊗N λ̂NZP
α7−→ δO+M=N δN+Z=P δO+E=P δM+Z=E λ̂OEP ⊗E λ̂MZE

λ̂OEP ⊗E λ̂ANE
α7−→ δO+E=P δA+N=E δO+A=F δF+N=P λ̂OAF ⊗F λ̂FNP

λ̂BQF ⊗F ˆFNP
α7−→ δB+Q=P δF+N=P δB+O=P δN+Q=O λ̂BOP ⊗O λ̂

out
QNO
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Figure 5.19: The reduced ribbon graph localised at u4.

which produces the conditions:

O +M = N̄

N̄ + Z = P (5.25)

O + E = P

O +A = F (5.26)

F +N = P

B̄ +Q = F (5.27)

B̄ + Ō = P (5.28)

N +Q = Ō

The diagram chase for u5 (Figure 5.20) is:

λin
DOC

⊗C λCAC
α7−→ δD+O=C δC+A=C δD+F=C δO+A=F λDFC ⊗F λOAF

λDFC ⊗F λBQF
α7−→ δD+F=C δB+Q=F δD+B=E δE+Q=C λDBE ⊗E λEQC

λGPE ⊗E λQEC
α7−→ δG+P=E δQ+E=C δG+F=C δP+Q=F λGFC ⊗F λ

out
PQF

92



Figure 5.20: The reduced ribbon graph localised at u5.

which produces the conditions:

D̄ +O = C̄ (5.29)

C̄ +A = C (5.30)

D̄ + F = C

D̄ + B̄ = Ē (5.31)

Ē = Q = C

Ḡ+ P̄ = Ē (5.32)

Ḡ+ F̄ = C (5.33)

P̄ +Q = F̄ (5.34)

Finally, the diagram chase for u6 (Figure 5.21) is:

λ̂in
HIC

⊗C λ̂CAC
α7−→ δH+I=C δC+A=C δH+G=C δI+A=G λ̂HGC ⊗G λ̂IAG

λ̂HGC ⊗G λ̂SLG
δ7−→H+G=C δS+L=G δH+S=I δI+L=C λ̂HSI ⊗I λ̂ILC

λ̂GQI ⊗I λ̂ILC
α7−→ δG+Q=I δI+L=C δG+F=C δQ+L=F λ̂GFC ⊗F λ̂

out
QLF
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Figure 5.21: The reduced ribbon graph localised at u6.

which produces the conditions:

H̄ + I = C̄ (5.35)

H̄ +G = C

H̄ + S = Ī

Ī + L = C

Ḡ+ Q̄ = Ī

Q̄+ L = F̄ (5.36)

Let us now discuss how to interpret the results of these calculations. Recall from the proof of Proposition 5.1.2

that the labels of faces incident to the inward boundary component and the labels of faces incident to the

outward boundary component were identifed with the labels of edges of the coloured skeletons Gc0 and Gc1

respectively, and from there related to basis vectors of Im(Pplaq). Moreover, the labels of the “horizontal

faces” were identified with the elements of A. By Lemma 5.2.3, the domain of π is also Im(Pplaq) and we

can interpret the labels of the 2-strata of τ∗ in precisely the same way. Let us denote by ej the vector in

Im(Pplaq) where j ∈ {0, 1}|(t∗)|(1)

has entries determined by the values of the labels of 2-strata incident to

the inward boundary component Σt
∗,AZ2- vectC .
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(a) (b) (c)

Figure 5.22: The key labels for relating the ribbon graph to the projector Pv5
.

Since we are only considering the piece of the ribbon graph that evaluates to π corresponding to the plaquette

5, we aim to show that morphism represented by this piece of ribbon graph, which we denote π5, is the

component of Pvert corresponding to the same plaquette, namely Pv5 . By recalling the definition of the

projectors Pv from Equation (2.3), our aim is to show that

π5(ej) =
1

2
(ej + ej+kv5

)

where kv5
∈ {0, 1}|(t∗)(0)| is the vector with 1’s for the entries corresponding to the edges bounding the

plaquette 5, and 0’s elsewhere. In terms of labels, this means we aim to write the labels incident to the

output boundary component of C
t∗,AZ2- vectC
Σ in terms of the input labels, and the label corresponding to the

plaquette 5 using the constraints enforced by the ribbon graph. Figure 5.22 portrays a diagram displaying

all such labels as well as the labels corresponding to the plaquettes neighbouring plaquette 5. So by using

the rules established by the analysis of the ribbon graph at u1 through u6, we get

L
5.15
= G+ S

5.14
= A+ I + S

K
5.13
= A+D

5.12
= A+H +R

X
5.20
= A+B

5.17
= A+ U + T

N
5.22
= A+ E

5.24
= A+ Z +M

Q
5.27
= F +B

5.26
= A+O +B

F
5.33
= C +G

5.30
= A+ C +G

As per Figure 5.22 the labels S, R, U , Z, B and G correspond to the plaquettes neighbouring plaquette 5.

In terms of analyising π5, we take these to have value 0. In doing so, and by writing the output labels and

input labels as the tuples (L,K,X,N,Q, F ) and (I,H, T,M,O,C) respectively, we get

(L,K,X,N,Q, F ) = (A+ I,A+H,A+ T,A+M,A+O,A+ C)

So for fixed choice of values for the input labels (I,H, T,M,O,C) and by summing over all other labels,

we see that the only tuples (L,K,X,N,Q, F ) that survive are (I,H, T,M,O,C) when A takes value 0 and

(1 + I, 1 +H, 1 + T, 1 +M, 1 + O, 1 + C) when A takes value 1. By identifiying the fixed input labels with
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the vector ej , the tuple (1 + I, 1 + H, 1 + T, 1 + M, 1 + O, 1 + C) is identified with ej+kv5
since no other

output labels depend on A. Thus, it only remains to note that that the factor of 1
2 arises from the half point

insertions corresponding to the two half 3-strata above and below the 2-strata A.

The same reasoning as has been presented above can be extended to all other plaquettes. The cylinders

over the squares (2), (3) and (4) produce similar dual stratifications and hence ribbon graphs consisting of T

ribbons passing through two α maps and one α, or T ∗ passing through two α maps and one α, just as is the

case for the square (1). Writing πvi for the morphisms represented by these ribbon graphs for each plaquette

v1, ..., v9, we can write the morphism represented by the full ribbon graph as π = πv1
◦ πv2

◦ ...πv9
. The

morphism has domain isomorphic to Im(Pplaq) and consists of components equivalent to Pv1 , ..., Pv9 , hence

π is equivalent to Pvert with domain restricted to Im(Pplaq). This concludes the proof of Proposition 5.2.2.

5.3 Conclusions

The purpose of this section is to provide an evaluation of the proposed model of quantum error-correction

using the Reshetikhin-Turaev defect TQFT, and to outline some of the potential steps for further developing

this model. We begin by first detailing some of the advantages that a TQFT approach to topological error-

correction has over other approaches, then compare the benefits of an approach based on the defect TQFT

with those of an approach based on the Turaev-Viro graph TQFT. This is followed by some discussion on

the shortcomings of both approaches. Finally, Section 5.3.1 puts forward some possible areas for future work

in pursuing a TQFT model of error-correction.

Advantages of a TQFT approach:

Due to the topological nature of topological quantum error-correction, a topological quantum field theory

seems like a reasonable place to search for a generalisable model. The primary advantage of this approach

is the ability to handle different anyon models with the same machinery. It could well prove true that some

general structure is present in topological quantum error-correcting codes that exists for all anyon models,

and can be used to direct a search for new and better codes. It may be that the defect TQFT is an ideal lens

by which to see this structure. The other key bastion of the TQFT approach is the potential to formulate

maps between different codes, either by mapping between TQFTs, or by considering different models internal

to the same TQFT, as is the case for the Reshetikhin-Turaev defect TQFT.

Advantages of the Reshetikhin-Turaev defect TQFT over the Turaev-Viro graph TQFT:

Many of the advantages of the Reshetikhin-Turaev defect TQFT have been recounted already, but we

reiterate them here. Firstly, the Reshetikhin-Turaev defect TQFT naturally retains more of the structure

of the toric code than the Turaev-Viro graph TQFT due to the ability to represent qubits by defects in

the surface and morphisms of the bordism category Borddf
3 (D). It may also be possible to represent logical

operations on the code subspace by analysing certain morphisms of Borddf
3 (D) that are endomorphisms of

the surface Σ that produces the codespace via the orbifold. This may be true in the Turaev-Viro case also,
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however the Reshetikhin-Turaev defect TQFT still plays favourite since the the ability to analyse the defects

of such endomorphisms may allow easier generalisation of the component operations on the physical system

that produce the logical operations to different anyon models. The fact that the orbifold data is generated

internal to vectC for any spherical fusion category is also an advantage since the ability to have surfaces

labelled by different orbifold data, and hence producing different codes, within the same bordism category

and be evaluated by the same functor, provides a much more natural framework to map between codes

than for the Turaev-Viro graph TQFT which would require maps between different theories. Analysing the

bordisms that encode these maps between codes in Borddf
3 (D) may also shed light on how to implement

these maps practically.

Advantages of the Turaev-Viro graph TQFT:

The primary advantage of the Turaev-Viro graph TQFT is the relative ease of its use and the resultant ease

of relating it to the toric code. In comparison to the calculation of the orbifold morphism in Section 5.2.2,

the evaluation of |(Σ, A)|◦ was relatively straight forward as it required a much simpler choice of cellular

decomposition of the cylinder. This advantage may be short-lived since it may soon be the case that the

orbifold data for the Reshetikhin-Turaev defect TQFT is adapted to apply to any cell decomposition rather

than specifically the dual of a triangulation.

Disadvantages of the TQFT approach:

At the present time, the two largest drawbacks of an approach to quantum error-correction via topological

field theories seem to be: the difficulty of use relative to gain in comparison to other models, and the

apparent inability to represent operations on physical qubits to a granular enough level. At the moment, the

Turaev-Viro and Reshetikhin-Turaev defect TQFTs can produce the code subspace of the toric code and get

only part of the way towards representing the projector Pcode, which can be done much more directly via the

stabiliser formalism for quantum error-correction as introduced in Chapter 2. The stabiliser formalism can

also describe many more error-correcting codes, topological and otherwise, which have yet to be represented

by a TQFT. Moreover, the part of Pcode that is represented in the TQFT setting, specfically Pvert, is not

yet done so in a fashion that makes very clear how to interpret the components of the ribbon graph in the

orbifold morphism as the action of the Pauli X operation on physical qubit for example. It may well be that

with future work done in this area, in particular using the defect TQFT, that these apparent disadvantages

will disappear.

