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Notation

We take the following conventions throughout:

• N is the set of non-negative integers.

• Z2 is the integers modulo 2.

• δij denotes the Kronecker delta: δij = 1 if i = j and δij = 0 otherwise.

• For k a commutative ring, k[x], k[y], k[z] etc. denote polynomial rings over k in
some finite number of variables, possibly greater than one.

• If f = (f1, · · · , fn) is a sequence of polynomials and u ∈ Nn then fu = fu11 · · · funn .
If we wish to specify the variable we may also write fu(x).

• If maps f and g are homotopic then we write f ' g, or h : f ' g to specify a
homotopy h.

• If a and b are elements of some graded ring (typically homogeneous morphisms
between graded objects) then |a| denotes the degree of a and [a, b] = ab−(−1)|a||b|ba
is the graded commutator.

• If u ∈ Nn then |u| =
∑n

i=1 ui.

• Tensor products of morphisms between graded objects are graded tensor products.

• When we do not wish to distinguish between chain complexes and cochain complexes
we refer to any Z-graded object with a degree ±1 map which squares to zero as a
complex.

• A complex is usually denoted as a pair (C, dC) where C is the underlying graded
object and dC is the differential.

• If A is an object of any category then 1A denotes its identity morphism. We may
also write 1 = 1A when this is not confusing.

• If C is a category Cω denotes its idempotent completion as defined in Definition
B.2.1.
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1 Introduction

The bicategory of Landau-Ginzburg models over a commutative ring k is a bicategory
whose objects are polynomials with coefficients in k with a certain type of singularity
and whose 1-morphisms are matrix factorisations. When k = C the objects of this
bicategory are exactly the polynomials with isolated critical points. The applications of
this bicategory, which we denote LGk, are fairly broad. In addition to algebraic geometry
and the study of singularities, this bicategory is also used in mathematical physics in
the study of certain topological field theories [CM16] and in the study of knot invariants
[CM14].

An important concept from the theory of LGk is the cut operation of [Mur18], which
provides a method for computing compositions of 1-morphisms in LGk. It works by
relating the composition of two 1-morphisms, which in a certain sense is an “infinite
dimensional” object, to a finite dimensional representative. A key component of the cut
operation is an explicit homotopy equivalence between a Koszul complex and its homology.
Understanding precisely how the composition and its finite dimensional representative are
related — and hence understanding how to compute the composition — requires knowing
how to compute the maps in this homotopy equivalence.

Goals of this thesis

• To give a self-contained and accessible introduction to the bicategory of Landau-
Ginzburg models and the cut operation. At the time of writing, most of the literature
on LGk is technical and inaccessible to non-experts. We give a detailed exposition in
Section 5, including some difficult technical points which have not appeared before
in print (for example, the proof of Lemma 5.5.13).

• To isolate and give a self-contained account of some key techniques that have been
developed in the theory of LGk. This includes the construction of explicit homotopy
equivalences between Koszul complexes and their homology, which is done in Section
3.

• To go beyond the existing theory by identifying a class of important examples in
which a key technique can be developed more simply. In the current theory of
[Mur18], constructing an explicit homotopy equivalence between the Koszul complex
and its homology requires passing to a completion of the polynomial ring. In Section
3 we give conditions under which this construction can be done in the polynomial
ring itself, rather than its completion. This gives a more elegant approach to the
central idea in the construction of the cut operation — a system of generalised
derivatives with respect to a quasi-regular sequence — based on polynomial division.

Summary of contributions by section

In Section 3 we show how to construct an explicit homotopy equivalence between a Koszul
complex and its homology, paying particular attention to when the maps involved can
actually be computed. This technique is used in [DM13; CM16; Mur18] in the context
of LGk but it need not be specific to LGk. In Section 3.2 we construct this homotopy
equivalence in full generality which requires passing to a completion of the ring. This
summarises results in [DM13; CM16; Mur18] in an isolated context and also provides
additional details which are not present in the literature. The homotopy equivalence
constructed in Section 3.2 requires knowing certain series expansions of elements in the
completion and in Section 3.3 we consider how to compute these series expansions in the
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case of a polynomial ring. This expands upon ideas mentioned in [Mur19, Remark A.9].
The considerations of Section 3.3 lead to conditions under which it is not necessary to
pass to the completion in order to construct the homotopy equivalence of Section 3.2. The
situation where it is not necessary to pass to the completion exactly coincides with the
situation where the homotopy equivalence of Section 3.2 can be computed at all elements.

To be more specific about the original contribution in Section 3, let k be a field and
consider the polynomial ring k[x] = k[x1, . . . , xm]. Let t = (t1, . . . , tn) be a sequence of
elements in k[x]. The homotopy equivalence of Section 3.2 involving the Koszul complex of
t relies on the existence of maps ∂t1 , . . . , ∂tn where ∂ti acts like differentiating with respect
to ti. In [DM13; CM16; Mur18] these maps are defined using certain series expansions
of polynomials in the I-adic topology on k[x], where I is the ideal generated by the
elements of t. The map ∂ti works on f ∈ k[x] by modifying every term in this series
expansion of f and so in general ∂ti(f) is only an element of the I-adic completion of k[x]
rather than k[x] itself. In Section 3.3 we consider how to compute the terms in this series
expansion of f via polynomial division. This leads to conditions under which ∂ti(f) is an
element of the polynomial ring k[x] and hence gives conditions where it is not necessary
to pass to the completion to construct the homotopy equivalence in Section 3.2. These
conditions encompass many important and natural examples and provide a setting where
it is actually possible to compute things exactly, rather than as I-adic approximations.
This is covered in Section 3.4. We refine this approach further in Section 3.5 by giving an
alternative definition of the maps ∂t1 , . . . , ∂tn under the conditions of Section 3.4. Under
this definition we pass to the polynomial ring k[x, y] = k[x1, . . . , xm, y1, . . . , ym] and, for
f ∈ k[x], consider the polynomial f(x)− f(y) in k[x, y]. We compute ∂ti(f) by first using
polynomial division to obtain an expression of the form

f(x)− f(y) = r(x, y) +
n∑
i=1

qi(x, y)(ti(x)− ti(y))

and then dividing qi(x, y) to obtain an expression of the form

qi(x, y) = ri(x, y) +
n∑
j=1

pij(x, y)(tj(x)− tj(y)) .

We then show that ∂ti(f) = ri(x, x). Practically speaking this perspective provides a much
more efficient algorithm for computing the maps ∂t1 , . . . , ∂tn . Conceptually, it emphasises
the relationship between polynomial division and the maps ∂t1 , . . . , ∂tn , and hence the
role of polynomial division in computing the homotopy equivalence of Section 3.2. It also
leads to a result which can be interpreted as a version of Taylor’s Theorem for the maps
∂t1 , . . . , ∂tn .

In Section 4 we discuss matrix factorisations, which are the 1-morphisms in LGk. This
section provides important background to Section 5. In particular, in Section 4.3 we show
how perturbation techniques from homological algebra can be extended to the setting of
matrix factorisations. The extension of these techniques is used frequently in literature
on LGk however the proofs which establish this extension are only sketched.

In Section 5 we discuss the bicategory of Landau-Ginzburg models. This bicategory
is defined in Section 5.1 and is proved to form a bicategory in Sections 5.2 and 5.3. This
follows the approach of [DM13; CM16; Mur18] but provides additional exposition. Finally
in Sections 5.4, 5.5 and 5.6 we discuss the cut operation which was first defined in [Mur18].
Sections 5.4 and 5.5 include many additional details not found in [Mur18] in order to make
the cut operation more accessible for non-experts. In Section 5.6 we give some examples
of cuts.
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In Appendix B we discuss idempotent completion of categories, paying particular
attention to the case of preadditive categories. The results in Section B.2 are “well-
known” but difficult to find in the literature and play a mundane but important role in
the definition of LGk. Appendix C explains a way of interpreting matrix factorisations
geometrically which is not found in the literature. This is somewhat tangential to the
main focus of this thesis but can provide geometric intuition when working with matrix
factorisations.

Thematic approach

Thematically, the approach of this thesis demonstrates an interplay between algebraic,
differential and topological techniques. Polynomial singularities are algebro-geometric in
nature and as such algebraic constructions, such as Koszul complexes and matrix factor-
isations, are used to study them. Polynomial division is a fundamental computational
tool in algebraic geometry and it plays a central role in Section 3 by giving us a method
of computing certain maps which are generalisations of partial differentiation. Moreover,
these computational considerations lead to conditions under which these generalised par-
tial derivative maps exist on the polynomial ring rather than on its completion. The
partial derivative maps are used to define a connection on the Koszul complex, which is
analogous to the concept from differential geometry of the same name. This connection is
used to define the homotopy equivalence between the Koszul complex and its homology.
While drawing a direct link is difficult, this construction echoes ideas used in relation to
the de Rham complex from differential topology.

The homotopy equivalence we construct in Section 3 is a special type of homotopy
equivalence called a strong deformation retract. This concept has its origins in topology
and passes to the world of homological algebra via various homology theories including de
Rham cohomology. Strong deformation retracts are useful because they are susceptible to
the homological perturbation techniques described in Section 2.1. In Section 4.3 we extend
these perturbation techniques to matrix factorisations. Complexes can be regarded as a
kind of degenerate matrix factorisation and, using perturbation, we can convert a strong
deformation retract of complexes into a strong deformation retract of non-trivial matrix
factorisations. Via a different method, a Koszul complex can also be used to construct
a certain type of matrix factorisation which we call a Koszul matrix factorisation. Using
perturbation, we can translate a strong deformation retract involving a Koszul complex
into a strong deformation retract involving the corresponding Koszul matrix factorisation
under some circumstances.

The category of matrix factorisations relevant to singularities is the homotopy cat-
egory and so homotopy equivalences of matrix factorisations tell us something about the
singularities of the polynomial being factorised. The ideas described above are used in
Section 5 when discussing the bicategory of Landau-Ginzburg models. In the case of the
cut operation, formulae for these homotopy equivalences are given explicitly by modifying
the strong deformation retract of Section 3. Hence, the homotopy equivalence associated
to the cut operation, which is constructed using our algebraic analogue of a connection,
is ultimately computed using polynomial division.
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2 Background

In this section we introduce and contextualise some of the concepts central to this thesis.
In Section 2.1 we discuss deformation retracts and perturbation techniques, beginning
with the concept of a deformation retract as it arises in topology. In Section 2.2 we define
Koszul complexes and establish our conventions for working with them. In Section 2.3
we discuss hypersurface singularities, matrix factorisations and the bicategory of Landau-
Ginzburg models at a high level. Finally in Section 2.4 we give a straightforward existence
result for the type of homotopy equivalence we explicitly construct in Section 3.

2.1 Deformation retracts

The notion of a deformation retract first arose in topology. Let X be a topological space
and A a subspace of X.

Definition 2.1.1 ([Bre10, Chapter I Definition 14.8]). We say A is a deformation retract
of X if there exists a homotopy H : X × [0, 1]→ X which satisfies:

(1) H(x, 0) = x for all x ∈ X.

(2) H(x, 1) ∈ A for all x ∈ X.

(3) H(a, 1) = a for all a ∈ A.

We call A a strong deformation retract if in addition H(a, t) = a for all t ∈ [0, 1] and
a ∈ A.

Suppose A is a deformation retract with homotopy H. Let i : A → X denote the
inclusion map and define r : X → A as r(x) = H(x, 1). The maps H, i and r are such
that ri = 1A and H : ir ' 1X , and so the maps i and r give a homotopy equivalence
between A and X.

Example 2.1.2. Let X = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1}, which is the solid cylinder in R3

centred on the z-axis. Let A be the z-axis. Taking H(x, y, z, t) = ((1 − t)x, (1 − t)y, z)
shows that A is a strong deformation retract of X.

By considering the homology of a topological space we can extend the notion of de-
formation retracts to the setting of homological algebra. Many homology theories, such
as de Rham cohomology and singular homology, will turn a (strong) deformation retract
of topological spaces into a (strong) deformation retract of chain complexes in the sense
of the following definition. Let A be an abelian category.

Definition 2.1.3. A deformation retract of complexes (L, dL) and (M,dM) of objects in
A consists of morphisms

(L, dL) (M,dM), h
i

p

where pi = 1 and h : ip ' 1. This deformation retract is called strong if in addition
h2 = 0, hi = 0 and ph = 0.

Strong deformation retracts are a special type of homotopy equivalence between chain
complexes. They have the property that they can be modified using a technique called
perturbation. Let

(L, dL) (M,dM), h
i

p

(2.1)
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be a deformation retract of chain complexes. A perturbation of (2.1) is a degree −1 map
δ : M →M such that (dM + δ)2 = 0. Given such a perturbation δ we define the perturbed
data as the morphisms

(L, d′L) (M,dM + δ), h′
i′

p′

(2.2)

where a = (1 − δh)−1δ, d′L = dL + pai, i′ = i + hai, p′ = p + pah and h′ = h + hah. We
call the perturbation δ small if (1− δh) is invertible.