5.3.1 Future Work

The immediate areas of future work in developing the error-correction model via the Reshetikhin-Turaev

defect TQFT are largely related to completing the translation of the projector Pcode into this setting. More

specifically, the a study of the potential bordisms that replicate the projector Pplaq could be undertaken. It

would then be necessary to properly investigate how to consider this bordism and the orbifold morphism as

a product of commuting projectors which would likely amount to manipulating the resultant ribbon graphs
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in an appropriate way.

Currently the formalism of the Reshetikhin-Turaev defect TQFT considers only 2-manifolds without bound-

ary, which limits the applicability of this model to physically realisable architectures. However, it does seem

possible to extend the Reshetikhin-Turaev TQFT and hence also the defect TQFT to consider surface with

boundary [Remark III.1.6, Tur16]. This would then likely allow one to modify the analysis for the toric code

to the surface code and its variants.

Finally, the model based on the Reshetikhin-Turaev defect TQFT would start proving its worth if more and

more codes could be formulated with it. A possible place to start could be by trying to reproduce the colour

code by considering the orbifold data corresponding to the category of Z2×Z2-graded vector spaces [Section

V, BB19].
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Appendix A

Evaluating Graphs and Ribbon

Graphs

Underlying both the Turaev-Viro graph TQFT and the Reshetikhin-Turaev TQFT (and hence also the

Reshetikhin-Turaev defect TQFT, see either Section 3.4.2 or Appendix C) is the necessity to evaluate graphs,

including ribbon graphs, that are labelled with objects and morphisms of a given category C. As will be

expanded upon below, to evaluate a labelled graph means to assign a morphism of C to the graph. In

particular, in computing the Turaev-Viro graph TQFT on a given morphism of Bord
col(C)
3 , it is necessary to

evaluate graphs on spheres surrounding internal nodes of the morphism, and in computing the Reshetikhin-

Turaev defect TQFT, it is necessary to compute a morphism associated to a given ribbon graph representing

a morphism in Borddf
3 (D). This appendix is included here for completeness, so provides only the details

necessary for earlier chapters. There are many resources that provide far more detail regarding this graphical

calculus, for example [JS91]. The details provided below follow the theory outlined in the first four chapters

of [TV17].

A.1 Graphs and Ribbon Graphs

Throughout this chapter, we take the term ‘graph’ to be quite general, as defined below, which may contrast

slightly with the use of the term in other chapters (for example when talking about the graph GA arising

from a skeleton G in Section 3.3.1). We take ‘graph’ to have the following definition, which essentially

corresponds to a Reidemeister diagram ([Section 3.2.1, TV17]), which is an extension of a Penrose diagram

([Section 2.2.2, TV17]).

Definition A.1.1. A graph is a finite collection of coupons and strands in R× [0, 1] ⊂ R2 where a coupon

is a rectangle with sides parallel to the horizontal and vertical axes where one horizontal side is distinguished

and called the bottom base, and strands are oriented lines that either have endpoints in R×{0}, R×{1} or
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the top or bottom bases of a coupon, or form closed loops. The coupons are required to be pairwise disjoint

and lie entirely in R× (0, 1). If a graph has strands with endpoints in R× {0} or R× {1}, then it is said to

have free ends.

Remark A.1.2. (i). The usual notion of graph consisting of edges and vertices can be recovered from the

above definition by contracting coupons to a point, and by inserting a vertex into every loop and at every

free end.

(ii). In the above definition, there is no restriction placed on strands being able to cross. In particular,

the case where crossings are forbidden corresponds to a Penrose diagram, and the case where crossings are

allowed to a Reidemeister diagram (see references above). We won’t need to make much distinction between

the two cases other than in the definition of coloured graphs below.

We take the definition of a ribbon graph almost exactly the same as the definition for graph above, except

that each strand now has a framing (so becomes what visually looks like a ribbon), and the ribbon graph is

considered in R3:

Definition A.1.3. A ribbon graph is a finite collection of coupons and ribbons in R× [0, 1]× [0, 1] ⊂ R3

where a coupon is the same as above, and a ribbon is a topological space homeomorphic to either [0, 1]×[0, 1]

or an annulus. Each ribbon homeomorphic to [0, 1]× [0, 1] must have bases [0, 1]×{0} and [0, 1]×{1} lying

in R× {0} × [0, 1], R× {1} × [0, 1] or in the bottom or top base of a coupon.

Remark A.1.4. It is possible to produce a graph in R2 from a ribbon graph with only one slight complication.

By identifying a ribbon with its ‘centreline’, that is with [0, 1] × {1
2} or equivalent for the annulus, we can

produce strands, and by projecting to R × [0, 1] × {0} such that all coupons are disjoint from each other

and from R × {0} × {0} and R × {1} × {0}, we can produce a graph as per Definition A.1.1. The only

complication arises in the case where a ribbon is twisted, as this feature is lost when producing a strand

from its centreline. This problem is rectified below when coloured graphs are introduced. It is also prudent

to make a comment that the projection to R× [0, 1]×{0} satisfying the desired criteria can always be taken,

but may requires isotoping the ribbon graph. For our ultimate purposes of evaluating a ribbon graph, this

does not change the evaluation as it is invariant up to isotopy (more on this later).

For the following definition C is a tensor category with extra structure as specified.

Definition A.1.5. A C-coloured graph (respectively C-coloured ribbon graph) is a graph (resp. ribbon

graph) such that every strand (resp. ribbon) is labelled by an object of C and each coupon is labelled by

a morphism of C such that if the the objects labelling strands (ribbons) incident to the bottom base of the

coupon are X1, ..., Xn and the objects labelling the strands (ribbons) incident to the top edge are Y1, ..., Ym,

then the morphism is in HomC(X1 ⊗ ...⊗Xn, Y1 ⊗ ...⊗ Ym). The following caveats are also imposed:

• the colouring of a graph containing crossings must be by a braided tensor category C;

• the colouring of a ribbon graph must be by a ribbon category C.
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Remark A.1.6. Following on from the comments of the previous remark, a C-coloured graph can be

produced from a C-coloured ribbon graph by introducing a new coupon inserted at every twist in a ribbon,

labelled by the appropriate twist θX where X is the object labelling the ribbon, and then following the same

procedure as above. Similarly, it is possible to produce a C-coloured graph without crossings from a C-coloured

graph with crossings, by inserting a new coupon at each crossing point which is labelled by the appropriate

braiding map. For the purposes of this thesis, we will essentially be considering C-coloured ribbon graphs as

C-coloured graphs, sometimes with and sometimes without the crossings replaced by coupons labelled with

braiding maps. Consequently, we may, from time to time, drop the term ‘ribbon’ from our discourse and

use ‘strand’ to mean both ribbon and strand as per the definitions above. Furthermore, since we will be

taking either C = vectC or C = Z2- vectC, much of the time any twists or crossings can be removed due to

the corresponding twist and braiding maps of vectC and Z2- vectC being trivial.

A.2 Evaluating Graphs

This section commences by listing the rules for manipulating graphs, and then details how graphs are

evaluated. The graphs encountered in this thesis are typically not too complex, so the rules stated below

do not necessarily exhaust all possible rules for the graphical calculus. We let C be a pivotal category, and

consider extra structure for particular rules. Let objects and morphisms of C be denoted by uppercase and

lower case Latin letters respectively. All graphs will be read from bottom to top.

Rules for manipulating graphs:

An object X is represented by a strand with label X, and the direction of the strand determines whether

the object appears in the domain or codomain of a morphism ψ as X or X∗. A strand with no coupon

labelled by X∗ is equivalent to a strand with oppposite orientation labelled by X. For a strand labelled

X incident to a coupon labelled by f that connects to the bottom base of the coupon, then the domain

of f contains X if the strand is oriented towards the coupon, and X∗ if the strand is oriented away from

the coupon. Conversely, if a strand labelled by X is incident to the top edge of a coupon labelled by f ,

then the codomain of f contains X if the strand is oriented away from the coupon and X∗ otherwise. The

morphism idX can be represented by either strands labelled by X incident to a coupon labelled by idX with

appropriate orientations, or just by a single strand labelled by X. The composition of morphisms g : X → Y

and f : Y → Z is represented by a strand X oriented towards the bottom edge of a coupon g with strand Y

from the top edge of the coupon g to the coupon f , and a strand Z oriented from the top of the coupon f

upwards. Graphically, these rules are shown in Figure A.1 through ??.

A strand labelled by the unit of C, 1, is equivalent to the absence of a strand. So a coupon with just a single

strand can be viewed as a morphism with domain (or codomain) the unit object, as shown in Figure A.4.

In particular, we will see that this means that a graph with no free ends represents a morphism in EndC(1).

The horizontal juxtaposition of two strands labelled by X and Y represents the object X ⊗ Y , which can

also be represented as a single strand labelled by X ⊗ Y . Similarly, the tensor product of two morphisms
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Figure A.1: The equivalence of ribbons labeled by X and X∗.

Figure A.2: A coupon depicting a morphism f .

Figure A.3: The composition of morphisms f and g.

f : X → Y and g : X ′ → Y ′ are given by horizontal juxtaposition. The tensor product f ⊗ g can be

represented in equivalent ways by manipulating the relative ‘heights’ of the coupons on each strand (these

graphs are all isotopic). These features are shown in Figure A.5 and Figure A.6.

If C is a rigid category, we can represent the ev, coev, ẽv and c̃oev maps either as curved strands or

equivalently as two strands incident to either the bottom or top base of the coupon as below. Recalling the
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Figure A.4: The ribbon associated to the unit object.

Figure A.5: The tensor product of objects.

Figure A.6: The tensor product of morphisms.

comments above regarding the unit 1, a strand labelled by 1 may or may not be present.