Theorem 2.1.4 (Perturbation Lemma). If (2.1) is a strong deformation retract and δ is
a small perturbation then the perturbed data (2.2) is also a strong deformation retract.

The Perturbation Lemma is a powerful result with broad applications which are sum-
marised in [Cra04]. The Perturbation Lemma as stated above is proved in [Cra04, Section
2.4]. In Theorem 4.3.2 we prove a version of this result for matrix factorisations which
can easily be adapted into a proof of Theorem 2.1.4.1 It is worth pointing out that the
Perturbation Lemma for complexes holds somewhat more generally. We say that the
morphisms

(L, dL) (M,dM), h
i

p

are a homotopy equivalence datum if i and p are quasi-isomorphisms and h : ip ' 1. A
homotopy equivalence datum is not necessarily a homotopy equivalence, but rather is
a type of isomorphism in the derived category of A. Small perturbations of homotopy
equivalence data are defined as for deformation retracts, and a small perturbation of a
homotopy equivalence datum is again a homotopy equivalence datum.

2.2 Koszul complexes

The Koszul complex is an important tool in homological algebra, commutative algebra
and algebraic geometry which is particularly useful for doing calculations. For example,
see [Wei94, Chapter 4.5] and [Eis94, Chapter 17]. The Koszul complex plays a significant
role in this thesis. In Section 3 we construct a strong deformation retract between a
Koszul complex and its homology. This is then used to compute compositions in the
bicategory of Landau-Ginzburg models in Section 5. In Section 4.2 we also show how
Koszul complexes can be used to construct a type of matrix factorisation called the
Koszul matrix factorisation. This construction is used in Section 5 to define the unit
1-morphisms in the bicategory of Landau-Ginzburg models.

We define the Koszul complex as a chain complex following the conventions of [Wei94,
Chapter 4.5]. Let R be a commutative ring and ti ∈ R. Let K(ti) be the chain complex

0 R R 0
1 0

ti

where the differential is multiplication by ti and the degree of each object is as indicated
on the diagram. Let Kp(ti) denote the degree p component of K(ti). We denote the
canonical generator of K1(ti) (the unit of the ring R) by θi. We now consider a sequence
t = (t1, . . . , tn) of elements of R.

1In the context of the proof of Theorem 4.3.2, setting f = g = 0 will yield exactly the calculations
required to prove Theorem 2.1.4.
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Definition 2.2.1. The Koszul complex of t is the tensor product

K(t) = K(t1)⊗R · · · ⊗R K(tn)

of chain complexes. We typically denote the differential of the Koszul complex by dK .

The underlying graded module of the Koszul complex (K(t), dK) is the exterior algebra∧
(R⊕n). This can be seen by induction on n. The base case is clear and in the inductive

case note that the degree p component of K(t) is

Kp(t) =

(
p−1∧

(R⊕(n−1))⊗R K1(tn)

)
⊕

(
p∧

(R⊕(n−1))⊗R K0(tn)

)

An isomorphism Kp(t)→
∧p(R⊕n) is induced by mapping

(θi1∧· · ·∧θip−1)⊗θn 7→ θi1∧· · ·∧θip−1∧θn and (θi1∧· · ·∧θip)⊗r 7→ r(θi1∧· · ·∧θip)

where i1 < · · · < ip and r ∈ K0(tn) = R. In this presentation of K(t) the differential
works on the basis of

∧
(R⊕n) as

θi1 ∧ · · · ∧ θip 7−→
p∑
j=1

(−1)j+1tijθi1 ∧ · · · ∧ θ̂ij ∧ · · · ∧ θip

where i1 < · · · < ip and “θ̂ij” indicates that θij is omitted from the wedge product. In
future sections it will become cumbersome to use “∧” to denote products in K(t) so from
now on we omit the wedges and denote the wedge product by juxtaposition. That is we
set uv = u ∧ v for u, v ∈

∧
(R⊕n).

Given v ∈ R⊕n we define a degree +1 map v∧ (−) :
∧

(R⊕n)→
∧

(R⊕n) which is given
by taking the wedge product with v. Typically we will consider this when v = θi, and in
this case we write θi = θi ∧ (−). We can also define a degree −1 map associated to v as
follows.

Definition 2.2.2. Let v∗ ∈ Hom(R⊕n, R) denote the dual vector associated to v ∈ R⊕n.
We define contraction by v∗ as the degree −1 map v∗y(−) :

∧
(R⊕n)→

∧
(R⊕n) given on

the basis by

θi1 · · · θip 7−→
p∑
j=1

(−1)j+1v∗(θij)θi1 · · · θ̂ij · · · θip

and extended linearly. When v = θi we denote θ∗i = θ∗i y(−).

Note that in the above definition we have switched to writing the wedge product using
juxtaposition. The maps θ1, . . . , θn and θ∗1, . . . , θ

∗
n on the exterior algebra satisfy certain

relations called the canonical anticommutation relations, which we prove in Lemma 4.2.2.
Using the contraction operator we can write dK =

∑n
i=1 tiθ

∗
i .

Another structure related to the exterior algebra is the de Rham complex of a manifold
(see [Bre10, Chapter V.2]). Let M be a differentiable manifold, say a smooth R-manifold
of dimension n, and let Ωp be the set of differential p-forms on M . The de Rham complex
consists of the graded module

⊕n
p=0 Ωp with differential given in a coordinate chart (U,ϕ)

by

d(fω) =
n∑
i=1

∂f

∂xi
dxiω (2.3)
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where ϕ = (x1, . . . , xn) are the coordinate functions, f : M → R is a smooth function
and ω = dxi1 · · · dxip for some i1 < · · · < ip. At a point m ∈ M the p-form fω is an
element of the exterior algebra

∧p(TmM)∗, where (TmM)∗ is the dual of the tangent space
of M at point m. The product dxiω in (2.3) is reminiscent of wedging θi1 · · · θip by θi
in the exterior algebra

∧
(R⊕n). Although making this connection precise is somewhat

challenging, the approach of Section 3 should be considered in this context; when the
Koszul complex and “de Rham-like” structures exist on the exterior algebra they interact
in useful ways. Given that the goal of Section 3 is to produce a strong deformation retract
involving the Koszul complex, the analogy to the de Rham complex is more interesting
considering that a strong deformation retract of manifolds induces a strong deformation
retract of the correspond de Rham complexes.

2.3 Hypersurface singularities and matrix factorisations

Singularities are a topic of considerable interest in the field of algebraic geometry and
their study has many applications to other areas of mathematics and physics. Let k be
a commutative ring and consider a polynomial f ∈ k[x] = k[x1, · · · , xn]. One way of
studying the singularities of f is to consider the matrix factorisations of f . These are
defined in Section 4, but concretely one can think of a matrix factorisation of f as a pair
of m ×m square matrices (P,Q) with entries in k[x] such that PQ = QP = fI, where
I denotes the identity matrix. Fixing a basis for k[x]⊕m we can consider P and Q as
morphisms

k[x]⊕m k[x]⊕m k[x]⊕mP Q
.

In a way that is made precise in Section 4.1, we can think of matrix factorisations as a
similar kind of object to a chain complex. This object is Z2-graded (rather than Z-graded)
and has a differential which squares to f which is typically non-zero. We can define a
morphism of matrix factorisations analogously to a chain map of complexes, and likewise
for other concepts such as the notion of homotopy.

The connection between the matrix factorisations of f and the singularities of f can
intuitively be understood by considering that factorisations of f correspond to algebraic
subsets of the zero set of f , which we denote V (f) = {a ∈ kn | f(a) = 0}. If we can write
f = gh for some polynomials g, h ∈ k[x] then the inclusion of ideals (g) ⊇ (f) gives us that
V (g) ⊆ V (f), and likewise for h. Typically polynomials with singularities have zero sets
with more complicated algebraic subsets compared to polynomials without singularities.
Matrix factorisations capture more nuanced information about f than factorising within
k[x], and a relationship between the matrix factorisations of f and algebraic subsets of
V (f) is made precise in Appendix C.

It turns out that the relevant category of matrix factorisations is one in which they
are considered up to homotopy equivalence. We denote the homotopy category of finite
rank2 matrix factorisations of f by hmf(k[x], f). The following deep result from [Orl09]
to some extent demonstrates the importance of hmf(k[x], f).

Theorem 2.3.1. Suppose k is an algebraically closed field. Then hmf(k[x], f) is the zero
category if and only if f has no singularities.

Therefore, finding homotopy equivalences between matrix factorisations is an import-
ant task. In Section 4.3 we explain how the perturbation techniques of Section 2.1 can be
extended to matrix factorisations.

2See Definition 4.1.2.
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These ideas are relevant to the bicategory of Landau-Ginzburg models over k, denoted
LGk. Broadly speaking, the objects of this bicategory are pairs (k[y], U) where k[y] =
k[y1, · · · , ym] and U ∈ k[y] is a special kind of polynomial, called a potential, with a
certain type of singularity. When k = C the objects of LGk are exactly the polynomials
which have isolated critical points. The category of 1-morphisms (k[y], U)→ (k[z], V ) is
hmf(k[y, z], V (z)−U(y)). Proving LGk is a well-defined bicategory is a non-trivial task and
requires producing homotopy equivalences between certain matrix factorisations. This is
done in Sections 5.2 and 5.3.

In order to compute compositions of 1-morphisms in LGk we need explicit formulae
for the homotopy equivalences of Section 5.2 used to define composition. The results in
Section 3 give the necessary formulae, and this approach leads to the definition of the
cut operation on matrix factorisations, first given in [Mur18]. This operation provides an
explicit homotopy equivalence between an infinite rank matrix factorisation and a finite
rank matrix factorisation, both of which represent the composition of two 1-morphisms
in LGk. In Section 5.4 and Section 5.5 we define the cut operation and develop tools
for working with the cut. Finally in Section 5.6 we give examples of computing the
composition of 1-morphisms in LGk using the cut operation.

2.4 A preliminary existence result

Section 3 is devoted to producing formulae for strong deformation retracts between a
Koszul complex and its homology. However, it is not too hard to prove that such homotopy
equivalences exist, which we do in Proposition 2.4.2 below. Before presenting this result we
show, as pointed out in [Cra04, Remark 2.3], that any deformation retract can be modified
to produce a strong deformation retract at the cost of producing a more complicated
formula for the homotopy. Let A be an abelian category and

(L, dL) (M,dM), h
i

p

(2.4)

be a deformation retract in A.

Lemma 2.4.1. We can modify the homotopy h of (2.4) to produce a strong deformation
retract involving (L, dL), (M,dM), i and p.

Proof. First set h1 = −h(dMh+ hdM). This gives us

h1i = −hdMhi− h2dM i = −h(ip− 1− hdM)i− h2dM i = 0

and notice that

h1dM + dMh1 = −h(dMh+ hdM)dM − dMh(dMh+ hdM)

= −hdMhdM − dMh(dMh+ hdM)

= −hdM(ip− 1− dMh)− (ip− 1− hdM)(ip− 1)

= ip− 1

so we have h1 : ip ' 1. Next we set h2 = −(dMh1 + h1dM)h1 and likewise note that
ph2 = 0, h2 : ip ' 1 and h2i = 0. Finally we set h3 = −h2dMh2 and note that this gives
us the desired strong deformation retract.

Proposition 2.4.2. Let (P, d) be a chain complex of projective objects of A such that
Pn = 0 for all n < 0. Suppose that (P, d) is exact except in degree zero and that H0(P ) is
also projective. Then we have a strong deformation retract

(H(P ), 0) (P, d), h

11



of chain complexes, where (H(P ), 0) is the homology of P with zero differentials. Fur-
thermore, the map P0 → H0(P ) in this strong deformation retract is the quotient map.

Proof. Recall that H0(P ) = P0

/
im(d1). A chain map p : (P, d)→ (H0(P ), 0) is obtained

by considering the quotient morphism p0 : P0 → H0(P ). Since H0(P ) is assumed to be
projective and p0 is an epimorphism we obtain a map i0 : H0(P )→ P0 such that

P0 H0(P )

H0(P )

p0

i0

commutes. We extend i0 to a chain map i : (H0(P ), 0)→ (P, d), and we have pi = 1. We
now construct a homotopy h : 1 ' ip.