Accordingly, it is possible to express both the (left and right) traces and (left and right) dimensions of

morphisms and objects respectively in this graphical calculus, shown in Figure A.8. For C a braided category,

as mentioned earlier, a crossing of two strands can be replaced by a coupon labelled by an appropriate braiding

map and with appropriately ordered strands, as in Figure A.9.

There are further moves, called Reidemeister moves, that will not be written here explicitly as they are not

directly needed for any computation within this thesis, which may be used to manipulate graphs without

altering the evaluation of the graph (see Theorem A.2.2 below).

Now we can define by what is meant by evaluating a C-coloured graph G. Using the rules listed above, it is

possile to reduce any graph G to a graph G′ of the form in Figure A.10.
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Figure A.7: The coevaluation and evaluation maps for C.

Figure A.8: Left and right trace evaluated on morphism f

Figure A.9

The evaluation of G is then just the morphism labelling the single coupon of G′. We denote this evaluation

by F(G). At times, in particular when the objects of the category C can be considered as consisting of a
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Figure A.10: Any ribbon graph can be reduced to a graph with one coupon.

family of elements (such as a vector space), a graph will be investigated simply by ‘diagram-chasing’ the

object from the bottom of the graph to the top. It will also sometimes be useful to consider a graph G that

has objects of C labelling strands, but no morphisms labelling coupons. In this case, we can consider the

tensor product over all coupons v of the relevant hom-spaces Hv associated to each coupon, denoted
⊗

vHv,

and then define F(G) as a map

F(G) :
⊗
v

Hv → HomC(Xin, Xout)

where Xin is the object (or tensor product of objects) associated to free ends on the bottom of the graph G

and Xout is the object (or tensor product of objects) associated to the free ends at the top of the graph. In

particular, the case where G has no free ends, the map F(G) has codomain End(1). This case is relevant to

the discussion of the Turaev-Viro graph TQFT in Appendix B.

We conclude this chapter with some key results that are important for use of F(·) for computations in this

thesis, as well as that formalise some comments made above. The first theorem relates the invariance of F

under isotopy and the application of the rules above and is modified slightly from Theorem 3.3 in [TV17].

Theorem A.2.1. If two C-coloured graphs G and G′ are related by isotopy or by any of the rules above

(possibly including the Reidemeister rule) relevant to C, then F(G) = F(G′).

Here, the phrase ‘relevant to C’ is to be understood as enforcing only the rules that are applicable for a

C-coloured graph can be applied. That is, if C is a pivotal category without any braiding structure, then the

rules associated to crossings cannot be applied. The above theorem was written this way instead of writing

out many similar theorems for coloured graphs for each type of category considered.
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The next theorem is specific to when C is a spherical category, and is used when evaluating the Turaev-Viro

graph TQFT.

Theorem A.2.2. [Lemma 2.9, TV17] Let C be a spherical category and let G and G′ be C-coloured graphs.

Then if G and G′ are related by isotopies on S2, then F(G) = F(G′).

This theorem is useful since we can isotope a graph G on S2 = R2 ∪ {∞} away from the pole corresponding

to {∞} and so we can consider the graph as residing in R2.
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Appendix B

Supplementary Material for the

Turaev-Viro graph TQFT

This appendix has been included to provide a rigorous supplement to the discussion of the Turaev-Viro

graph TQFT in Section 3.3. This appendix also provides support to Chapter 5 in which the graph TQFT is

used to explicitly compute vector spaces. The material presented here represents a collation of the necessary

information from [TV17] and largely follows their terminology, although some notation is changed to match

that presented in Section 3.3 and in Chapter 5. Throughout we take C to be a spherical fusion category over

a base field k.

B.1 Vector Spaces for Coloured Surfaces

Recall from Section 3.3 the definition of a skeleton G of a Z(C)-coloured surface (Σ, A), the induced graph

GA, and the definition of the naive vector space

|G; (Σ, A)|◦ =
⊕

c∈col(GA)

⊗
v∈G(0)

A

Hv.

Here we define the vector spaces Hv properly by introducing the necessary theory to define the inverse limit

by which these spaces are constructed.

Definition B.1.1. For X,Y ∈ C, define the permutation map πX,Y by

πX,Y : HomC(1, X ⊗ Y )→ HomC(1, Y ⊗X)

f 7→ (evX ⊗ idY⊗X) ◦ (idX∗ ⊗f ⊗ idX) ◦ c̃oevX

For any X,Y ∈ C, πX,Y is k-linear and {πX,Y }X,Y ∈C is natural for any morphisms g : X → X ′, h : Y → Y ′.
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Moreover, we have the following lemma:

Lemma B.1.1. [Lemma 12.1, TV17] For any X,Y ∈ C, πX,Y is an isomorphism and π−1
X,Y = πY,X .

Furthermore, πX,1 = π1,X = idHomC(1,X).

Let ((X1, ε1), ..., (Xn, εn)) be a tuple, where Xi ∈ C and εi ∈ {+,−}, that determines an object X =

Xε1
1 ⊗ ...⊗Xεn

n , where X+
i = Xi and X−i = X∗i . It follows from the definition of C as spherical fusion that

HomC(1, X) is a k-vector space, which is preserved up to isomorphism via a permutation map for the object

arising from the tuple ((X1, ε1), ..., (Xn, εn)), as shall be seen below. The signed objects Xεi
i will be assigned

at different times in Chapter 5 to edges incident to a vertex of a graph and to faces incident to edges, so to

deal with the general case we make the following definition.

Definition B.1.2. A cyclic C-set is a tuple (E, c, ε) where E is a finite, non-empty set with a chosen cyclic

ordering on its elements, and c : E → Ob(C) and ε : E → {+,−} are maps.

For a cyclic C-set (E, c, ε) with cyclic ordering e = e1 < e2 < ... < en < e1, we define the k-vector space

He = HomC(1, c(e1)ε(e1) ⊗ c(e2)ε(e2) ⊗ ...⊗ c(e2)ε(en)).

For some e′ = ei with i 6= 1, we define

[e, e′] = c(e1)ε(e1) ⊗ ...⊗ c(ei−1)ε(ei−1)

[e′, e] = c(ei)
ε(ei) ⊗ ...⊗ c(en)ε(en)

We can then write He and He′ in terms of [e, e′] and [e′, e], like so

He = HomC(1, [e, e
′]⊗ [e′, e])

He′ = HomC(1, [e
′, e]⊗ [e, e′])

Having written He and He′ in this way, we can define a family of isomorphisms fe,e′ for all e, e′ ∈ E where

fe,e = idHe,He
and fe,e′ = π[e,e′],[e′,e] : He → He′ . For any e, e′, e′′ ∈ E where (without loss of generality)

e = e1 < e2 < ... < e′ = ei < ... < e′′ = ej < ... < en < e1, we have that the composite fe′,e′′fe,e′ is the map

HomC(1, c(e1)ε(e1) ⊗ c(e2)ε(e2) ⊗ ...⊗ c(ei−1)ε(ei−1) ⊗ c(ei)ε(ei) ⊗ ...⊗ c(en)ε(en))

→ HomC(1, c(ei)
ε(ei) ⊗ ...⊗ c(ej−1)ε(ej−1) ⊗ c(ej)ε(ej) ⊗ ...⊗ c(ei−1)ε(ei−1))

→ HomC(1, c(ej)
ε(ej) ⊗ ...⊗ c(en)ε(en) ⊗ c(e1)ε(e1) ⊗ ...⊗ c(ej−1)ε(ej−1))

and is equal to fe,e′′ . This with the above Lemma B.1.1 is sufficient for
(
{He}e∈E , {fe,e′}e,e′∈E

)
to be a

projective system of k-vector spaces and vector space isomorphisms. We then define

H(E) = lim
←
He.
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Since this inverse limit is over a system of isomorphisms, we can define a family, called cone isomorphisms,

{τe : H(E)→ He}e∈E .

So, for the vector space |G; (Σ, A)|◦ we produce a cyclic C-set for each non-distinguished vertex v (recall

the definition of distinguished vertices in Definition 3.3.2) by taking the set of edges incident to v to be E

with a choice of ordering, the map c : E → Ob(C) is given by the colouring of the graph GA and the map ε

encodes whether an edge e ∈ E is oriented towards v, where ε(e) = −, or away from v, where ε(e) = +. For

a distinguished vertex va, the cyclic C-set is defined as follows: E = {eout, va, ein}; the map c evaluates ein

and eout to be the objects assigned by the colouring of the graph GA and evaluates va to be the object of C
F (Xa) where F is the forgetful functor F : Z(C)→ C; and the map ε is defined by

ε(eout) = +

ε(ein) = −

ε(va) = ε(a)

where, with a slight abuse of notation, ε(a) is used to denote the sign associated to a ∈ A. In both the

distinguished and non-distinguished cases, we take Hv = H(E).

As alluded to in Section 3.3.1, in practice, we invoke the use of a cone isomorphism τe : H(E)→ He in order

to compute H(E).

B.2 Vector Space Homomorphism Assigned to id(Σ,A)

Recall that |(Σ, A)|C is defined via

|(Σ, A)|C := lim
←

Im(| id(Σ,A), GA, GA|◦)

where

| id(Σ,A), GA, GA|◦ =
∑

c0,c1∈col(GA)

| id(Σ,A), G
c0
A , G

c1
A |
◦

and

| id(Σ,A), G
c0
A , G

c1
A |
◦ =

dim(C)#(Σ\G)−#(CΣ\P )

dim(c1)

∑
c∈col(P,d)

dim(c)(Vc ⊗ idH(GR))(∗c) (B.1)

Also recall that the morphism id(Σ,A) is represented by a bordism (CΣ, R, h), where CΣ is the cylinder over

Σ, R is the ribbon in CΣ that is defined to be R = A× [0, 1] (the framing arising from the tangent directions

for each a ∈ A), and h is a homeomorphism of Z(C)-coloured surfaces:

h : (−Σ,−A) t (Σ, A)→ (∂CΣ, ∂R)
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Here we unpack these formulae and present the required theory to understand them. A number of preliminary

definitions are required, which motivates much of the reasoning behind why they are presented here as an

appendix.

We first formalise the definition of a 3-skeleton which is denoted by the P in the neat positive diagram (P, d)

in Equation (B.1).

Definition B.2.1. A 2-polyhedron P is a topological space that can be triangulated using a finite number

of simplices of dimension less than or equal to 2 such that all 0-simplices and 1-simplices are faces of 2-

simplices. A stratification of a 2-polyhedron P is an unoriented graph GP embedded in P such that

P \ Int(P ) ⊂ GP . A stratified polyhedron is a 2-polyhedron P endowed with a stratification GP . The

edges and vertices of GP are denoted P (1) and P (0) respectively.

Definition B.2.2. A branch of a vertex x ∈ P (0) of a stratified 2-polyhedron P is a homotopy class of

paths [0, 1] → P starting at x and such that (0, 1] is mapped to P \ P (1). A branch of an edge e ∈ P (1)

is the homotopy class of paths [0, 1] → P starting at the interior of e and mapping (0, 1] to P \ P (1). The

number of branches of a vertex or an edge is called the valence of that vertex or edge.

It is the branches of an edge e that can be used to produce a cyclic C-set associated to e as mentioned above.

Definition B.2.3. The boundary graph ∂P of a stratified 2-polyhedron P consists of all edges of P with

valence 1, and their vertices.

Definition B.2.4. A stratified 2-polyhderon P is ∂-cylindrical if for each vertex x in ∂P , there is a unique

edge in P (1) \ ∂P such that this edge is adjacent to all branches of x and the second endpoint is distinct

from x.

Remark B.2.5. If P is ∂-cylindrical, then there is a neighbourhood of ∂P in P that is homeomorphic to

∂P × [0, 1]. It is the feature of ∂-cylindricality that ensures compatibility of 3-skeletons (see definition below)

with bordisms with collars, and hence the gluing of two 3-skeletons to produce a new 3-skeleton.

Definition B.2.6. Let G be an oriented graph in the boundary ∂M of a compact 3-manfiold M such that

all vertices of G have valence greater than or equal to 2. A 3-skeleton of the pair (M,G) is an oriented

∂-cylindrical stratified 2-polyhedron P embedded in M such that:

1. ∂P = G as oriented graphs and P \ ∂P ⊂M \ ∂M ;

2. M \ P is a disjoint union of open 3-balls and a 3-manifold homeomorphic to (∂M \G)× [0, 1).

For any pair (M,G) with G satisfying the above criteria, a 3-skeleton is guaranteed to exist [Theorem 11.5,

TV17].

In Equation (B.1), we are taking M = CΣ and G = Gop
A t GA. We now formalise the definition of a neat

positive diagram, which also depends on a number of preliminary definitions.
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Definition B.2.7. A plexus is a topological space d obtained from a disjoint union of a finite number of

oriented circles, oriented arcs and coupons by gluing the endpoint of some arcs to the bases of the coupons.

A coupon is a rectangle (2-manifold with corners homeomorphic to [0, 1] × [0, 1]) with a distinguished

base, the bottom base. The endpoints of arcs not glued to coupons are called free ends. A plexus is

Z(C)-coloured if each circle and arc is labelled with an object of Z(C) and each coupon is labelled with a

morphism f ∈ HomZ(C)(X,Y ) where X and Y are objects of Z(C) representing the arcs glued to the bottom

base and top base of the coupon respectively.

Definition B.2.8. A knotted plexus d in an oriented stratified 2-polyhedron P is a plexus d immersed in

P such that:

1. all coupons of d are embedded in P \ P (1) preserving orientation;

2. all points of d where arcs cross lie in P \ P (1) and one of the two strands is distinguished. Arcs may

only cross at interior points of each arc;

3. the plexus d is disjoint from P (0) and d ∩ ∂P = ∂d;

4. the strands of d meet edges in P (1) transversally.

The intersection of strands of d and edges of P (1) not lying in ∂P are called switches. A knotted plexus is

Z(C)-coloured if the underlying plexus d is Z(C)-coloured.

Each switch w of d lies on an edge ew in P (1). The strand of d corresponding to the switch w lies in two

branches of ed. Since P is oriented, each of these branches has an orientation.

Definition B.2.9. A switch w is positive if the branches of ed containing d have compatible orientations.

Definition B.2.10. A positive diagram is a pair (P, d) where P is a 3-skeleton of a pair (M,G) and d is

a knotted plexus in P such that each switch of d is positive.

Definition B.2.11. A positive diagram (P, d) is neat if d has no circle strand embedded in Int(P ) and

disjoint from the rest of d.

Again, we are guaranteed existence:

Theorem B.2.1. [Thm 14.4, TV17] All ribbon graphs in (M,G) can be represented by neat positive dia-

grams.

Thus, we know a neat positive diagram (P, d) exists for the manifold CΣ with ribbon graph R and boundary

graph G = GR = h((Gc0A )op t Gc1A ) for the specific case examined in Chapter 5. The ribbon in that case is

empty, so in fact (P, d) is merely a 3-skeleton, but we cover the case where A is non-empty and R = A× [0, 1]

in this appendix since this is required to nderstand how the Turaev-Viro graph TQFT evaluates a general

coloured surface. For a neat positive diagram corresponding to CΣ with R = A× [0, 1], we have that (P, d)

is Z(C)-coloured, with the colouring of d arising from the labelling of the ribbon R by objects of Z(C).
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We require yet more terminology before we are able to fully compute Equation (B.1) for the case where R

is non-empty. Let (P, d) be a neat positive diagram throughout the following.

Definition B.2.12. A node of (P, d) is a vertex of P (i.e. element of P (0)), or a switch, crossing, coupon

or free end of d. A node is internal if it lies in Int(M).

Remark B.2.13. Pursuant to the comment made above, in the case presented in this thesis, the only nodes

we encounter are vertices of P , and the nodes associated to crossings and coupons only occur for analysing

the evaluation of the Turaev-Viro graph TQFT on a general morphism, and hence are omitted from this

appendix.

Definition B.2.14. Let d̃ = d∪P (1) ⊂ P . The complement of nodes in d̃ are open intervals. The closure of

any such open interval in Int(M) is called a rim of (P, d). Let E denote the set of all oriented rims of (P, d)

and let E∂ denote the set of all oriented rims with tail endpoint in ∂M .

Remark B.2.15. In particular, this means that the edges of the graph GR in ∂M are not rims of (P, d).

Later, the definition of contraction vectors relies on a tensor product over all rims of (P, d), hence the extra

emphasis on what is and is not a rim here. The tensor product is over oriented rims, and we note here that

each (unoriented) rim features twice in E , once with each possible orientation.

Definition B.2.16. A face of (P, d) is a connected component of P \ d̃. The set of faces is denoted Fac(P, d).

Each face has orientation arising from the orientation of the 2-cell of P from which it originates.

Definition B.2.17. A colouring of (P, d) is a map c : Fac(P, d) → I such that the colouring of all faces

adjacent to edges of GR are consistent with the colouring of those edges.

Remark B.2.18. Recall from the definition of ∂-cylindricality that each edge of GR has precisely one face

adjacent to it. This also ensures that each vertex v of GR has precisely one (unoriented) rim of (P, d) incident

to v (as a node of (P, d)), a point that is relevant below.

Recall from the previous section that a cyclic C-set can be constructed out of both edges incident to a vertex

in a graph, as well as from 2-cells incident to an edge, or rather in the case here, faces incident to a rim. We

construct these cyclic sets slightly differently for rims of (P, d) corresponding to strands of d and edges of P ,

as follows.

Let e ∈ E be a rim that is an edge of P (i.e. e ∈ P (1)). Then we can consider the cyclic C-set (Pe, c, ε) where

Pe = {f1, ..., fn} is the set of branches of (faces incident to) e, with a chosen cyclic ordering, c : Pe → I is

the map induced by the colouring of (P, d) and ε : Pe → {+,−} evaluates to + on a face fi if the orientation

of fi and the orientation of e are compatible, and − otherwise. As per the previous section, H(Pe) denotes

the inverse limit over the hom-spaces

HomC(1, c(f1)ε(f1) ⊗ ...⊗ c(fn)ε(fn)).

For a rim e ∈ E that corresponds to a strand of d, we define the C-set (Pe, c, ε) analogously to the case of

distinguished vertices in a graph GA (and in fact this analogy will be made more explicit shortly). The set
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Pe = {f−, e, f+} where f− is the face incident to e whose orientation is incompatible with that of e, and

f+ is the face whose orientation is compatible (note that f− and f+ have the same orientation since they

arise from the same 2-cell of P ). Consequently, ε(f±) = ±. The map c assigns to f± their respective colours

under the colouring of (P, d) and to e the image of the colour of the strand of d under the forgetful functor

F : Z(C)→ C. The map ε evaluates e to + if the orientation of e corresponds to that of its associated strand

in d , and − otherwise. Again, H(Pe) denotes the inverse limit over hom-spaces

HomC(1, c(f−)∗ ⊗ F (X)ε(e) ⊗ c(f+))

where X is the colour of the strand of d corresponding to e.

Now, let us consider the rims in E∂ . By the comments made regarding ∂-cylindricality earlier, we know

that each e ∈ E∂ corresponds to a vertex (distinguished and non-distinguished) of GR and the edges of GR

correspond to precisely one face of (P, d). We thus get canonical isomorphisms H(Pe) ∼= H(Ev) for all e,

where e is incident to v ∈ GR. The spaces H(Pe) where e is a rim corresponding to a strand of d is isomorphic

to H(Ev) when v is disinguished. These isomorphisms induce an isomorphism on the tensor product⊗
e∈E∂

H(Pe) ∼= H(GR) =
⊗
v∈G(0)

R

H(Ev)

which then allows us to write ⊗
e∈E

H(Pe) ∼=
⊗

e∈E\E∂

H(Pe)⊗H(GR)

This starts to provide some context for the term (Vc ⊗ idH(GR))(∗c) in Equation (B.1), where the map Vc

acts upon
⊗

e∈E\E∂ H(Pe). The contraction vector ∗c is also defined via consideration of the H(Pe), which

we turn our attention to next.