We construct the maps hn : Pn → Pn+1 by induction on n. For h0, note that p0(1 −
i0p0) = 0 and so 1 − i0p0 factors through ker(p0). Since ker(p0) = im(d1) we have that
d1 : P1 → ker(p0) is an epimorphism and so we can apply the lifting property of projective
objects to obtain h0 : P0 → P1 such that

P0

P1 ker(p0) ⊆ P0

1−i0p0
h0

d1

commutes. Next we note that d1(1 − h0d1) = d1 − d1h0d1 = d1 − (1 − i0p0)d1 = 0 since
p0d1 = 0, so 1 − h0d1 factors through ker(d1). Since im(d2) = ker(d1) we have that
d2 : P2 → ker(d1) is an epimorphism. Using the lifting property of projective objects we
obtain h1 : P1 → P2 satisfying d2h1 = 1− h0d1. Hence we have constructed the maps h0

and h1 in the following diagram

· · · P3 P2 P1 P0 0

· · · P3 P2 P1 P0 0

d3

1

d2

1
h1

d1

1−i0p0
h0

d3 d2 d1

where 1− i0p0 = d1h0 and 1 = d2h1 + h0d1.
Now let n > 1 and suppose we have constructed hk for k < n. Then we are in the

situation

· · · Pn+1 Pn Pn−1 Pn−2 · · ·

· · · Pn+1 Pn Pn−1 Pn−2 · · ·

dn+1

1

dn

1
hn−1

dn−1

hn−2

dn+1 dn dn−1

where we have 1 = dnhn−1 + hn−2dn−1. Note that if n = 1 then P−1 = 0, h−1 = 0
and d0 = 0. We now aim to construct hn : Pn → Pn+1. Note that dn(1 − hn−1dn) =
dn − dnhn−1dn = dn − (1− hn−2dn−1)dn = 0 so 1− hn−1dn factors through ker(dn). Since
(P, d) is assumed to be exact in degree n the map dn+1 : Pn+1 → ker(dn) is an epimorphism.
Then, using the lifting property of projective objects we have hn : Pn → Pn+1 such that
1 = dn+1hn + hn−1dn. The maps i, p and h form the desired deformation retract, which
by Lemma 2.4.1 can be upgraded to a strong deformation retract.

12



Due to the use of the lifting property of projective objects, Proposition 2.4.2 does not
provide insight into how to construct such strong deformation retracts. We can apply this
result to Koszul complexes as follows. Let k be a commutative ring and R a commutative
k-algebra.

Corollary 2.4.3. Let t = (t1, . . . , tn) be a sequence in R such that the Koszul complex
(K(t), dK) is exact except in degree zero. Let I be the ideal generated by the elements of t
and suppose both R and R

/
I are projective k-modules. Then we have a strong deformation

retract over k

(R
/
I, 0) (K(t), dK), h

where the map K(t)→ R
/
I is the quotient map in degree zero.

Proof. Note that K(t) is a free R-module, hence a projective k-module. The result is an
application of Proposition 2.4.2.

13



3 Differentiation, division and deformation retracts

In this section we construct an explicit strong deformation retract between a Koszul
complex which is exact except in degree zero and its homology by generalising the notion
of taking partial derivatives with respect to the variables in a polynomial ring. This
approach uses the ideas of [DM13; CM16; Mur18] in which a similar idea is used to prove
that composition in the bicategory of Landau-Ginzburg models is well-defined.

In Section 3.2 we do this in the most general setting following the method of [Mur18],
providing additional exposition which is not present in the existing literature. This ap-
proach requires passing to a completion of the ring and computing the maps in the strong
deformation retract involves knowing certain series expansions of ring elements. In Sec-
tion 3.3 we show how to compute these series expansions in the case of a polynomial ring
over a field. This suggests conditions under which it is not necessary to pass to completion
in order to construct the strong deformation retract of Section 3.2. This is explained in
Section 3.4 and is a new result. In Section 3.5 we build on the ideas of Section 3.4 and
give a more efficient algorithm for computing the maps in the strong deformation retract
under the same conditions. Later, beginning in Section 5.4, we use the ideas discussed
in this section to describe a method for computing compositions in the bicategory of
Landau-Ginzburg models.

The approach of Section 3.2 involves defining a generalisation of partial differentiation,
where we differentiate with respect to elements of a sequence t = (t1, . . . , tn) of polynomi-
als. In the most general case discussed in Section 3.2 it is necessary to make this definition
over the I-adic completion of the polynomial ring, where I is the ideal generated by the
elements of t. Under the conditions given in Section 3.4 this partial differentiation can be
defined without passing to the completion. Hence another result implicit in this section
are conditions under which it is possible to define generalised partial differentiation with
respect to a sequence of polynomials.

3.1 Completions and regularity conditions on sequences

We begin with a brief discussion on formal completion and regularity conditions on se-
quences. The results discussed in this section are “well-known” but some proofs are
difficult to find in the literature. Since they play an important role in subsequent sections
a full discussion is warranted. When proofs cannot be found easily in the literature we
give them here.

Let R be a commutative ring and t = (t1, . . . , tn) a sequence of elements in R. Let I =
(t1, · · · , tn) be the ideal generated by the elements of t and π : R→ R

/
I be the quotient

map. Consider the polynomial ring (R
/
I)[x] = (R

/
I)[x1, · · · , xn] with coefficients in

R
/
I. Define a map

α : (R
/
I)[x] −→

⊕
m≥0

Im
/
Im+1 (3.1)

by setting α(xi) = ti + I2, where we denote I0 = R. This map is always surjective.
Indeed, consider tu + Im+1 ∈ Im

/
Im+1 where u ∈ Nn is such that

∑n
i=1 ui = m. It is

straightforward to show that α(xu) = tu + Im+1. Note that any element of Im
/
Im+1 can

be written as a sum of elements of the form atu + Im+1 where a ∈ R is not divisible by
any of the ti. Applying linearity proves that α is surjective.

Definition 3.1.1. We say the sequence t is:

(1) regular if each ti is not a zero-divisor on R
/

(t1, . . . , ti−1), and if the ring R
/
I is

non-zero.

14



(2) Koszul-regular if the Koszul complex of t is exact except in degree zero.

(3) quasi-regular if the map α in (3.1) is an isomorphism.

The definition of Koszul-regular was first given in [Kab71, Definition 1] and the defin-
ition of quasi-regular was first given in [EGA, Volume IV Chapitre 0 15.1.7]. These
regularity conditions and their relationships are also discussed in [Stacks, Sections 10.68,
10.69, 15.30] and quasi-regular sequences in particular are discussed in [Lip87, Chapter
3] and [Mat80, Section 15]. We have the following relationships between the regularity
conditions, which is the main result of [Kab71].

Theorem 3.1.2. For the sequence t we have:

(1) If t is regular then t is Koszul-regular.

(2) If t is Koszul-regular then t is quasi-regular.

This is proved in [Kab71, Theorem 1.1] and also in [Stacks, Section 15.30]. In [Kab71]
there is also a fourth regularity condition which is weaker than Koszul-regularity and
stronger than quasi-regularity. Although it is not relevant for our purposes, it is worth
pointing out that if R is a Noetherian local ring then any quasi-regular sequence of non-
units is necessarily a regular sequence [Stacks, Lemma 10.69.6] and so by Theorem 3.1.2
the regularity conditions of Definition 3.1.1 are equivalent for such sequences in Noetherian
local rings. Examples presented in [Kab71] show that the implications in Theorem 3.1.2
cannot be reversed in general, or even under some generous assumptions on the ring R.

We are mainly interested in quasi-regular sequences as they possess favourable prop-
erties with respect to completions of the ring R. We first recall the definition of the I-adic
completion of R.

Definition 3.1.3. The I-adic topology on R is the smallest topology such that R is a
topological group under addition and in which a neighbourhood U of zero is open if and
only if Im ⊆ U for some m ∈ N. The I-adic completion of R is the Cauchy completion of
R with respect to the I-adic topology.

Let R̂ denote the I-adic completion of R. It is straightforward to show that R is a
topological ring with respect to the I-adic topology and hence R̂ is also a ring, where
Cauchy sequences are multiplied elementwise. One can show that any element f ∈ R̂ can
be represented by a convergent series of the form

f =
∑
u∈Nn

sut
u

where su ∈ R. Another standard way of defining completions is as an inverse limit. For
each integer m ≥ 2 we have a canonical ring morphism qm : R

/
Im → R

/
Im−1. The I-adic

completion coincides with the inverse limit of these morphisms, which is the ring

lim←−R
/
Im =

{
(am) ∈

∏
m≥1

R
/
Im | am = qm+1(am+1)

}
.

Elements of lim←−R
/
Im are called coherent sequences. One can see that R̂ is isomorphic

to lim←−R
/
Im by noting that the sequence of partial sums of f =

∑
u∈Nn cut

u ∈ R̂ can be
thought of as a coherent sequence. When R is a Noetherian ring the I-adic completion
has nice functorial properties.
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Lemma 3.1.4 ([AM69, Proposition 10.14]). If R is a Noetherian ring then the canonical

ring morphism R→ R̂ is flat, meaning that the functor R̂⊗R (−) on R-modules is exact.

For more on the basic properties of completions see [AM69, Chapter 10]. We now
proceed to discuss two lemmas which play a key role in the subsequent sections.

Lemma 3.1.5. For I a finitely generated ideal we have R̂
/
IR̂ ∼= R

/
I.

Proof. We define the I-adic completion of an R-module M in the same way as the com-
pletion of R, where we consider the submodules ImM in order to define the topology. We
have a canonical map R̂⊗RM → M̂ given by mapping r⊗ a 7→ ra, where M̂ denotes the
I-adic completion of M . In [AM69, Proposition 10.13] it is shown that if M is finitely
generated then this canonical map is surjective.

Using the above, consider the map R̂ ⊗R I → Î. Since I is a finitely generated ideal
this map is surjective. We can also consider the map R̂ ⊗R I → R̂ which is again given
by mapping r ⊗ i 7→ ri. Clearly the diagram

R̂

R̂⊗R I

Î

commutes, and so since im(R̂ ⊗R I → R̂) = IR̂ and R̂ ⊗R I → Î is surjective we have

IR̂ = im(Î → R̂).
Next note that

R̂⊗R (R
/
I) ∼= (R̂⊗R R)

/
I(R̂⊗R R) ∼= R̂

/
IR̂

so it suffices to show R̂⊗R (R
/
I) is isomorphic to R

/
I.

We represent elements of R̂ by coherent sequences. Let r = (rn)n≥1 ∈ R̂ and s ∈ R
/
I.

Define a map ϕ : R̂ ⊗R (R
/
I) → R

/
I by sending r ⊗ s 7→ r1s and extending linearly.

We also have a map ψ : R
/
I → R̂ ⊗R (R

/
I) given by mapping s 7→ (1) ⊗ s where

(1) = (1, 1, . . .). Clearly ϕψ = 1, so it remains to consider the composition ψϕ. This is

given by ψϕ(r ⊗ s) = (r1)⊗ s where (r1) = (r1, r1, . . .). In R̂ we have

r − (r1) = (0, r2 − r1, r3 − r1, . . .) ∈ im(Î → R̂) = IR̂

and so r ⊗ s− ψϕ(r ⊗ s) = 0, proving the claim.

Let k be a commutative ring. Suppose R is a commutative k-algebra and notice that
R̂ inherits a k-algebra structure from R. Now suppose that there exists a k-linear section
σ : R

/
I → R of the quotient map π. That is, σ is such that πσ = 1. Such a map exists,

for example, if R
/
I is projective over k. In this case the short exact sequence

0 ker(π) R R
/
I 0π

splits over k, producing the required section of π. In particular, we always have a k-linear
section of the quotient map when k is a field.

When a k-linear section of π exists, quasi-regular sequences generating I are sequences
whose powers “independently generate R̂ over R

/
I” in the sense of the following lemma.

This result is stated without proof in [Lip87, Lemma 3.1.1].

16



Lemma 3.1.6. Suppose t is quasi-regular and that there exists a k-linear section σ :
R
/
I → R of the quotient map π : R → R

/
I. Then every f ∈ R̂ can be written uniquely

as a convergent series of the form

f =
∑
u∈Nn

σ(ru)t
u (3.2)

where ru ∈ R
/
I and tu = tu11 · · · tunn .

Proof. Let κ : R → R̂ denote the canonical map into the completion. We have R̂
/
IR̂ ∼=

R
/
I, so let π̂ : R̂ → R

/
I denote the quotient map. Note that this satisfies π̂κ = π, and

so we can extend σ : R
/
I → R to a k-linear section σ̂ of π̂ by setting σ̂ = κσ.

Let f ∈ R̂. Then we have
π̂(f − σ̂π̂(f)) = 0

and so f − σ̂π̂(f) ∈ IR̂. Let a1, . . . , an ∈ R̂ be such that f − σ̂π̂(f) =
∑n

i=1 aiti. In the

same manner we obtain aij ∈ R̂ such that ai − σ̂π̂(ai) =
∑n

j=1 aijtj for all i = 1, . . . , n.
Hence we have

f = σ̂π̂(f) +
n∑
i=1

aiti

= σ̂π̂(f) +
n∑
i=1

σ̂π̂(ai)ti +
∑
i,j

aijtitj .

Let ei ∈ Nn have a one in the ith coordinate and zeros elsewhere. By setting r0 = π̂(f)
and rei = π̂(ai) we obtain the first few terms in the series expansion (3.2). Further terms
can be produced by continuing in the same way.

For uniqueness, suppose for a contradiction that we have∑
u∈Nn

σ(ru)t
u = 0 (3.3)

but at least one ru 6= 0. Let U = min{|u| | ru 6= 0}, where |u| =
∑n

i=1 ui for u ∈ Nn. The
series (3.3) converges to zero in the I-adic topology, which means that there exists an M
such that for all m ≥M we have ∑

|u|≤m

σ(ru)t
u ∈ IU+1 .