We can once more rearrange the tensor product
⊗

e∈E H(Pe) to produce⊗
ê

H(Pe)⊗H(P−e)

where ê denotes the rim e considered without any orientation and signifies that the tensor product is over

all unoriented rims, and where −e denotes the rim e with the opposite orientation. By invoking the cone

isomorphisms, we get

H(Pe) ∼= HomC(1, X
ε1
1 ⊗X

ε2
2 ⊗ ...⊗Xεn

n )

H(P−e) ∼= HomC(1, X
−εn
n ⊗X−εn−1

n−1 ⊗ ...⊗X−ε11 )

∼= HomC(X
ε1
1 ⊗X

ε2
2 ⊗ ...⊗Xεn

n ,1)

In particular, this allows us to see that H(Pe) and H(P−e) are dual to each other, and hence defines a pairing

ωe : H(Pe)⊗H(P−e)→ k. A contraction vector for this pairing is the image of 1k under the inverse pairing
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to ωe, denoted Ωe : k → H(P−e) ⊗H(Pe). Before we proceed any further, let us demonstrate why such an

inverse is guaranteed to exist.

According to [Section 4.3.1, TV17], a tensor k-category D is non-degenerate if it has simple unit object

and for each non-degenerate pairing X ⊗ Y → 1 in D the induced pairing

HomD(1, X)⊗k HomD(1, Y )→ k

is non-degenerate in Vectk. Furthermore, all pre-fusion k-categories are non-degenerate [Lemma 4.3, TV17].

Here a pre-fusion k-category is a k-category D such that there is a set of representative simple objects I

satisfying the following:

1. 1 ∈ I;

2. HomD(i, j) = 0 for any i 6= j ∈ I;

3. every object in D can be written as a direct sum of a finite number of elements of I.

Clearly, our spherical fusion category C is pre-fusion and hence is non-degenerate in terms of the definition

above. Moreover, we can write down a pairing

(Xε1
1 ⊗ ...⊗Xεn

n )⊗ (X−εnn ⊗ ...⊗X−ε11 )→ k

based on the evaluation maps evXi and ẽvXi which are non-degenerate since their inverses coevXi and c̃oevXi

respectively. Thus, we can find an inverse Ωe : k→ H(P−e)⊗H(Pe) for every pairing ωe : H(Pe)⊗H(P−e)→
k.

Definition B.2.19. A contraction vector ∗e of a non-degenerate pairing ωe is defined to be

∗e = Ωe(1k)

where Ωe is inverse to ωe.

We then take the tensor product over all unoriented rims of all contraction vectors:⊗
ê

∗e ∈
⊗
e∈E

H(Pe)

where again the tensor product over ê signifies the tensor product over all unoriented rims. Recalling from

above that we have a canonical isomorphism⊗
e∈E

H(Pe) ∼=
⊗

e∈E\E∂

H(Pe)⊗H(GR),

we take ∗c to be the image of
⊗

ê ∗e under this isomorphism.
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We finally come to the last piece of the formula (B.1): the map Vc. This map acts on
⊗

e∈E\E∂ and is defined

by even more rearranging of this tensor product and by once again relating faces incident to rims and nodes,

to a graph.

Every rim in E \ E∂ has a tail eindpoint at an internal node of (P, d). As mentioned a couple of times, there

is only one type of nodes relevant to this thesis, namely vertices of P , but we cover the case of switches also.

We deal with each case separately in the following discussion, and a similar process can be done for the other

types of internal nodes that can occur in the general case (for details see [Section 15.5.1, TV17]).

Let x be an internal node of (P, d) corresponding to a vertex of P . There exists a closed ball neighbourhood

of x, Bx such that Bx contains no other node of (P, d). We then define the link graph Γx of x to be the

graph embedded in ∂Bx with vertices corresponding to e ∩ ∂Bx for all rims e incident to x, and with edges

corresponding to f ∩ ∂Bx for all faces (branches) incident to x. The orientation of these edges arise from

the orientation of the faces.

If x is an internal node corresponding to a switch, then a neigbourhood of x in P looks like a series of

half-planes intersecting the edge of P through which the strand of d passes, as depicted in [Figure 14.2,

TV17], which also shows another closed ball neighbourhood that does not enclose any other node.

The graph (with crossings) Γx associated to this node is constructed via a slightly different method, where

the vertices of Γx are the points of intersection of the edge of P containing the switch with ∂Bx and also the

intersection of the strand of d defining the switch and ∂Bx. The faces incident to the edge of P containing

the switch that do not contain any strand of d (i.e. faces corresponding to 2-cells of P ) induce edges of Γx

the same as above via the intersection of the face with ∂Bx. These edges are coloured black in [Section 15.5,

TV17] and join two black vertices. The two 2-cells of P containing the strand of d correspond to four faces

of (P, d) and consequently correspond to four edges of Γx, again where each face intersects ∂Bx. These edges

are still coloured black, but join one black vertex to one red vertex. Finally, the strand of d, which runs

through the interior of Bx, corresponds to a red edge in Γx via projection to ∂Bx. This red edge joins the

two red vertices.

In both the above cases, the link graph has no free ends, so we can apply F from the Appendix A to produce

a map F(Γx) : H(Γx)→ End(1) = k. Taking the tensor product over all internal nodes x we have the map⊗
x

F(Γx) :
⊗
x

H(Γx)→ End(1).

Now H(Γx) =
⊗

v∈Γ
(1)
x
Hv(Γx) ∼=

⊗
ev∈P (1) H(Pe) where ev is the rim of P corresponding to the vertex v in

Γx by definition of the link graph, and so the extends to⊗
x

H(Γx) ∼=
⊗

e∈E\E∂

H(Pe)

and so the map Vc :
⊗

e∈E\E∂ H(Pe) → End(1) is defined to be the image of
⊗

x F(Γx) under this isomor-

phism. The tensor products over x here are understood to be over the internal nodes of (P, d).
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This concludes the required theory regarding the evaluation of the Turaev-Viro graph TQFT on coloured

surface. The evaluation on a general morphism is similar, with a greater variety of types of nodes in the

neat positive diagram representing the morphism.
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Appendix C

Supplementary Material for the

Reshetikhin-Turaev Defect TQFT

Similarly to the previous appendix, this appendix serves the purpose of providing more rigour to the dis-

cussion in Sections 3.4.1 and 3.4.2. In particular, the source bordism category for the Reshetikhin-Turaev

TQFT, BordCwt, is more closely analysed, how ZRT,C and Zdf
RT,C evaluate surfaces and morphisms is inves-

tigated, and why both TQFTs are anomaly-free is discussed more closely. The material in Appendix C.1

regarding the Reshetikhin-Turaev TQFT is largely drawn from [Chapter IV, Tur16] and the material in Ap-

pendix C.2 regarding the the defect TQFT comes from [CRS17; CRS18]. The aim throughout this chapter

is to provide as much generality as is reasonably possible within the constraints of this thesis, however there

are instances where full generality is dropped and the discussion is restricted to the case of interest, that is

the Reshetikhin-Turaev TQFT over vectC, in order to help facilitate clarity of the key points.

C.1 The Reshetikhin-Turaev TQFT

Recall from Section 3.4.1 that the Reshetikhin-Turaev TQFT evaluates both extended surfaces and weighted

extended manifolds from BordCwt by evaluating ribbon graphs inside 3-manifolds. This section aims to

provide the necessary details to make this more precise. We reproduce certain definitions from Section 3.4.1

here for convenience, before complementing them with the required theory that was omitted in Chapter 3.

Throughout let C be a modular tensor category with representative set of simple objects I, with the aim

that this be ultimately replaced by the specific modular tensor category vectC.

The Reshetikhin-Turaev TQFT has a fundamental dependence on the invariant assigned to a closed 3-

manifold with a C-coloured ribbon graph residing in its interior. This section commences with a description

of this invariant, then proceeds to define how the Reshetikhin-Turaev TQFT evaluates extended surfaces
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and weighted extended manifolds based upon this invariant.

C.1.1 Invariants of C-coloured Ribbons in 3-manifolds

A known result states that any given closed, connected, oriented 3-manifold can be obtained via surgery

on a given link L in the 3-sphere S3 [Lic62; Wal60] . Roughly speaking, surgery on a link means removing

a closed neighbourhood BL of link L in S3, and then re-gluing that neighbourhood in a particular way to

produce a closed manifold M . A brief outline of how to compute the invariant of a given closed 3-manifold

with internal ribbon graph R is as follows:

1. Consider the manifold M as the result of surgery on a link L in S3;

2. After applying an isotopy if necessary (the invariant is up to isotopy), we can consider the ribbon R

as disjoint from BL in M ;

3. The ribbon R can then be considered as a ribbon in S3, and produces a new ribbon graph by union

with the link L;

4. Again, by isotoping if need be, the ribbon R ∪ L can be considered as a ribbon in S3 \ {∞} = R3;

5. The invariant is then given, along with a few extra terms, by summing the evaluations of the ribbon

graph R ∪ L in R3 over all C-colourings of L.

The details relating to the surgery procedure to produce the manifold M from a link L with n components

L1, ..., Ln are not provided here. For the fully general discussion of the invariant of a ribbon R in a closed 3-

manifold M , some knowledge of the 4-manifold M̃L that produces M by M = ∂M̃L is required, in particular

the sign σ(L) of the intersection pairing on H2(M̃L; R). However, we may avoid discussion of this 4-manifold

and intersection pairing in the case of the invariant based on vectC as shall be seen below.

Recalling that dim(C) =
∑
i∈I dim(Xi)

2, we can define a similar scalar from knowledge of the twist θ

associated to the modular tensor category C:

ΘC :=
∑
i∈I

θ−1
i dim(Xi)

2

where θi is the invertible scalar in k associated to the twist θi : Xi → Xi, where Xi is a simple object. The

final required piece before we can write down the invariant τ(M,R) of ribbon R in closed manifold M , is to

state that a C-colouring of link L, similarly to a C-colouring of any ribbon graph, is a map c : L → I, and

the set of colouring of L is denoted col(L). Then, we define τ(M,R) as

τ(M,R) := Θ
σ(L)
C

√
dim(C)

−σ(L)−n−1 ∑
c∈col(L)

( n∏
i=1

dim(c(Li))
)
F(Lc ∪R) (C.1)
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where F denotes the evaluation of the coloured ribbon graph as per Appendix A and Lc denotes the link L

as a coloured ribbon graph.

As mentioned above, for the case of the invariant τ(M,R) defined over modular category vectC, we have

dim(vectC) = ΘvectC = 1 so all dependence on the intersection pairing disappears, and we simply have

τ(M,R) =

n∏
i=1

dim(c(Li))F(Lc ∪R)

since there is exactly one colouring c : L → I as I has a single element. Much of the intermediate theory

required in defining the anomaly-free Reshetikhin-Turaev TQFT also have factors relying on dim(C) and ΘC

which will also be removed in the case of vectC.

C.1.2 A Precursor to the Reshetikhin-Turaev TQFT

The next character to be introduced to this plot is a TQFT ZCRT : BordCdec → Vectk. This TQFT is

typically not anomaly-free (depending on the specific modular category C), but provides the basis for the

anomaly-free TQFT ZRT,C that is our current focus. This TQFT makes fundamental use of the 2-manifold

invariant discussed above, and the rest of the work required to produce ZRT,C from ZCRT is related to

removing anomalies. The precursor TQFT ZCRT evaluates decorated surfaces and decorated manifolds (i.e.

the objects and representatives of morphisms of BordCdec) by producing and evaluating ribbon graphs in R3

and closed 3-manfiolds respectively.

We first define decorated surfaces and decorated manifolds, which will be called d-surfaces and d-manifolds

respectively in order to distinguish them from the decorated surfaces of Section 3.2.2 (though they are closely

related), and hence define BordCdec.

Definition C.1.1. A d-surface Σ is a closed oriented surface with a finite, totally ordered family of disjoint,

simple, oriented arcs labelled with objects of C and signs {+,−}. The type of a d-surface Σ, denoted Σ(T ),

is a tuple (g; (X1, ε1), ..., (Xn, εn)) where g is the genus of Σ and the (Xi, εi) are the labels of the marked arcs

in the given ordering. A homeomorphism of d-surface f : Σ→ Σ′ is a homeomorphism of the underlying

surfaces that preserve the orientation, label and order of the marked arcs.

Definition C.1.2. A standard d-surface Σstd
T is a canonical choice of d-surface of type T .

Definition C.1.3. A parametrisation of a d-surface Σ is a pair (Σstd
T , f : Σstd

T → Σ) where Σstd
T is a

standard d-surface and f is a homeomorphism of d-surfaces.

Definition C.1.4. A d-manifold is a tuple (M,∂+M,∂−M,R) where M is a 3-manifold with boundary

consisting of parametrised d-surfaces ∂+M and ∂−M , and a C-coloured ribbon graph R in the interior, where

R meets the boundary at precisely the oriented arcs in ∂+M and ∂−M . A homeomorphism of d-manifolds

is a homeomorphism of the underlying 3-manifolds that restricts to a homeomorphism of d-surfaces on the

boundary, and preserves the ribbon graph on the interior.
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Definition C.1.5. The bordism category BordCdec has objects as d-surfaces and morphisms as representa-

tives of homeomorphism classes of d-manifolds. Composition of morphisms is via gluing of d-manifolds along

a homeomorphism of d-surfaces on the boundary and the tensor product is given by disjoint union.

For more details regarding gluing of bordisms, see [Section III.4.1, Tur16].

The TQFT ZCRT evaluates a d-surface Σ by considering a particular ribbon graph in R3 based on the

type T of Σ. This ribbon graph consists of coloured and uncoloured strands and a single coupon. The

evaluation of the ribbon graph gives the vector space arising from the hom-spaces associated to the coupon

by summing over the colourings of the uncoloured strands. More precisely, let Σ be a d-surface of type

T = (g; (X1, ε1), ..., (Xn, εn)) and consider the graph RT consisting of a single coupon with the first n strands

(from left to right) labelled by the Xεi
i attached on one end to the coupon and with the other end free, and

the remaining g strands have both ends attached to the coupon (with no crossings) and are uncoloured. It

will be useful for the definition of ZCRT to consider this graph as being embedded in a 3-manifold MT with

boundary ∂MT = Σ, that, is MT can be viewed as a morphism ∅ → Σ (see Figure 3.6).

The evaluation ZCRT (Σ) proceeds by evaluating the graph RT by summing over the simple objects in I on

the g uncoloured strands. We write this as

ZCRT (Σ) :=
⊕

(V1,...,Vg)∈Ig
HomC(1, X

ε1
1 ⊗ ...⊗Xεn

n ⊗
g⊗
r=1

(Vr ⊗ V ∗r ))

where for each r = 1, ..., g, both Vr and its dual V ∗r appear since the uncoloured strands attach to the coupon

twice with opposite orientations.

Now let us consider how ZCRT evaluates a d-manifold (M,∂+M,∂−M,R). Let (Σstd
T , f : Σstd

T → ∂+M) and

(Σstd
T ′ , f

′ : Σstd
T ′ → ∂−M) be parametrisations of the boundary of M by standard d-surfaces. Let MT and

MT ′ denote the 3-manifolds representing morphisms ∅ → Σstd
T and ∅ → Σstd

T ′ with ribbon graphs RT and

RT ′ as in Figure 3.6. We can produce a closed 3-manifold M̃ with internal ribbon graph R̃ by gluing MT

and MT ′ to M along the given parametrisations f : ∂MT = Σstd
T → ∂+M and f ′ : ∂MT ′ = Σstd

T ′ → ∂−M .

The ribbon graph R̃ is partially uncoloured, namely in the components of the graph corresponding to the

uncoloured portions of RT and RT ′ .

C.1.3 The Reshetikhin-Turaev TQFT on Extended Surfaces

We are now at a stage where the evaluation of the Reshetikhin-Turaev TQFT can be defined for extended

surfaces, which are d-surfaces with extra data, namely a choice of Lagrangian subspace of the first homology

group of the d-surface. This extra data allows any influence from the gluing anomalies to be removed. First,

we recall some definitions from Section 3.4.1.

Definition C.1.6. A extended surface is a pair (Σ,L) where Σ is a closed oriented surface with a finite

family of disjoint, simple oriented arcs labelled by objects of C and signs {+,−} (called marked arcs), and
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L is a Lagrangian space of H1(Σ; R) (considered as a symplectic vector space with the intersection pairing)

where Σ here denotes the underlying manifold of the d-surface Σ.

Definition C.1.7. A homeomorphism of extended surfaces f : (Σ,L)→ (Σ′,L′) is a homeomorphism

of the underlying unmarked surfaces that preserves orientations and arcs (including their labels and signs),

and induces an isomorphism f# : H1(Σ; R)→ H1(Σ′; R) such that f#(L) = L′.

An extended surface (Σ,L) can be viewed as a d-surface by forgeting the Lagrangian space L. In fact, the

terminology ‘extended’ refers to extending the definition of d-surface. The parametrisation of an extended

surface is then defined to be the parametrisation of the underlying d-surface as in the previous section:

Definition C.1.8. A parametrisation of an extended surface (Σ,L) is a pair (Σstd
T , f : Σstd

T → Σ)

where Σstd
T is a standard d-surface and f is a d-surface homeomorphism to the d-surface Σ.

To this point, this subsection has not presented any extra material to that in Section 3.4.1, but that now

changes with the formalisation of the maps φ(f0, f1) : ZCRT (Σstd
T0

) → ZCRT (Σstd
T1

). This requires some theory

that is necessary for an understanding these maps and the role that the Lagrangian plays in the eradication

of anomalies in the general case, as well as for understanding of the evaluation of ZRT,C on bordisms. For

the case where C = vectC much of this theory becomes redundant.

Definition C.1.9. Let (H,ω) be a symplectic vector space. An isotropic subspace ` ⊂ H is a linear

subspace such that ` ⊂ Ann(`) = {h ∈ H|ω(h, `) = 0}.

Recall from Definition 3.2.12 that the Lagrangian subspace L is a maximal isotropic subspace of H.

Definition C.1.10. The Maslov index µ(`1, `2, `3) for isotropic spaces `1, `2, `3 ⊂ H is the signature of

the bilinear form ω̃(·, ·) on (`1 + `2) ∩ `3 defined as follows. For x, y ∈ (`1 + `2) ∩ `3 with x = xi ∈ `i for

i = 1, 2, we define ω̃ by

ω̃(x, y) := ω(x2, y).

We also need the notion of a Lagrangian relation:

Definition C.1.11. A Lagrangian relation between symplectic vector spaces (H1, ω1) and (H2, ω2) is a

Lagrangian subspace of (−H1)⊕H2 where −H1 denotes the symplectic vector space (H1,−ω1).

Denoting the set of all Lagrangian subspaces of a symplectic vector space (H,ω) by Lag(H), for any La-

grangian relation L ⊂ (−H1)⊕H2 we can produce two maps L∗ : Lag(H1)→ Lag(H2) and L∗ : Lag(H2)→
Lag(H1). These maps are defined as follows:

L∗ : Lag(H1)→ Lag(H2)

`1 7→ L∗(`1) = {h2 ∈ H2| there exists a h1 ∈ `1 such that (h1, h2) ∈ L}

L∗ : Lag(H2)→ Lag(H1)

` 7→ L∗(`2) = {h1 ∈ H1| there exists a h2 ∈ `2 such that (h1, h2) ∈ L}
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For a proof that L∗(`1) and L∗(`2) are indeed Lagrangian subspaces of their respective symplectic vector

spaces, see [Section IV.3.4, Tur16]. We now turn to the symplectic vector spaces that we are most concerned

with: the symplectic vector spaces H1(Σ; R) for closed oriented surfaces Σ, along with antisymmetric bilinear

form given by the intersection pairing.

We can produce a Lagrangian subspace of H1(Σ; R) by considering a bordism M such that Σ = ∂M , and the

inclusion map H1(Σ; R)→ H1(M ; R) induced by the inclusion Σ→M . The Lagrangian subspace associated

to Σ is then the kernel of the inclusion map H1(Σ; R) → H1(M ; R). In particular, this provides a method

for assigning a Lagrangian subspace to a d-surface Σ. For example, the Lagrangian subspace assigned to a

standard d-surface Σstd
T is the kernel of the inclusion map H1(Σstd

T ; R)→ H1(MT ; R) where MT is a bordism

with boundary homeomorphic to Σstd
T . Denote this Lagrangian subspace by `(Σstd

T ). We also note that a

parametrisation f : Σstd
T → Σ induces a Lagrangian relation, which we also denote by f .