By rearranging the equation∑
|u|≤m

σ(ru)t
u =

∑
|u|=U

σ(ru)t
u +

∑
U<|u|≤m

σ(ru)t
u

we find that
∑
|u|=U σ(ru)t

u ∈ IU+1, or in other words∑
|u|=U

σ(ru)t
u = 0 in the ring IU

/
IU+1 .

Since t is quasi-regular this implies σ(ru) ∈ I for all |u| = U . Indeed, if this were not the
case then this would give us a non-zero element of (R

/
I)[x] which is sent to zero by the

map α of (3.1). Applying π gives ru = 0 for all u ∈ Nn such that |u| = U , which is a
contradiction.
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3.2 Derivative systems and the strong deformation retract

Let k be a commutative ring and R a commutative k-algebra. Consider a quasi-regular
sequence t = (t1, . . . , tn) of elements of R and let I = (t1, . . . , tn) be the ideal generated

by the elements of t. Let R̂ be the I-adic completion of R and suppose we have a k-linear
section σ : R

/
I → R of the quotient map such that σ(1) = 1.

For each ti we define a map ∂ti : R̂→ R̂ as follows. Given f ∈ R̂, by Lemma 3.1.6 we
can write f uniquely in the form f =

∑
u∈Nn σ(ru)t

u. We define

∂ti(f) =
∑

u∈Nn\{0}

uiσ(ru)t
u−ei

where ei = (0, . . . , 1, . . . , 0) has a one in its ith entry and zeros elsewhere. In the following
lemma we collect some basic facts about these maps, all of which follow directly from the
definition.

Lemma 3.2.1. Let k[|t|] denote the k-algebra which consists of elements of R̂ of the form∑
u∈Nn cut

u where cu ∈ k.

(1) ∂1, . . . , ∂n are k-linear.

(2) ∂ti∂tj = ∂tj∂ti for all i, j = 1, . . . , n.

(3) ∂ti(t
v) = vit

v−ei for all i = 1, . . . , n and v ∈ Nn, where we understand 0t−1
j = 0.

(4) im(σ) =
⋂
i ker(∂ti).

(5) For f ∈ k[|t|] and r ∈
⋂
i ker(∂ti) we have ∂tj(rf) = r∂tj(f) for all j = 1, . . . , n.

(6) (Leibniz rule) For f ∈ k[|t|] and g ∈ R̂ we have ∂tj(fg) = ∂tj(f)g + f∂tj(g) for all
j = 1, . . . , n.

Proof. Properties (1), (2), (4) and (5) follow directly from the definition. Property (3)
also follows directly from the definition, and this is where we make use of the hypothesis
that σ(1) = 1. To prove (6), let g =

∑
u∈Nn σ(ru)t

u ∈ R̂ and v ∈ Nn and note that

∂ti(t
vg) =

∑
u∈Nn

σru∂ti(t
vtu) =

∑
u∈Nn

σru(∂ti(t
v)tu + tv∂ti(t

u)) = ∂ti(t
v)g + tv∂ti(g)

where tv = tv11 · · · tvnn . Extending linearly proves the general statement of (6).

As Lemma 3.2.1 suggests, the maps ∂t1 , . . . , ∂tn should be thought of as a type of
partial differentiation with respect to the sequence t = (t1, . . . , tn). Various combinations
of the properties in Lemma 3.2.1 uniquely characterise these maps. For example one
can show properties (1), (3), (4) and (5) uniquely determine ∂t1 , . . . , ∂tn , and likewise for
properties (1), (4) and (6). We refer to any sequence of maps satisfying all the properties
of Lemma 3.2.1 as a system of t-derivatives. In later sections we will see that when R is
a polynomial ring and t satisfies certain conditions that the system of t-derivatives exist
as maps on R, rather than on its I-adic completion.

Next we consider the Koszul complex (K(t), dK) of t. We denote the graded module
of the Koszul complex by K(t) =

∧
(
⊕n

i=1Rdti) where dt1, . . . , dtn are formal generators.
This is in analogy with differential geometry: when R = k[x1, . . . , xn] the underlying
module of the Koszul complex is the exterior algebra of the module of Kähler differentials
and we think of the degree p part of K(t) as being the module of “p-forms on affine
n-space”.
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We pass (K(t), dK) to the I-adic completion by applying the extension of scalars

functor R̂ ⊗R (−) to obtain the complex (K̂(t), dK̂), which is the same as the Koszul

complex of t regarded as a sequence in R̂. The underlying graded module of this complex
is K̂(t) =

∧
(
⊕n

i=1 R̂dti).

Definition 3.2.2. Given the system of t-derivatives ∂t1 , . . . , ∂tn the corresponding con-

nection is defined as the k-linear map ∇ : K̂(t)→ K̂(t) given by

∇(fω) =
n∑
i=1

∂ti(f)dtiω

for f ∈ R and ω = dti1 · · · dtip .

The connection ∇ is the same as the connection of [Mur18, Section 3] and [DM13,
Definition 2.8]. In [Mur18; DM13] a connection is first proved to exist and from this the
maps ∂t1 , . . . , ∂tn are extracted.

Lemma 3.2.3. ∇2 = 0.

Proof. Let fω ∈ K̂(t) where f ∈ R̂ and ω = dti1 · · · dtip . Then

∇2(fω) =
n∑
i=1

∇(∂ti(f)dtiω)

=
n∑
i=1

n∑
j=1

∂tj∂ti(f)dtjdtiω

=
∑
i<j

∂tj∂ti(f)dtjdtiω +
∑
j<i

∂tj∂ti(f)dtjdtiω

=
∑
i<j

∂tj∂ti(f)dtjdtiω −
∑
i<j

∂tj∂ti(f)dtjdtiω

= 0

using Lemma 3.2.1 and the fact that dtjdti = −dtidtj.

In the terminology of [DM13; Mur18], Lemma 3.2.3 shows that ∇ is flat [DM13,
Definition 2.8].

Lemma 3.2.4. If Q ⊆ k then dK̂∇(k[|t|]) = IR̂, where k[|t|] is the k-algebra consisting

of elements of R̂ the form
∑

u∈Nn cut
u where cu ∈ k.

Proof. For tu = tu11 · · · tunn we have

dK̂∇(tu) =
n∑
j=1

dK̂(ujt
u−ejdtj)

=
n∑
j=1

n∑
i=1

ujtit
u−ejdt∗i¬(dtj)

= |u|tu

where |u| =
∑n

i=1 ui. To avoid a more tedious argument in the case that some uj = 0
we permit ourselves to write 0t−1

j = 0 and note that the above calculation is still correct.

Hence we have dK̂∇(k[|t|]) ⊆ IR̂. But the above calculation also shows that for any

tu ∈ IR̂ we have tu = dK̂∇(|u|−1tu), where we know |u| is invertible since Q ⊆ k and at
least one uj 6= 0. Applying linearity proves the claim.
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In the terminology of [DM13; Mur18], Lemma 3.2.4 shows that when Q ⊆ k the
connection ∇ is standard [DM13, Definition 8.6].

Lemma 3.2.5. The graded commutator of dK̂ and ∇, denoted [dK̂ ,∇], is a morphism of
complexes.

Proof. First note that [dK̂ ,∇] has degree deg(dK̂) + deg(∇) = 0. Then we have

[dK̂ ,∇]dK̂ = dK̂∇dK̂ +∇d2
k = dK̂∇dK̂ + d2

K̂
∇ = dK̂ [dK̂ ,∇]

where we use that d2
K̂

= 0.

Lemma 3.2.6. Let ω = dti1 · · · dtip and f ∈ R̂. Then [dK̂ ,∇](fω) = (p + dK̂∇0)(f) · ω,
where ∇0 is the degree zero part of ∇.

Proof. Without loss of generality suppose i1 < · · · < ip. We first consider the case of
f = tu = tu11 · · · tunn for u ∈ Nn. Let δj = 0 if j ∈ {i1, . . . , ip} and δj = 1 otherwise. Then
we have

dK̂∇(tuω) =
n∑
j=1

dK̂(ujt
u−ejdtjω)

=
n∑
j=1

δj

n∑
s=1

ujtst
u−ejdt∗sy(dtjω)

=
n∑
j=1

δjujt
uω +

∑
(j,l)∈A

δj(−1)lujt
u−ej+eildtjdti1 · · · d̂til · · · dtip

where A = {(j, l) | j = 1, . . . n, l = 1, . . . , p and j 6= il} and “d̂tip” indicates that this
factor is omitted from the above product. We also have

∇dK̂(tuω) =

p∑
l=1

(−1)l+1∇(tilt
udti1 · · · d̂til · · · dtip)

=

p∑
l=1

n∑
j=1

(−1)l+1∂tj(tilt
u)dtjdti1 · · · d̂til · · · dtip

=

p∑
l=1

(−1)l+1(uil + 1)tudtildti1 · · · d̂til · · · dtip

+
∑

(j,l)∈A

δj(−1)l+1ujt
u−ej+eildtjdti1 · · · d̂til · · · dtip

=
n∑
j=1

(1− δj)(uj + 1)tuω −
∑

(j,l)∈A

δj(−1)lujt
u−ej+eildtjdti1 · · · d̂til · · · dtip .

Hence we find

[dK̂ ,∇](tuω) =

(
n∑
i=1

(1− δj) + |u|

)
tuω

where |u| =
∑n

i=1 ui. Notice that
∑n

i=1(1− δj) = p and by inspecting the proof of Lemma
3.2.4 we have dK̂∇(tu) = |u|tu. Therefore we have shown

[dK̂ ,∇](tuω) = (p+ dK̂∇0)(tu) · ω .
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For f ∈ R̂ write f in the form f =
∑

u∈Nn σ(ru)t
u where each ru ∈ R

/
I. Then by

definition of the system of t-derivatives we have

[dK̂ ,∇](fω) =
∑
u∈Nn

σ(ru)[dK̂ ,∇](tuω)

=
∑
u∈Nn

σ(ru)(p+ dK̂∇0)(tu) · ω

= (p+ dK̂∇0)(f) · ω

which proves the general case.

Lemma 3.2.7. If Q ⊆ k then [dK̂ ,∇] is invertible away from degree zero.

Proof. Let p > 0 and consider ω = dti1 · · · dttp . By Lemma 3.2.6 we have

[dK̂ ,∇](tuω) = c · tuω

where c = p + |u|. Note that c 6= 0, and so since Q ⊆ k we know c−1 exists. This proves
both injectivity and surjectivity, where for injectivity we also appeal to the uniqueness of
Lemma 3.1.6.

Now suppose that Q ⊆ k and also that (K̂(t), dK̂) is exact except in degree zero. That

is, we assume that t is a Koszul-regular sequence in R̂. This is true if t is Koszul-regular
in R and R is Noetherian since in this case the canonical map R→ R̂ is flat, meaning that
the functor R̂⊗R (−) preserves exact sequences. In [Mur19, Appendix C] it is shown that
if we instead assume R and R

/
I are projective k-modules, then t being Koszul-regular in

R also implies t is Koszul-regular in R̂. The point is that (K̂(t), dK̂) being exact in degree
zero follows from t being Koszul-regular in R under many natural conditions on R and k.

We define H : K(t)→ K(t) by H = [dK̂ ,∇]−1∇ in all degrees where K(t) is non-zero
and by H = 0 elsewhere. Note that since ∇ is a degree +1 map [dK̂ ,∇]−1 exists by
Lemma 3.2.7 in all degrees needed to define H.

Lemma 3.2.8. Under the preceding assumptions, the degree zero part of 1−dK̂H factors

through R̂
/
IR̂.

Proof. Let f ∈ IR̂. In Lemma 3.2.4 we showed that dK̂∇(k[t]) = (t) so let g ∈ k[t] be
such that dK̂∇(g) = f . Then we have

(1− dK̂H)(f) = (1− dK̂H)(dK̂∇)(g)

= dK̂∇(g)− dK̂ [dK̂ ,∇]−1∇dK̂∇(g)

= dK̂∇(g)− dK̂ [dK̂ ,∇]−1([dK̂ ,∇]− dK̂∇)∇(g)

= 0

since ∇2 = 0 by Lemma 3.2.3.

From Lemma 3.1.5 we have that R
/
I ∼= R̂

/
IR̂. Let π : K̂0(t)→ R

/
I be the quotient

map. By Lemma 3.2.8 we obtain a map σ′ : R
/
I → K̂0(t) satisfying 1−dK̂H0 = πσ′. Let

(R
/
I, 0) denote the chain complex which has R

/
I in degree zero and is zero elsewhere.

We extend both π and σ′ to chain maps π : (K̂(t), dK̂) → (R
/
I, 0) and σ′ : (R

/
I, 0) →

(K̂(t), dK̂) by setting π = 0 and σ′ = 0 away from degree zero.
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Proposition 3.2.9. Under the preceding assumptions, the maps π, σ′ and H form a
strong deformation retract

(R
/
I, 0) (K̂(t), dK̂), H

σ′

π

over k.

Proof. We need to show that:

(1) πσ′ = 1.

(2) HdK̂ + dK̂H = 1− σ′π.

(3) H2 = 0, πH = 0 and Hσ′ = 0.

For (1), first note that away from degree zero this is clear. In degree zero note that by
considering the k-linear section of π we can represent any element of R

/
I by π(f) where

f ∈ R̂ is such that ∂ti(f) = 0 for all i = 1, . . . , n. Then we have

πσ′π(f) = π(f − dK̂H(f)) = π(f)− πdK̂ [dK̂ ,∇]−1∇(f) = π(f)

since ∇(f) = 0. Hence we have πσ′ = 1 since π is an epimorphism.
For (2), in degree zero we have 1− σ′π0 = dK̂H0 by our construction of σ′. For degree

p > 0 we have

HdK̂ + dK̂H = [dK̂ ,∇]−1∇dp
K̂

+ dK̂ [dK̂ ,∇]−1∇p

= [dK̂ ,∇]−1∇dp
K̂

+ [dK̂ ,∇]−1dK̂∇p

= [dK̂ ,∇]−1[dK̂ ,∇]

= 1

where dp
K̂

and ∇p are the degree p parts of dK̂ and ∇ respectively. Note we only had

dK̂ [dK̂ ,∇]−1∇p = [dK̂ ,∇]−1dK̂∇p because p > 0. If p = 0 then the right-hand-side
becomes [dK̂ ,∇]−1d1

K̂
∇0, and [dK̂ ,∇]−1 does not exist in degree zero.

For (3), first note that H2 = [dK̂ ,∇]−1∇[dK̂ ,∇]−1∇ so for H2 = 0 it suffices to show
∇[dK̂ ,∇]−1∇ = 0. We showed in Lemma 3.2.3 that ∇2 = 0, so we have

∇[dK̂ ,∇] = ∇dK̂∇+∇2dK̂ = ∇dK̂∇+ dK̂∇
2 = [dK̂ ,∇]∇ .

Then∇ = [dK̂ ,∇]∇[dK̂ ,∇]−1. Multiplying on the right by∇ gives 0 = [dK̂ ,∇]∇[dK̂ ,∇]−1∇
which implies that ∇[dK̂ ,∇]−1∇ = 0 since [dK̂ ,∇] is invertible in this degree. Hence
H2 = 0. Next, we have πpHp−1 = 0 in all degrees p since πp = 0 when p 6= 0, and when
p = 0 we have H−1 = 0. Finally, we show Hσ′ = 0. Away from degree zero this is clear
and in degree zero we have

Hσ′π = H −HdK̂H
= [dK̂ ,∇]−1∇− [dK̂ ,∇]−1∇dK̂ [dK̂ ,∇]−1∇
= [dK̂ ,∇]−1∇− [dK̂ ,∇]−1([dK̂ ,∇]− dK̂∇)[dK̂ ,∇]−1∇
= [dK̂ ,∇]−1dK̂∇[dK̂ ,∇]−1∇
= 0

where we again use that ∇[dK̂ ,∇]−1∇ = 0.
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Compare Proposition 3.2.9 to Corollary 2.4.3, where we also showed that there is a
strong deformation retract between the Koszul complex of a Koszul-regular sequence and
its homology. Proposition 3.2.9 provides explicit formulae for the maps in the strong
deformation retract at the cost of passing to the I-adic completion of R, while Corollary
2.4.3 does not give any information about how to compute these maps. In Corollary 2.4.3
we had the hypothesis that R and R

/
I were projective over k, whereas in Proposition

3.2.9 we only needed to assume that the quotient map π : R → R
/
I has a k-linear

section. On the other hand, in Proposition 3.2.9 we need to assume Q ⊆ k while no such
assumption is needed for Corollary 2.4.3.

While Proposition 3.2.9 does provide formulae for the maps in the strong deformation
retract it is not clear how to compute these maps elementwise. In order to compute the
connection ∇ at an element f ∈ R̂ we need to know the series expansion

f =
∑
u∈Nn

σ(ru)t
u

where ru ∈ R
/
I. In this general setting it is not clear how to compute the coefficients

σ(ru). In the next section we will show how these coefficients can be generated when
f ∈ R and R is a polynomial ring over a field.

3.3 The case of a polynomial ring over a field

In the previous section we gave formulae for a strong deformation between a Koszul
complex and its homology over a completion of the ring. Our ability to actually compute
these maps, however, relies on knowing certain series expansions of ring elements. In this
section and the next we address this issue in the case of a polynomial ring over a field.

Let k be a field and consider the polynomial ring k[x] = k[x1, . . . , xm]. Let t =
(t1, . . . , tn) be a quasi-regular sequence in k[x] and I = (t1, . . . , tn) the ideal generated
by the elements of t. Since k is a field there certainly exists a k-linear section of the
quotient map k[x]→ k[x]

/
I. Over a polynomial ring we can do much better and choose

the section so that we have an algorithm for computing coefficients in the series expansion
from Lemma 3.1.6.

This algorithm uses Euclidean division of polynomials, so we begin by recalling some
related concepts following the conventions of [CLO15, Chapter 2]. A monomial in k[x]
is any polynomial in the set {xu}u∈Nm . A monomial ordering on k[x] is a well-founded,
total order relation < on Nm with the property that u < v =⇒ u + w < v + w for all
u, v, w ∈ Nm. A typical example of a monomial ordering is the lexicographic ordering on
Nm. Other examples are given in [CLO15, Section 2.2].

Let f =
∑

u∈Nm cux
u ∈ k[x] where cu ∈ k and finitely many cu 6= 0. Any cux

u for
which cu 6= 0 is called a term of f . Given a monomial ordering on k[x], if f 6= 0 we define
the multi-degree of f as

multideg(f) = max{u ∈ Nm | cu 6= 0}

where the maximum is taken with respect to the monomial ordering. Setting u∗ =
multideg(f) we define the leading term of f with respect to the given monomial or-
dering to be LT(f) = cu∗x

u∗ . The coefficient cu∗ is called the leading coefficient and
is denoted LC(f). We recall the properties of the division algorithm on k[x] given in
[CLO15, Theorem 2.3.3].

Theorem 3.3.1 (Division Algorithm). Given a monomial ordering on k[x] and polyno-
mials f, s1, . . . , sn ∈ k[x] the division algorithm produces r, q1, . . . , qn ∈ k[x] which satisfy
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(1) f = r +
n∑
i=1

qisi.

(2) None of the terms of r are divisible by LT(si) for any i = 1, . . . , n.

(3) For all i = 1, . . . , n with qi 6= 0 we have multideg(f) ≥ multideg(qisi).

We call the polynomial r in Theorem 3.3.1 a remainder of f divided by s1, . . . , sn ∈
k[x]. The division algorithm is a fundamental computational tool in polynomial rings.
For example, it can be used to compute whether an element f belongs to an ideal J =
(s1, . . . , sn). If the remainder of dividing f by s1, . . . , sn is zero then we know f ∈ J . For
general s1, . . . , sn the converse is unfortunately false, however for certain generating sets
called Gröbner bases we do have that f ∈ J if and only if the remainder found by the
division algorithm is zero.

Definition 3.3.2. Fix a monomial ordering on k[x] and let J be an ideal. Consider the
set of leading terms of elements of J :

LT(J) = {LT(f) | f ∈ J \ {0}} .

We say that g = (g1, . . . , gn) is a Gröbner basis for J if g generates J and if the ideal
generated by LT(J) is equal to (LT(g1), . . . ,LT(gn)). Given a sequence g = (g1, . . . , gn)
we say that g is a Gröbner basis to mean that g is a Gröbner basis for the ideal generated
by its elements.

Lemma 3.3.3 ([CLO15, Corollary 2.6.2]). Fix a monomial ordering on k[x] and let f ∈
k[x]. If g is a Gröbner basis for an ideal J then, when we apply the division algorithm to
divide f by g, the remainder is zero if and only if f ∈ J .

Whether or not a sequence is a Gröbner basis depends on the monomial ordering on
k[x]. Given a finite generating set for an ideal and a monomial ordering we can compute
a Gröbner basis for that ideal using an algorithm called Buchberger’s Algorithm. This is
given in [CLO15, Theorem 2.7.2].

Theorem 3.3.4 (Buchberger’s Algorithm). Let J = (s1, . . . , sn) be an ideal of k[x]. Given
a monomial ordering on k[x] there is an algorithm computing polynomials g = (g1, . . . , gn′)
and {aij}i,j such that g is a Gröbner basis for J and gi =

∑n
j=1 aijsj.

We now return to consider the quasi-regular sequence t and the ideal I generated by
the elements of t. A Gröbner basis for I can be used to produce a k-linear section of the
quotient map π : k[x]→ k[x]

/
I. Fix a monomial ordering on k[x] and let g = (g1, . . . , gn′)

be a Gröbner basis for I. Define the k-vector space

C = {r ∈ k[x] | no term of r is divisible by any of the LT(gi)} . (3.4)

Lemma 3.3.5. The quotient map π : k[x] → k[x]
/
I restricts to an isomorphism C →

k[x]
/
I.

Proof. For injectivity suppose r ∈ C is such that π(r) = 0. Applying the division al-
gorithm to divide r by g yields the remainder r, since none of the terms in r are divisible
by any of the LT(gi). Since r ∈ I, by Lemma 3.3.3 we have r = 0.

For surjectivity, consider f ∈ k[x]. Via the division algorithm we obtain an expression
for f of the form

f = r +
n∑
i=1

qigi

where r ∈ C. Then π(f) = π(r). Noting that π : k[x] → k[x]
/
I is surjective proves the

claim.

24



Note that if g is not a Gröbner basis then the restriction π|C will fail to be injective.
Lemma 3.3.5 gives us a k-linear section σ : k[x]

/
I → k[x] of π by letting σ be the inverse

of π|C . Hence by Lemma 3.1.6 we obtain the following result. Let k̂[x] denote the I-adic
completion of k[x].

Lemma 3.3.6. Any element f ∈ k̂[x] can be uniquely expressed as a series of the form

f =
∑
u∈Nn

rut
u

where ru ∈ C.

Proof. Immediate from Lemma 3.1.6 and Lemma 3.3.5.

We now consider an algorithm to generate the coefficients in the series expansion of
Lemma 3.3.6 for an element of the polynomial ring f ∈ k[x]. The idea is as follows.
Let {aij}i,j be the polynomials arising from Buchberger’s Algorithm which satisfy gi =∑n

j=1 aijtj. Given f ∈ k[x] we can divide f by g to obtain polynomials r0 ∈ C and
q1, . . . , qn′ ∈ k[x] satisfying

f = r0 +
n′∑
i=1

qigi = r0 +
n∑
j=1

(
n′∑
i=1

aijqi

)
tj .

Setting pj =
∑n′

i=1 aijgi, we can then divide each of the p1, . . . , pn by g to obtain polyno-
mials rj ∈ C and q1j, . . . , qn′j ∈ k[x] for j = 1, . . . , n satisfying

f = r0 +
n∑
j=1

rjtj +
n∑
j=1

n′∑
i=1

qijgitj = r0 +
n∑
j=1

rjtj +
n∑

j,l=1

(
n′∑
i=1

qijail

)
titl .

The polynomials r0, r1, . . . , rn ∈ C are the coefficients of the zeroth and first order terms
in the series expansion for f of Lemma 3.3.6, and we can continue to generate higher
order coefficients in this manner. This algorithm is formalised in Algorithm 3.3.7, which
generates tuples (u, r) where r ∈ C and u ∈ Nn. Such an output indicates that r is the
coefficient of tu in the unique series expansion of f given in Lemma 3.3.6. In general this
algorithm will not terminate, but rather can be viewed as generating a sequence converging
to f in the I-adic topology by considering the partial sums of the series expansion for f .
Hence, Algorithm 3.3.7 can be used in conjuncton with the results in Section 3.2 to produce
I-adic approximations of the maps in the strong deformation retract of Proposition 3.2.9.

Before continuing we comment on the assumption that k is a field. This was needed
for two reasons:

• We needed the concept of a Gröbner basis for the ideal I of k[x].

• We needed an algorithm to divide any element of k[x] by a Gröbner basis for I.

In [AL94, Corollary 4.1.15, Corollary 4.1.16] it is shown that when k is a commutative
Noetherian ring the notion of a Gröbner basis can be appropriately extended to k[x], and
that every ideal of k[x] has a Gröbner basis in this sense. With additional assumptions
on k detailed in [AL94, Chapter 4], one can show that there exist generalisations of
Buchberger’s Algorithm which compute Gröbner bases for ideals.

By inspecting the proof of the division algorithm in [CLO15, Theorem 2.3.3] we can
see that that the assumption that k is a field is only needed to ensure that the leading
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Algorithm 3.3.7 Generate series coefficients

Require: A polynomial f ∈ k[x], a quasi-regular sequence t = (t1, . . . , tn), a Gröbner
basis g = (g1, . . . , gn′) for I = (t1, . . . , tn) and polynomials {aij}i,j such that
gi =

∑n
j=1 aijtj. Let C be defined from g as in (3.4).