We can now define the maps φ(f0, f1) for parametrisations (Σstd
T0
, f0) and (Σstd

T1
, f1) of (Σ,L) as follows:

φ(f0, f1) = (
√

dim CΘ−1
C )µ

(
(f0)∗(`(Σ

std
T0

)),`(Σ),(f−1
1 )−1
∗ (`(Σstd

T1
))
)
−µ
(

(f0)∗(`(Σ
std
T0

)),L,(f1)∗(`(Σ
std
T1

))
)
ZCRT (M1) ◦ ZCRT (M0)

whereM0 andM1 are bordisms representing f0 : Σstd
T0
→ Σ and f−1

1 : Σ→ Σstd
T1

respectively. The composition

via gluing is over f−1
1 f0 and the compatibility of the gluing is encoded in the factors of (f0)∗ and (f1)∗.

It can then be shown, using the properties of the Maslov indices [Section IV.3, Tur16], that for any parametri-

sations f0, f1, f2 of Σ that the following hold:

• φ(f0, f0) = id;

• φ(f1, f2) ◦ φ(f0, f1) = φ(f0, f2);

• φ(f0, f1) and φ(f1, f0) are inverse to each other.

Thus, the family
{
{ZCRT (Σstd

T )}(Σstd
T ,f :Σstd

T →Σ), {φ(f0, f1)}f0,f1

}
is an inverse system. We define ZRT,C((Σ,L))

as the limit over this system:

ZRT,C(Σ) := lim
←
ZCRT (Σstd

T ).

As with every TQFT seen so far in this thesis, the result of taking the limit is isomorphic to any one of the

component vector spaces of the inverse system, so we typically consider

f# : ZRT,C((Σ,L))
∼=−→ ZCRT (Σstd

T ) (C.2)

for some standard d-surface Σstd
T and parametrisation f : Σstd

T → Σ.

Recalling that in our specific case of interest, the Reshetikhin-Turaev TQFT defined over vectC, we have

dim(vectC) = Θvectc = 1 so we are considering the inverse system over maps

φ(f0, f1) = ZvectC

RT (M1) ◦ ZvectC

RT (M0).
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C.1.4 The Reshetikhin-Turaev TQFT on Weighted Extended Manifolds

Let us write down the definition of a weighted extended manifold which is essentially the same as that from

Section 3.4.1:

Definition C.1.12. A weighted extended manifold (M,m) consists of a compact, oriented 3-manifold

M with boundary ∂M an extended surface and a C-coloured ribbon graph in the interior, and m ∈ Z satisfies

the condition that if M = ∅ then m = 0. A homeomorphism of weighted extended manifolds (M,m)

and (M ′,m′) such that m = m′, is a homeomorphism of the underlying 3-manifolds that preserves the ribbon

graph, and restricts to a homeomorphism of extended surfaces on the boundary.

The evaluation of Reshetikhin-Turaev TQFT on a weighted extended manifold depends heavily on the TQFT

ZCRT defined previously, as well as the isomorphisms from Equation (C.2). That is, ZRT,C is evaluated on

a weighted extended bordism (M,m) by considering a scalar ζC(M,m) depending on dim(C), ΘC and m

multiplying the following composition:

ZRT,C(∂−M)
(f0)−1

#−−−−→ ZCRT (Σstd
T0

)
κC(M,m)ZCRT (M ′)−−−−−−−−−−−−→ ZCRT (Σstd

T1
)

(f1)−1
#−−−−→ZRT,C(∂+M)

where κC(M,m) is a scalar depending on dim(C),ΘC and Maslov indices related to the extended surfaces

∂−(M) and ∂+(M), Σstd
T0

and Σstd
T1

are standard d-surfaces parametrising ∂−M and ∂+M , and M ′ is a

d-manifold corresponding to M between the d-surfaces Σstd
T0

and Σstd
T1

.

Essentially all that is required to make this rigorous, is to specify what the scalars ζC and κC are (both of

which are trivial for C = vectC as per the previous subsections). The first, ζC(M,m), is very straightforward:

ζC(M,m) = (
√

dim(C)Θ−1
C )−m

For κC(m,m), we need to do a little more work. Let `(∂+M) and `(∂−M) denote the chosen Lagrangian

subspaces, of H1(∂+M ; R) and H1(∂−M ; R) respectively, defining the extended surfaces ∂+M and ∂−M . Let

f0 : Σstd
T0
→ ∂+M and f1 : Σstd

T1
→ ∂−M be parametrisations as above. Recalling Definition C.1.4, we can

then consider M as a d-manifold M ′. We can also consider the Lagrangian relation LM ⊂ (−H1(∂−M ; R))⊕
H1(∂+M ; R) = H1(∂M ; R) induced by the inclusion H1(∂M ; R) → H1(M ; R) (see [Section IV.4.2, Tur16]).

We can now define κC(M,m):

κC(M,m) := (
√

dim(C)Θ−1
C )µ

(
(LM )∗((f0)∗(`(Σ

std
T0

))),`(∂−M),(f1)∗(`(Σ
std
T1

))
)
−µ
(

(LM )∗((f1)∗(`(Σ
std
T1

))),`(∂+M),(f0)∗(`(Σ
std
T0

))
)

So, putting it all together, we define ZRT,C evaluated on (M,m) to be

ZRT,C(M,m) := ζC(M,m)
(
(f1)−1

# ◦ (κC(M,n)ZCRT (M ′)) ◦ (f0)#

)
For the case C = vectC, this simplifies to

ZRT,vectC(M,m) = (f1)−1
# ◦ Z

C
RT (M ′) ◦ (f0)#
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which elucidates the fact that ZvectC

RT represents the key computational component for evaluating ZRT,vectC .

For any modular tensor category C, we have the following result:

Theorem C.1.1. [Theroem 9.2.1, Tur16] The TQFT ZRT,C is anomaly-free and non-degenerate.

C.2 The Defect TQFT

In order to properly define the defect TQFT, we need to define how it evaluates D-decorated surfaces (recall

Definition 3.2.10) which then allows us to define the defect data D0 associated to 0-strata in the interior of

bordisms, a necessary step in being able to define the evaluation of the TQFT on arbirtary D-defect bordisms.

The evaluation of surfaces proceeds in a similar fashion the the evaluation of surfaces in the Turaev-Viro

graph TQFT that is, by evaluating a cylinder over the surface and considering its image. Throughout this

section let D be a set of defect data arising from a modular tensor category C (recall Definition 3.4.2). The

material of the following subsection is drawn from [Section 5, CRS17].

C.2.1 The Defect TQFT on Decorated Surfaces

Let Σdf be an object in Borddf
3 (D). In particular this means that any 2-, 1-, and 0-strata of Σdf are labelled

from elements from D3, D2 and D1 respectively, subject to the compatibility requirements of the maps s, t,

and j. The cylinder over Σdf , denoted CΣdf
, is defined to be Σdf × [0, 1] with ∂CΣdf

= Σdf t (−Σdf) where

−Σdf is the decorated surface Σdf with opposite orientation but same label for all strata. The stratification of

CΣdf
arises from Σdf as follows: each 2-, 1- and 0-strata of Σdf is crossed with the interval [0, 1] to produce 3-,

2- and 1-strata respectively. The orientations of the induced 3-strata are that of the 3-manifold underlying

CΣdf
, the orientations of the induced 2-strata are such that they are compatible with the orientations of the

corresponding 1-strata in Σdf and −Σdf , and the orientations of the induced 1-strata are compatible with

the orientations of the corresponding 0-strata in Σdf .

Importantly, this process does not produce any 0-strata in the interior of CΣdf
so the defect data already

supplied is sufficient for the evaluation of CΣdf
. The 3-, 2- and 1-strata of CΣdf

are labelled with the same

elements of D3, D2 and D1 as the corresponding 2-, 1- and 0-strata of Σdf . Since D3 is a singleton set, it is

essentially ignored, so we consider CΣdf
as a defect bordism with only line and surface defects.

This evaluation of CΣdf
essentially proceeds by transforming CΣdf

, in a systematic way, into a weighted

extended 3-manifold with C-coloured ribbon in the interior, then evaluating it via the pure Reshetikhin-

Turaev TQFT. This procedure is made more formal below and follows closely [Construction 5.5 CRS17] but

restricted to the cases relevant for this thesis.

Recalling that D2 is the set of ∆-separable Frobenius algebras in C (denoted (Ai,∇i,∆i) for succinctness)

and D1 is the union of sets of tuples ((A1, ε1), ..., (An, εn),M) where the Ai are from D2, the εi are signs,
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and M is a cyclic multi-module over Aε11 ⊗ ...⊗Aεnn , the first step in evaluating CΣdf
is by associating ribbons

labelled with M to 1-strata and ribbons labelled with the Ai to 2-strata.

Remark C.2.1. Due to the cyclicity of M , a choice needs to be made regarding the orientation of the

framing of the ribbon M with regard to the Ai, a choice that may introduce a twist to the ribbon M . Since

we will ultimately be taking C = vectC which has a trivial twist, we suppress this choice in the present

discussion. See [Section 5 CRS17] for details.