1: Q← {(~0, f)}
2: . The elements of Q are tuples (u, q) where u ∈ Nn and q ∈ k[x]. If (u, q) ∈

Q then we know q is the coefficient of tu in an intermediate expression for f .
The polynomials appearing in Q are exactly the coefficients which still need to be
divided. That is, they are all non-zero and are not known to be in C. /

3: while Q 6= ∅ do
4: Qnew ← ∅
5: for all (u, q) ∈ Q do
6: Apply the division algorithm to obtain r ∈ C and p1, . . . , pn′ ∈ k[x] satisfying

q = r +
n′∑
i=1

pigi

along with the other conditions in Theorem 3.3.1.
7: output (u, r) . Final coefficent of tu

8: q′j ←
∑n′

i=1 aijpi for each j = 1, . . . , n . Intermediate coefficient of tu+ej

9: Qnew ← Qnew ∪ {(u+ ej, q
′
j) | j = 1, . . . , n where q′j 6= 0}

10: Q← collectCoefficients(Qnew) . Adds together coefficients of the same tu

11: function collectCoefficients(Q)
12: Qcollected ← ∅
13: for all u where (u, p) ∈ Q for some p do
14: Let p1, . . . , ps be all the polynomials such that (u, pi) ∈ Q
15: if

∑s
i=1 pi 6= 0 then

16: Qcollected ← {(u,
∑s

i=1 pi)} ∪Qcollected

17: return Qcollected

coefficients of the divisors are invertible. Since we only ever divide polynomials by a
Gröbner basis for I, all that we need is for the leading coefficients of this Gröbner basis
to be invertible in k. Since we need to assume Q ⊆ k anyway in order to construct the
strong deformation retract of Proposition 3.2.9 this will be true for many examples. More
generally, [AL94, Chapter 4] gives conditions on k under which there exists a version of
the division algorithm on k[x].

3.4 When passing to the completion is not necessary

Again let k be a field and consider the polynomial ring k[x] = k[x1, . . . , xm] with a fixed
monomial ordering. In this section we find conditions which mean it is not necessary
to pass to a completion of k[x] in order to define a strong deformation retract between
a Koszul complex and its homology. We retain the context of the previous section: let
t = (t1, . . . , tn) be quasi-regular, I = (t1, . . . , tn) the ideal generated by elements of t
and g = (g1, . . . , gn′) a Gröbner basis for I. Let {aij}i,j be polynomials satisfying gi =∑n

j=1 aijtj and C ⊆ k[x] be the k-linear subspace defined using g in (3.4).
Passing to the I-adic completion of k[x] is necessary in Section 3.2 in order to define

the connection of Definition 3.2.2. By Lemma 3.1.6 we know that we can express elements
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of this completion uniquely as a series of powers of elements of t. This lets us define the
maps ∂t1 , . . . , ∂tn , which act like differentiation with respect to the t1, . . . , tn, and hence
the connection. It is fairly easy, however, to come up with examples where passing to the
completion is not necessary. For example, if t = (x1, . . . , xm) then we can take ∂xi to be
the usual differentiation with respect to xi and hence we can define the connection as a
map ∇ : K(t)→ K(t) where K(t) is the Koszul complex of t as a sequence in k[x] rather
than in the I-adic completion.

The idea is to consider the circumstances under which Algorithm 3.3.7 terminates. If
it terminates for all f ∈ k[x] then, via Lemma 3.3.6, we know that any f ∈ k[x] has a
unique expression of the form

f =
∑
u∈Nn

rut
u

where ru ∈ C and finitely many ru 6= 0. That is, the series of Lemma 3.3.6 is now a
sum in k[x] and so we can define the maps ∂t1 , . . . , ∂tn on k[x] rather than its I-adic

completion. The remainder of Section 3.2 proceeds identically with k[x] replacing k̂[x],
and so we obtain the desired strong deformation retract.

Proposition 3.4.1. Algorithm 3.3.7 terminates for all f ∈ k[x] if I 6= k[x] and the
polynomials {aij}i,j are all constants.

Proof. Let QN be the value of Q in Algorithm 3.3.7 at the end of the N th repetition of
the loop on line 3. For a polynomial q ∈ k[x] we abuse notation and write q ∈ QN to
mean (u, q) ∈ QN for some u ∈ Nn. If QN 6= ∅ define

BN = max{multideg(q) | q ∈ QN}

and
A = max{multideg(aij) | i = 1, . . . , n′, j = 1, . . . , n, aij 6= 0}

where each maximum is taken with respect to the chosen monomial ordering. Note that
at least one aij 6= 0 since otherwise I = 0, contradicting t being quasi-regular.

Consider q ∈ QN−1 and let p1, . . . , pn′ be the polynomials computed from q on line
6. By Theorem 3.3.1 we have that multideg(q) ≥ multideg(pigi). Since I 6= k[x] the
polynomials g1, . . . , gn′ are not constants. This implies multideg(q) > multideg(pi) and
in particular BN−1 > multideg(pi) for pi 6= 0. Next consider the q′j defined on line 8 from
the p1, . . . , pn′ above. It is easy to see that for non-zero polynomials h, h′ ∈ k[x] we have
multideg(hh′) = multideg(h) + multideg(h′) and, if h + h′ 6= 0, that multideg(h + h′) =
max{multideg(h),multideg(h′)} [CLO15, Lemma 2.2.8]. Hence we have

multideg(q′j) ≤ max{multideg(aijpi) | i = 1, . . . , n}
≤ max{multideg(aij) + multideg(pi) | i = 1, . . . , n}
≤ A+ max{multideg(pi) | i = 1, . . . , n}
< A+BN−1 .

Note that the elements of QN are non-zero sums of various non-zero q′j defined on line 8,
and so if QN 6= ∅ we have

BN < A+BN−1 .

Hence, if {aij}i,j are constant polynomials then A = (0, . . . , 0). In this case the sequence
B1, B2, . . . is strictly decreasing and, since monomial orderings are well-founded, it follows
that it must be finite. Hence for sufficiently large N we have QN = ∅ and so Algorithm
3.3.7 terminates.
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Corollary 3.4.2. If I 6= k[x] and {aij}i,j are constant polynomials. Then every f ∈ k[x]
can be written uniquely in the form

f =
∑
u∈Nn

rut
u

where ru ∈ C and finitely many ru 6= 0.

Proof. Such an expression exists since under these hypotheses Algorithm 3.3.7 terminates.
For uniqueness, in order to apply Lemma 3.3.6 we need to know that the canonical map

κ : k[x] → k̂[x] is injective. Since k[x] is a Noetherian integral domain this follows from
Krull’s Intersection Theorem: see [AM69, p.105 and Corollary 10.18]. Hence Lemma 3.3.6
gives uniqueness.

Now suppose I 6= k[x] and {aij}i,j are constant polynomials. Then for each i = 1, . . . , n
we define ∂ti : k[x]→ k[x] as

∂ti(f) =
∑

u∈Nn\{0}

uirut
u−ei where f =

∑
u∈Nn

rut
u ∈ k[x] (3.5)

and ru ∈ C with finitely many ru 6= 0. This is well-defined by Corollary 3.4.2. We
now consider the Koszul complex (K(t), dK) of t, where K(t) =

∧
(
⊕n

i=1 k[x]dti) and
dt1, . . . , dtn are formal generators. Analogous to Definition 3.2.2 we define the connection
∇ : K(t)→ K(t) as

∇(fω) =
n∑
i=1

∂ti(f)dtiω where f ∈ k[x] and ω = dti1 · · · dtip .

Corollary 3.4.3. Given the preceding assumptions, if t is Koszul-regular and k is char-
acteristic zero then we have a strong deformation retract over k

(k[x]
/
I, 0) (K(t), dK), H

σ

π

where (k[x]
/
I, 0) is concentrated in degree zero, H = [dK ,∇]−1∇, π is the quotient map

and σ is uniquely determined by π and 1− dK∇.

Proof. Note that since k is a field, k having characteristic zero is equivalent to Q ⊆ k.
Strictly speaking, in order to prove this corollary one would need to reproduce all the
proofs in Section 3.2 with k[x] in place of its I-adic completion. By inspecting the proofs
in Section 3.2 we note that they are all essentially identical with k[x] in place of its I-adic
completion.

Before continuing to the next section we discuss the case that {aij}i,j are not all
constants. Using examples, we illustrate that there is a lot of scope for variability in the
behaviour of Algorithm 3.3.7 in this case. We first consider a simple example in which
things go very “wrong” in the sense that the series expansion of many elements in k[x]
have infinitely many non-zero terms.

Example 3.4.4. We take k = Q and consider the two variable polynomial ring Q[x, y]
with the lexicographic monomial ordering in which x > y. Let t = (y2 + 1, xy + 1). The
sequence t is regular since

Q[x, y]
/

(y2 + 1) ∼= K[x]
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where K = Q(
√
−1) ⊆ C is the smallest field containing

√
−1 with Q as a subfield.

In particular K[x] is an integral domain, so xy + 1 is certainly not a zero divisor on
Q[x, y]

/
(y2 + 1). Hence by Theorem 3.1.2 we have that t is both Koszul regular and

quasi-regular.
A Gröbner basis for the ideal I = (y2 + 1, xy + 1) is g = (x− y, y2 + 1), and we have

x− y = x(y2 + 1)− y(xy + 1) = xt1 − yt2 .

We consider the polynomial x. Applying the division algorithm to divide the polynomial
x by g we obtain

x = y + (x− y) = y + xt1 − yt2 .

The monomial y is not divisible by any of the LT(gi), so the terms y and yt2 are the first
two terms we have found in the series expansion of Lemma 3.3.6 for the polynomial x.
However, we need to continue to divide the coefficient x of t1 in the above expression. In
this way we obtain

x = y + (y + (x− y))t1 − yt2
= y + yt1 − yt2 + (xt1 − yt2)t1

= y + yt1 − yt2 + (y + (x− y))t21 − yt2t1
= y + yt1 − yt2 + yt21 − yt2t1 + (xt1 − yt2)t21
= y + yt1 − yt2 + yt21 − yt2t1 + (y + (x− y))t31 − yt21t2
= y + yt1 − yt2 + yt21 − yt2t1 + yt31 − yt21t2 + (xt1 − yt2)t31

and so on. Hence the series expansion for the polynomial x in the I-adic topology is

x =
∞∑
i=0

y(ti1 − ti1t2) .

Example 3.4.4 is an instance of a more general family of examples. Consider the first
step in the series expansion of one of the coefficient polynomials ai0j0 :

ai0j0 = r +
n′∑
i=1

qigi = r +
n∑
j=1

(
n′∑
i=1

aijqi

)
tj .

If qi0 6= 0 then under most circumstances ai0j0 will have an infinite series expansion. For
the sake of simplicity, if we assume qi0 = 1 and qi = 0 for i 6= i0 then we have

ai0j0 = r + ai0j0tj0 = r + rtj0 + ai0j0t
2
j0

= r + rtj0 + rt2j0 + ai0j0t
3
j0

=
∞∑
i=0

rtij0 .

Example 3.4.5. We take k = C and consider the three variable polynomial ring C[x, y, z]
with the lexicographic monomial ordering in which x > y > z. Consider the ADE
singularity of type E7 which is represented by the polynomial U = xy3z2 + x3 + z2. Let
t = (2x2 + y2, 3xy2, 2z) be the sequence of partial derivatives of U . Since U is a potential
(Definition 5.1.1) the sequence t is Koszul-regular and hence quasi-regular by Theorem
3.1.2. A Gröbner basis for the ideal I = (2x2 + y2, 3xy2, 2z) is g = (3x2 + y3, 3xy2, y5, 2z),
and we have

y5 = y2(2x2 + y3)− x(3xy2) = y2t1 − xt2 .
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We have not yet been able to find a polynomial in k[x] for which Algorithm 3.3.7
terminates.3 We conjecture that Algorithm 3.3.7 terminates for all f ∈ k[x] with t and g
as above, despite the coefficient polynomials relating t to g not all being constants. It is
a similar story for the singularities of type Dn, which are represented by the polynomials
Vn = z2 + yx2 + yn−1 for n ≥ 4. For the remaining ADE singularities of type An, E6 and
E8 the sequence of partial derivatives is already a Gröbner basis, so Corollary 3.4.2 shows
that Algorithm 3.3.7 terminates for all inputs in these cases.

3.5 An efficient algorithm for computing the connection

Let k be a field and consider the polynomial ring k[x] = k[x1, . . . , xm] with a fixed
monomial order. We retain the context of the previous section: let t = (t1, . . . , tn) be
quasi-regular, I = (t1, . . . , tn) the ideal generated by elements of t and g = (g1, . . . , gn′) a
Gröbner basis for I. Let {aij}i,j be polynomials satisfying gi =

∑n
j=1 aijtj and C ⊆ k[x]

be the k-linear subspace defined using g at (3.4).
In this section we describe a more efficient algorithm for computing the connection

in the case that {aij}i,j are constant polynomials. Computing the connection amounts
to computing the maps ∂t1 , . . . , ∂tn . The naive approach for computing these maps on
f ∈ k[x] is to compute the series expansion of f of Corollary 3.4.2 using Algorithm 3.3.7.
For u ∈ Nn let |u| =

∑n
i=1 ui and let

degt(f) = max{|u| | ru 6= 0}

where f =
∑

u∈Nn rut
u is the expansion of f in Corollary 3.4.2, so ru ∈ C and finitely

many ru 6= 0. In the worst case, Algorithm 3.3.7 will require in the order of 2degt(f) uses of
the division algorithm. In the following we show that each map ∂ti can be computed with
exactly two uses of the division algorithm, and if one is computing all maps ∂t1 , . . . , ∂tn
at the same time then this can be done with n+ 1 uses of the division algorithm.

This approach uses an alternative way of defining the maps ∂t1 , . . . , ∂tn in the case
that {aij}i,j are constant polynomials. This alternative definition shows that the maps
∂t1 , . . . , ∂tn satisfy a property which is analogous to Taylor’s Theorem. Consider the one
variable case k[x] = k[x1] and let f ∈ k[x]. For another formal variable y one can show
that in the polynomial ring k[x, y] we have

f(x) =
∞∑
p=0

1

p!
f (p)(y)(x− y)p

analogously to the analytic Taylor’s Theorem, where f (p) = dp

dxp
(f) is the pth partial

derivative of f . Rearranging this we have

f(x)− f(y) = f ′(y)(x− y) + (x− y)2

∞∑
p=2

1

p!
f (p)(y)(x− y)p−2

or in other words, f ′(y) is the remainder of f(x) − f(y) divided by (x − y)2. A similar
result can be shown in the multivariate case.

Our first task is to extend the monomial ordering on k[x], which we denote by >x,
to a compatible monomial ordering on k[x, y] = k[x1, . . . , xm, y1, . . . , ym]. We define

3Code for computing such examples can be found at https://github.com/rohan-hitchcock/

msc-thesis-examples.
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a monomial ordering >x,y on k[x, y] as follows. Let (a, b), (a′, b′) ∈ Nm × Nm where
a, b, a′, b′ ∈ Nm. We say

(a, b) >x,y (a′, b′) if and only if a >x a
′ or (a = a′ and b >x b

′) .

That is, >x,y is the lexicographic ordering on Nm × Nm given by considering >x on each
factor. This is clearly a monomial ordering on k[x, y] which agrees with the monomial
order on k[x] when restricted to monomials involving only x variables, and for which
xi > yj for all i, j = 1, . . . ,m. In particular LTx(f(x)) = LTx,y(f(x) + f(y)) for all
f ∈ k[x]. From now on we dispense with distinguishing between >x and >x,y and simply
use > and LT to refer to both monomial orderings.

Next we define Ti = ti(x)− ti(y) and Gi = gi(x)− gi(y) and consider T = (T1, . . . , Tn)
and G = (G1, . . . , Gn′). One can show that T is quasi-regular. Suppose that G is a
Gröbner basis for (T ).4

Lemma 3.5.1. Any F ∈ k[x, y] can be written uniquely in the form

F =
∑
u∈Nn

ruT
u

where T u = T u11 · · ·T unn , we have finitely many ru 6= 0 and if ru 6= 0 then no term of ru is
divisible by any of the LT(Gi) = LT(gi(x)).

Proof. This is an application of Corollary 3.4.2.

Given f ∈ k[x] write

f(x)− f(y) =
∑
u∈Nn

ruT
u

where the ru ∈ k[x, y] are the unique polynomials satisfying the conditions in Lemma
3.5.1. For each u ∈ Nn define a map ρu : k[x] → k[x, y] by setting ρu(f) = ru. We now
prove some facts about these maps. For u, v ∈ Nn define u! = u1!u2! · · ·un! and(

v

u

)
=

{
0 if any vi − ui < 0

v!
u!(v−u)!

otherwise
.

Lemma 3.5.2. ρu is k-linear.

Proof. Let f, g ∈ k[x]. Then we can write

(f + g)(x)− (f + g)(y) =
∑
u∈Nn

(ρu(f) + ρu(g))T u .

Now, if ρu(f) + ρu(g) 6= 0 then no term of ρu(f) + ρu(g) is divisible by any of the LT(Gi).
Hence the right-hand-side satisfies the conditions in Lemma 3.5.1 and so by uniqueness
ρu(f + g) = ρu(f) + ρu(g). Likewise ρu(cf) = cρu(f) for c ∈ k.

Lemma 3.5.3. ρu(t
v) =

(
v
u

)
tv−u(y) for all v ∈ Nn and u 6= 0.

4Under these hypotheses it is clear that (G) = (T ). We conjecture that g being a Gröbner basis implies
that G is a Gröbner basis for any sequence g.
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Proof. It suffices to prove that

tv(x) =
∑
u

(
v

u

)
tv−u(y)T u . (3.6)

Indeed, having shown (3.6) holds we have

tv(x)− tv(y) =
∑
u6=0

(
v

u

)
tv−u(y)T u

where we note that no term of tv−u(y) is divisible by any of the LT(Gi) = LT(gi(x)), since
tv−u(y) is a polynomial in y.

We proceed by induction on |v| =
∑

i vi. If v = 0 then both sides of (3.6) are equal
to 1. Now suppose that |v| ≥ 1. Let i be such that vi > 0. Then, using the induction
hypothesis, we have

tv(x) = ti(x)tv−ei(x)

= ti(x)
∑
u

(
v − ei
u

)
tv−ei−u(y)T u

= (ti(y) + Ti)
∑
u

(
v − ei
u

)
tv−ei−u(y)T u

=
∑
u

(
v − ei
u

)
tv−u(y)T u +

∑
u

(
v − ei
u

)
tv−ei−u(y)T u+ei

=
∑
u

(
v − ei
u

)
tv−u(y)T u +

∑
u6=0

(
v − ei
u− ei

)
tv−u(y)T u

= tv(y) +
∑
u6=0

((
v − ei
u

)
+

(
v − ei
u− ei

))
tv−u(y)T u

= tv(y) +
∑
u6=0

(
v

u

)
tv−u(y)T u

=
∑
u

(
v

u

)
tv−u(y)T u

which proves the claim.

Lemma 3.5.4. For r ∈ C ⊆ k[x] and u 6= 0 we have ρu(rt
v) = r(x)ρu(t

v) for all v ∈ Nn.

Proof. First note that if r = 0 the result is immediate. Supposing r 6= 0, using Lemma
3.5.3 we have

r(x)tv(x)− r(y)tv(y) = r(x)tv(x)− r(x)tv(y) + r(x)tv(y)− r(y)tv(y)

= r(x)(tv(x)− tv(y)) + (r(x)− r(y))tv(y)

= r(x)
∑
u6=0

(
v

u

)
tv−u(y)T u + (r(x)− r(y))tv(y)

= (r(x)− r(y))tv(y) +
∑
u6=0

(
v

u

)
r(x)tv−u(y)T u .

That r ∈ C exactly means that LT(gi) = LT(Gi) does not divide any term of r for all
i = 1, . . . , n′. Hence LT(Gi) does not divide any term of (r(x)−r(y))tv(y) or

(
v
u

)
r(x)tv−u(y)

for all i = 1, . . . , n and u ∈ Nn. Hence by Lemma 3.5.1 this proves the claim.
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Algorithm 3.5.7 Computing ∂tj

1: procedure differentiate(f, j, t1, . . . , tn)
2: Use the division algorithm in k[x, y] to obtain r(x, y), q1(x, y), . . . , qn(x, y) satisfy-

ing

f(x)− f(y) = r(x, y) +
n∑
i=1

qi(x, y)(ti(x)− ti(y))

where the terms of r(x, y) are not divisible by any of the LT(gi).
3: Use the division algorithm in k[x, y] to obtain r′(x, y), p1(x, y), . . . , pn(x, y) satis-

fying

qj(x, y) = r′(x, y) +
n∑
i=1

pi(x, y)(ti(x)− ti(y))

where the terms of r′(x, y) are not divisible by any of the LT(gi).
4: return ϕ(r′(x, y))

Now let ei ∈ Nn have a one in the ith coordinate and zeros elsewhere and let ϕ :
k[x, y]→ k[x] be the k-algebra morphism identifying x and y.

Proposition 3.5.5. ∂ti = ϕρei.

Proof. Lemma 3.5.2, Lemma 3.5.3, and Lemma 3.5.4 give us a method for computing
ϕρei(f) for any f ∈ k[x] via Corollary 3.4.2. This exactly agrees with the definition of
∂ti .

Corollary 3.5.6. From Algorithm 3.5.7 we have ∂tj(f) = differentiate(f, j, t1, . . . , tn).

Proof. This is immediate from Proposition 3.5.5.

Proposition 3.5.5 and Corollary 3.5.6 are the main results of this section, but be-
fore continuing we will make explicit the connection between the maps ∂t1 , . . . , ∂tn and
Taylor’s Theorem. Noting that the maps ∂t1 , . . . , ∂tn commute, for v ∈ Nn we define
∂vt = ∂v1t1 · · · ∂

vn
tn . The next result is analogous to Taylor’s Theorem.

Proposition 3.5.8. ∂vt = v!ϕρv for all v ∈ Nn with v 6= 0.

Proof. Let f ∈ k[x] and write

f(x) =
∑
u

ru(x)tu(x)

where finitely many ru 6= 0 and if ru 6= 0 then no term of ru is divisible by any of the
LT(gi). By Lemma 3.5.3 we have ρv(t

u) =
(
u
v

)
tu−v(y) and so

∂vt (f) =
∑
u

v!

(
u

v

)
ru(x)tu−v(x)

= v!
∑
u

ru(x)ϕρv(t
u)

= v!
∑
u

ϕρv(rut
u)

= v!ϕρv(f)

where we have that ru(x)ρv(t
u) = ρv(rut

u) by Lemma 3.5.4.
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4 Matrix factorisations

In this section we discuss matrix factorisations, which provide a means of studying singu-
larities of polynomials. In Section 4.1 we define matrix factorisations, and more generally
linear factorisations, and make some other preliminary definitions. In Section 4.2 we define
a particular type of matrix factorisation, called a Koszul matrix factorisation, which is
constructed from a Koszul complex. In Section 4.3 we show how the perturbation tech-
niques discussed in Section 2.1 can be extended to linear factorisations. The extension
of these techniques means that the results of Section 3 can be used to construct explicit
homotopy equivalences between matrix factorisations. Examples of how these ideas can
be used together are demonstrated Corollary 4.3.4 and Corollary 4.3.5.

The ideas discussed in this section are central to the definition of bicategory of Landau-
Ginzburg models, which is the focus of Section 5. The categories of 1-morphisms in this
bicategory are categories of matrix factorisations, and the perturbation techniques of Sec-
tion 4.3 play an important role in showing that composition and unit 1-morphisms in
the bicategory work as promised. The application of the results of Section 3 to mat-
rix factorisations provides a means of computing compositions of 1-morphisms in this
bicategory.

4.1 Definition and basic results

Let R be a commutative ring and f ∈ R. The most concrete way to think about a matrix
factorisation of f is as a pair of n× n square matrices (P,Q) with entries in R satisfying
the relations

PQ = QP = f · I

where I is the n× n identity matrix.

Example 4.1.1. Let k be a commutative ring, R = k[x, y] and f = x2 − y2. Then the
following is a matrix factorisation of f :(

x y
y x

)(
x −y
−y x

)
=

(
x −y
−y x

)(
x y
y x

)
=

(
x2 − y2 0

0 x2 − y2

)
.

By choosing n generators for R⊕n we can associate to P and Q morphisms p, q : R⊕n →
R⊕n respectively. Hence, the data of a matrix factorisation can be expressed like so:

R⊕n R⊕n R⊕n

0 1 0

p q
.

If we consider the Z2-grading indicated on the diagram we can view a matrix factorisation
as a Z2-graded R-module X = X0 ⊕ X1 where Xi

∼= R⊕n, together with an odd endo-
morphism dX : X → X given by p : X0 → X1 and q : X1 → X0 on each graded component
of X. That is, dX =

(
0 q
p 0

)
. This endomorphism has the property that d2

X = f · 1X . This
point of view suggests some generalisations: allowing ‘infinite rank’ matrix factorisations
by not requiring the X0 and X1 to be finitely generated, or more generally allowing X0

and X1 to be R-modules which are not necessarily free or finitely generated. Hence we
arrive at the following definition.

Definition 4.1.2. A linear factorisation of f ∈ R is a pair (X, dX) where X is a Z2-
graded R-module and dX : X → X is an odd endomorphism such that d2

X = f · 1X . A
matrix factorisation is a linear factorisation in which the underlying module is free. A
matrix factorisation is finite rank if the underlying module is finitely generated.
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A complex of R-modules is a Z-graded R-module C equipped with a degree ±1 en-
domorphism dC : C → C which squares to zero. Many definitions from the world of
complexes transfer to the world of linear factorisations. Before we state these definitions,
note that any complex (C, dC) can be regarded as a linear factorisation of zero by consid-
ering the Z2-grading on C given by taking

⊕
n∈ZC2n to be the even part and

⊕
n∈ZC2n+1

to be the odd part.