The evaluation of CΣdf
proceeds as follows:

1. Choose a triangulation ti of each 2-stratum of CΣdf
assigning a total order to the vertices of the

triangulation, and assigning orientations to all edges of ti consistent with the total ordering;

2. Consider the Poincaré dual of ti, again with each edge oriented such that the orientation of the edge

of ti followed by the orientation of the corresponding edge in the dual, give the orientation of the

2-stratum;

3. Decorate each edge of the Poincaré dual with the Frobenius algebra Ai associated to the 2-stratum,

and decorate each vertex of the dual with either ∇i or ∆i depending on the orientations of the adjacent

edges (i.e. a vertex with two incoming edges and one outgoing edge is labelled by the multiplication

∇i, and vice versa);

4. Thicken each line labelled by M and by Ai into a ribbon, where the framing of the ribbons Ai is that of

the 2-stratum to which it is associated, and the framing of the ribbon M is consistent with the choice

discussed in Remark C.2.1. Each vertex of the dual becomes a coupon labelled with the corresponding

maps (∇i or ∆i);

5. The vertices of the Poincaré dual of ti that lie on the line that becomes an M -ribbon correspond to

coupons labelled by the action of Aεii on the multi-module M , denotes βi : Aεii ×M → M (where

A+
i = Ai and A−i = Aop

i );

6. Considering the underlying surface of Σdf decorated with the arcs corresponding to the intersection of

the Ai and M ribbons and Σdf ⊂ ∂CΣdf
, and coloured with Ai and M , and similarly for −Σdf ⊂ ∂CΣdf

,

we have two extended surfaces Σ̃ and Σ̃′ and a weighted extended bordism between them, C̃Σdf
(the

cylinder CΣdf
considered with internal ribbon graph as above only and no stratification). The notation

Σ̃′ has been used rather than −Σ̃ since, depending on the triangulations ti of 2-strata, Σ̃′ may not be

equal to −Σ̃;

7. Applying ZRT,C to this bordism produces a vector space homomorphism

ZRT,C(C̃Σdf
) : ZRT,C(Σ̃)→ ZRT,C(Σ̃′)

The above construction relies upon the choices of triangulations made of the 2-strata, and in particular, the

effects of these triangulations on the boundary surface, which produce the extended surface Σ̃ and Σ̃′. It
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can be shown that there is in fact no dependence on the triangulation away from the boundary [Lemma

5.6 CRS17]. The effects of the triangulation on the boundary are removed by an inverse limit, reminiscent

of that used in defing the Turaev-Viro graph TQFT. The evaluation of Zdf
RT,C on Σdf is then defined to

be this inverse limit. Again, with stark similarities to the Turaev-Viro graph TQFT, we can in practice

compute Zdf
RT,C(Σdf) by computing the image of ZRT,C(C̃Σdf

) in the case where Σ̃′ = −Σ̃, that is, when the

triangulation ti for each 2-stratum induces equivalent triangulations of the corresponding boundary 1-strata

in Σdf and −Σdf (see the discussion preceding Theorem 5.8 in [CRS17]). Since any valid triangulation of

2-strata that satisfy this reqiurement will do, we will in practice take the simplest triangulation possible.

Having defined the evaluation of the defect TQFT on surface decorated with labelled 1- and 0-strata, we

can now produce the data D0 required for labelling 0-strata in the interior of defect bordisms, and also

demonstrate the equivalences between extended surfaces in Bord3
wt and D-decorated surfaces in Borddf

3 (D).

We turn first to the D0 defect data.

C.2.2 D0-defect Data and Point Insertions

The approach taken in this subsection regarding defining the set D0 of valid labels for 0-strata in interiors of

bordism of Borddf
3 (D), is somewhat backward. We commence by presenting a result that states that every

defect TQFT factors through D0-complete defect TQFT, then assume that the defect Reshetikhin-Turaev

TQFT is D0-complete and show how to compute the set D0.

Consider the following proposition, which is written for defect TQFTs of arbitrary dimension n ≥ 1:

Proposition C.2.1. [Proposition 2.17, CRS19] For a given defect TQFT Z : Borddf
n (D) → Vectk, there

exist defect data D•, a map of defect data h : D → D• and a defect TQFT Z• : Borddf
n (D•) → Vectk such

that Z• is D0-complete and

Z = Z• ◦ h∗

where h∗ : Borddf
n (D)→ Borddf

n (D•) is a functor induced by the map h.

For our present purposes, we ignore any consideration of the map of defect data and the functor it induces

(see [CRS19] for details), and define what it means for a defect TQFT to be D0-complete. We restrict to

the case of n = 3 as is relevant to this thesis.

Definition C.2.2. A defect TQFT Z : Borddf
3 (D)→ Vectk is D0-complete if

D0 = ∪Σ∈ΛVΣ

where Λ ⊂ Borddf
3 (D) is the set of all objects of Borddf

3 (D) that have underlying surface as a sphere, and

VΣ is the subspace of invariant states of Σ.
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Next we need to understand what is meant by invariant states of Σ, which is a subspace of Z(Σ), and will be

defined rather informally. Consider the cone over Σ, C(Σ) (not to be confused with the notation of a cylinder

over Σ, which has Σ as a subscript) viewed as a decorated sratified manifold, where the central 0-stratum

is unlabelled, but all other labels extend that of Σ = ∂C(Σ). We then consider the bordisms f : Σ → Σ in

Borddf
3 (D) defined as

Hf : C(Σ) \ f̄( ˚C(Σ))

where ˚C(Σ) denotes the interior of C(Σ) and f̄ is an embedding of C(Σ) into itself (see [Section 2.4, CRS19]

for details). Then the invariant states of Σ is

VΣ = {v ∈ Z(Σ)|Z(f)(v) = v for all embeddings f}

In our particular case of interest, where Z = ZRT,vectC , VΣ is precisely equal to ZRT,vectC(Σ) (see remark 2.1

in [CRS18]).

In this thesis, we only come across three specific scenarios of defect data for 0-strata, namely those specified

in the orbifold data A associated to a given spherical fusion category (see Section 4.3). These 0-strata arise

as either the intersection point of four 1-strata (labelled appropriately by the orbifold data), or as a 0-strata

lying in the interior of either a 3-stratum or 2-stratum. The latter cases are called point insertions and are

what we turn to next.

The point insertions associated to 3- and 2-strata are labelled by φ and ψ respectively. Since a small enough

spherical neighbourhood around a 0-stratum in a given 3-stratum intersects no 2- or 1-strata, the labels

φ can be any element of Zdf
RT,vectC

(S2) where S2 is the undecorated sphere. This means that φ ∈ C (in

fact for φ to be a valid component of an orbifold datum, φ is required to be invertible) since Zdf
RT,vectC

(S1)

is evaluated as the image of the identity map ZRT,vectC(S1) → ZRT,vectC(S1). Similarly, a small enough

spherical neighbourhood around a 0-stratum in the interior of a 2-stratum only intersects the 2-stratum

in which the point lies, so ψ is an element of the Reshetikhin-Turaev defect TQFT evaluated on a sphere

with a single 1-stratum and no other strata (ψ is also required to be invertible). This 1-stratum is labelled

consistently with the labelling of the 2-stratum on which the point insertion lies.

As seen in Section 4.3, the specific choices of φ and ψ for the orbifold data associated to a spherical fusion

category C, are φ = 1
dim(C) (we know that dim(C) is invertible in C by definition of spherical fusion category

over C) and ψ is a choice of square root of ths diagonal matrix with entries as dimensions of the simple objects

of C. For C = Z2- vectC, we get that φ = 1
2 and ψ is simply the 2× 2 identity matrix (and consequently we

drop ψ from further discussion of the Z2- vectC orbifolding of ZRT,vectC).

The allowed labels for 0-strata residing at the intersection of four 1-strata labelled by A1 are computed by

applying the Reshetikhin-Turaev defect TQFT to the spheres shown in Figure C.1

This evaluates to HomvectC(A1 ⊗A2
A1,A1 ⊗A2

A1) (see [Lemma 3.2, CRS18]). Since A1 is defined via the

direct sum of hom-spaces of the spherical fusion category C, which are C-vector spaces as per the definition
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(a) The defect sphere associated to α. (b) The defect sphere associated to α

Figure C.1

of spherical fusion category, it is important to note that A1 can be viewed as a morphism in vectC, and

hence can be used to label coupons in a ribbon graph (as we shall see in the next subsection).

C.2.3 The Defect TQFT on D-Defect Bordisms

Just as in the case for evaluating a defect bordism with just line and surface defects, the Reshetikhin-Turaev

defect TQFT over vectC evaluates a general bordism by producing a vectc-coloured ribbon graph, which is

then evaluated via F as per Appendix A. Since a general bordism may contain 0-strata in the bulk, we need to

make use of the previous subsection to understand how exactly producing this ribbon graph proceeds. This

is the purpose of this subsection, and largely manifests itself as a summary of the preceding two subsections.

Let M be a arbitrary bordism in Borddf
3 (D).

As was seen in Appendix C.2.1, the first step is to triangulate every 2-stratum of M , assign a total ordering

of vertices to determine an orientation for each edge of this triangulation and then consider the Poincaré

dual of this triangulation, where the edges of the dual acquire orientations in a systematic way from the

orientations of the triangulation (same as earlier). Importantly, the edges of the Poincaré dual meet the

1-strata that bound the 2-strata away from any 0-strata. If the 2-stratum of M being triangulated contains

0-strata in its interior, then the Poincaré dual must be such that for each 0-stratum, there is an edge with

this 0-stratum residing in its interior.

The next step is to turn the Poincaré dual of the 2-strata and the 1-strata of M into ribbons same as in

Appendix C.2.1, except now there is an extra coupon for each 0-stratum in the interior of the 2-strata which

is labelled by an appropriate morphism HomvectC(A,A) where A is the label of the 2-stratum of M (and

hence the label of the ribbons arising from the Poincaré dual).
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Appendix D

Supplementary Material for

Section 5.2.2

The proof of Proposition 5.2.2 in Section 5.2.2 requires keeping track of the 2-strata of a dual of a triangulation

τ , their orientations, and the 1-strata to which they are incident. Figure D.1, which is spread over multiple

pages, catalogues these 2-strata and the required information for each stratum. This figure is meant to be

consulted alongside Figure 5.14 since the 2-strata as shown here have the same diagrammatic orientation

as in that figure. The 2-strata were catalogued from those with the greatest number of edges visible in

Figure 5.14 to least, and starting with those incident to 1-strata corresponding to u1, following by those

incident to u2 and so on. The 2-strata shown below are not scaled consistently, but rather relative sizes are

adjusted to better fit the diagram.

Figure D.1: A catalogue of all the 2-strata of the dual stratification related to the plquette 5 (see ??).

Catalogue continues below.
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Figure D.1: The catalogue continued.
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Figure D.1: The catalogue continued.
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Figure D.1: The catalogue continued.
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Figure D.1: The catalogue concluded.
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