Definition 4.1.3. Let (X, dX) and (Y, dY ) be linear factorisations of f ∈ R. We make
the following definitions:

(1) The map dX is called the differential.

(2) The shift of (X, dX) is the linear factorisation obtained by interchanging the odd
and even parts of X. It is denoted (X[1], dX).

(3) A morphism of linear factorisations (X, dX) → (Y, dY ) is a degree zero R-linear
map α : X → Y which commutes with the differential, meaning that both squares
of the diagram

X0 X1 X0

Y0 Y1 Y0

α0 α1 α0

commute.

(4) A homotopy of the morphism α : (X, dX) → (Y, dY ) is an odd R-linear map h :
X → Y such that α = hdX + dY h.

(5) Two morphisms α, β : (X, dX) → (Y, dY ) are homotopic if there is a homotopy of
α− β. We denote this by α ' β or h : α ' β if we wish to specify the homotopy h.

(6) The linear factorisations (X, dX) and (Y, dY ) are homotopy equivalent if there are
morphisms γ : (X, dX) → (Y, dY ) and γ′ : (Y, dY ) → (X, dX) such that γγ′ ' 1Y
and γ′γ ' 1X .

The relevant category of matrix factorisations is the homotopy category in which
homotopic morphisms are identified. We denote the homotopy category of matrix factor-
isations of f ∈ R by HMF(R, f). The full subcategory of objects which are homotopy
equivalent to a finite rank matrix factorisation is denoted by hmf(R, f).

Definition 4.1.4. The tensor product over R of linear factorisations (X, dX) and (Y, dY )
is defined to be

(X, dX)⊗R (Y, dY ) = (X ⊗R Y, dX ⊗ 1 + 1⊗ dY )

where the tensor product of morphisms is the graded tensor product. We may denote the
differential of the tensor product by dX⊗Y .

The tensor product of matrix factorisations was first defined in [Yos98, Definition 1.2].
If (X, dX) is a linear factorisation of f ∈ R and (Y, dY ) a linear factorisation of g ∈ R
then their tensor product is a linear factorisation of f + g. Indeed we have

d2
X⊗Y = (dX ⊗ 1)2 + (dX ⊗ 1)(1⊗ dY ) + (1⊗ dY )(dX ⊗ 1) + (1⊗ dY )2

= d2
X ⊗ 1 + dX ⊗ dY − dX ⊗ dY + 1⊗ d2

Y

= (f + g) · 1
where we use that the graded tensor product satisfies

(ν1 ⊗ µ1)(ν2 ⊗ µ2) = (−1)|µ1||ν2|ν1ν2 ⊗ µ1µ2

for appropriate homogeneous maps ν1, ν2, µ1, µ2.
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4.2 The Koszul matrix factorisation

In this section we describe a way of making the Koszul complex into a matrix factorisation.
This gives us a way of producing non-trivial matrix factorisations and is also used to
define the unit 1-morphisms in the bicategory of Landau-Ginzburg models. Let R be
a commutative ring and f ∈ R. Suppose a1, . . . , an, b1, . . . , bn ∈ R are such that f =∑n

i=1 aibi. Before continuing we introduce some terminology.

Definition 4.2.1. Let E be a Z2-graded ring, not assumed to be commutative, and con-
sider odd elements θ1, . . . , θn, θ

∗
1, . . . , θ

∗
n ∈ E. We say these elements satisfy the canonical

anticommutation relations if

(1) θiθj + θjθi = 0

(2) θ∗i θ
∗
j + θ∗jθ

∗
i = 0

(3) θiθ
∗
j + θ∗jθi = δij

for all i, j = 1, . . . , n, where δij is the Kronecker delta.

We generally consider the canonical anticommutation relations in the case that E =
End(A) where A is some graded object of a category. In the case that E has odd elements
satisfying the canonical anticommutation relations, A admits a Clifford algebra repres-
entation (this is essentially proved in Lemma 5.6.2). When A is an exterior algebra we
always have endomorphisms satisfying the canonical anticommutation relations.

Lemma 4.2.2. Consider the exterior algebra
∧

(
⊕n

i=1Rei) where e1, . . . , en are formal
generators. Let θi, θ

∗
i :
∧

(
⊕n

i=1Rei) →
∧

(
⊕n

i=1Rei) denote the R-linear maps given by
wedge multiplication θi = ei ∧ (−) and contraction θ∗i = e∗i y(−) for i = 1, . . . , n. Then the
θi and θ∗i are odd maps which satisfy the canonical anticommutation relations.

Proof. Recall that our convention is to omit the wedge symbol “∧” and denote multiplic-
ation in the exterior algebra by juxtaposition. In the following we refer to conditions (1),
(2) and (3) of Definition 4.2.1. Since the wedge product is anticommutative, (1) is clear.
For (2) and (3) we compute the various maps on a basis element ω = ei1 · · · eip where
i1 < · · · < ip.

Consider the contraction operators θ∗a and θ∗b . First note that if a /∈ {i1, . . . , ip} then
θ∗aθ
∗
b (ω) = θ∗bθ

∗
a(ω) = 0, and likewise if b /∈ {i1, . . . , ip} or if a = b. Hence we consider the

case that a = ija and b = ijb for some indices ja 6= jb. Without loss of generality suppose
ja > jb. We have

θ∗aθ
∗
b (ω) = (−1)jb+1θ∗a(ei1 · · · êijb · · · eip)

= (−1)ja(−1)jb+1ei1 · · · êijb · · · êija · · · eip
= (−1)jaθ∗b (ei1 · · · êija · · · eip)
= −θ∗bθ∗a(ω)

and so we have shown θ∗aθ
∗
b + θ∗bθ

∗
a = 0.

Now consider the operators θa and θ∗b . We first study the case in which a 6= b. First
note that if b /∈ {i1, . . . , ip} then θaθ

∗
b (ω) = θ∗bθa(ω) = 0, and likewise if a ∈ {i1, . . . , ip}.

Hence let b = ijb for some index jb and let ja be the largest index such that ija < a or
ja = 0 if no such index exists. We immediately have that

θaθ
∗
b (ω) = (−1)jb+1eaei1 · · · êjb · · · eip .
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When ja < jb this gives

θaθ
∗
b (ω) = (−1)jb+1(−1)jaei1 · · · ea · · · êijb · · · eip

= (−1)ja+1θ∗b (ei1 · · · ea · · · eip)
= −θ∗bθa(ω)

where we understand the indices in the above products to be ascending. Otherwise if
ja > jb we have

θaθ
∗
b (ω) = (−1)jb+1(−1)ja−1ei1 · · · êijb · · · ea · · · eip

= (−1)ja−1θ∗b (ei1 · · · ea · · · eip)
= −θ∗bθa(ω)

where again we understand the indices in the above product to be ascending.
It remains to consider the case in which a = b. First suppose a /∈ {i1, . . . , ip} and let

j0 be the largest index such that ij0 < a or j0 = 0 if no such index exists. Then we have
θaθ
∗
a(ω) = 0 and

θ∗aθa(ω) = (−1)j0θ∗b (ei1 · · · ea · · · eip) = ω

where we understand the indices in the above product to be ascending. In the case that
a ∈ {i1, . . . , ip} let a = ij0 for some index j0. Then we have θ∗aθa(ω) = 0 and

θaθ
∗
a(ω) = (−1)j0+1θa(ei1 · · · êij0 · · · eip) = ω

as required. Hence we have shown that θaθ
∗
b + θ∗bθa = δab which completes the proof.

Lemma 4.2.3. Suppose M is a Z2-graded R-module with odd R-linear maps θi, θ
∗
i :

M → M , i = 1, . . . , n satisfying the canonical anticommutation relations. Then, setting
δ+ =

∑n
i=1 aiθi and δ− =

∑n
i=1 biθ

∗
i , we have that (M, δ−+ δ+) is a linear factorisation of

f .

Proof. Set δ = δ− + δ+. We need to show that δ2 = f · 1M which we do by induction on
n. By noting that θ2

i = 0 and θ∗i
2 = 0 we see the case of n = 1 is clear. For the inductive

case set f ′ =
∑n−1

i=1 aibi and δ′ =
∑n−1

i=1 aiθi +
∑n−1

i=1 biθ
∗
i . By the induction hypothesis we

have δ′2 = f ′ · 1M and so

δ2 = (δ′ + anθn + bnθ
∗
n)2

= f ′ · 1M + an(δ′θn + θnδ
′) + bn(δ′θ∗n + θ∗nδ

′) + anbn · 1M
= f · 1M + an(δ′θn + θnδ

′) + bn(δ′θ∗n + θ∗nδ
′) .

Noting that δ′θn + θnδ
′ = δ′θ∗n + θ∗nδ

′ = 0 gives the desired result.

Therefore (
∧

(R⊕n), δ− + δ+) is a matrix factorisation of f , where δ+ =
∑n

i=1 aiθi and
δ− =

∑n
i=1 biθ

∗
i , and θi and θ∗i are as in Lemma 4.2.2. Furthermore, if we consider the

Koszul complex K(b) of b = (b1, . . . , bn), then δ− will be the usual differential of the
Koszul complex.

Definition 4.2.4. The matrix factorisation (K(b), δ−+ δ+) of f is called a Koszul matrix
factorisation of f .

Koszul matrix factorisations were first defined (but not named as such) in [BGS87,
Section 2] where they were used to construct examples of maximal Cohen-Macaulay mod-
ules. The properties of the Koszul matrix factorisation are also discussed in [Dyc11,
Section 2.3] and [CM14, Appendix D].
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4.3 Perturbation of matrix factorisations

In Section 2.1 we discussed strong deformation retracts and perturbation of complexes
in an abelian category. In this section we adapt these ideas to the setting of linear
factorisations. Let R be a commutative ring.

Definition 4.3.1. Let (L, dL) and (M,dM) be linear factorisations of f ∈ R. A deform-
ation retract of (L, dL) and (M,dM) over R consists of morphisms

(L, dL) (M,dM), h
i

p

where pi = 1 and h : ip ' 1. This deformation retract is called strong if in addition
h2 = 0, hi = 0 and ph = 0.

As for complexes, a strong deformation retract is a special type of homotopy equival-
ence of linear factorisations which can be modified by perturbation. Let

(L, dL) (M,dM), h
i

p

(4.1)

be a deformation retract of linear factorisations of f ∈ R. A perturbation of (4.1) is
an odd R-linear map δ : M → M such that (dM + δ)2 = g · 1 for some g ∈ R, where
possibly f 6= g. The perturbation δ is called small if (1− δh) is invertible. Given a small
perturbation δ of (4.1) the perturbed data is

(L, d′L) (M,dM + δ), h′
i′

p′

(4.2)

where a = (1 − δh)−1δ, d′L = dL + pai, i′ = i + hai, p′ = p + pah and h′ = h + hah. In
Section 4.1 we discussed how a complex can be regarded as a linear factorisation of zero by
taking the obvious Z2-grading on the complex. When doing so, any (strong) deformation
retract of complexes in the sense of Definition 2.1.3 yields a (strong) deformation retract
of linear factorisations in the sense of Definition 4.3.1. A version of the perturbation
lemma also holds for linear factorisations.

Theorem 4.3.2 (Perturbation Lemma for linear factorisations). If (4.1) is a strong de-
formation retract and δ is a small perturbation of (4.1) then the perturbed data (4.2) is
also a strong deformation retract.

Proof. The proof of this theorem closely follows the proof in [Cra04, Section 2.4] of the
analogous statement for complexes. We begin by proving the following statements:

(1) δha = ahδ = a− δ.

(2) (1− δh)−1 = 1 + ah and (1− hδ)−1 = 1 + ha.

(3) aipa+ adM + dMa = (g · 1− f · 1)(1 + ah+ ha).

For (1), note that by definition of a we have (1− δh)a = δ, proving a− δ = δha. For the
other equality, we can write δhδ = δ − (1 − δh)δ and multiply on the left by (1 − δh)−1

to get ahδ = a− δ. Statement (2) is proved by observing

(1 + ah)(1− δh) = 1 + ah− δh− ahδh
= 1 + ah− δh− (a− δ)h
= 1
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and similarly that (1 + ha)(1− hδ) = 1, (1− hδ)(1 + ha) = 1 and (1 + ha)(1− hδ) = 1.
For (3) we compute directly. Using (1) and (2) above, and the fact that h2 = 0 we have

adM + dMa+ aipa = adM + dMa+ a(1 + dMh+ hdM)a

= adM(1 + ha) + (1 + ah)dMa+ a2

= adM(1− hδ)−1 + (1− δh)−1dMa+ a2

= (1− δh)−1
[
(1− δh)adM + dMa(1− hδ)

+ (1− δh)a2(1− hδ)
]
(1− hδ)−1

= (1 + ah)
[
(a− δha)dM + dM(a− ahδ)

+ (a− δha)(a− ahδ)
]
(1 + ha)

= (1 + ah)
[
(a− a+ δ)dM + dM(a− a+ δ)

+ (a− a+ δ)(a− a+ δ)
]
(1 + ha)

= (1 + ah)
[
δdM + dMδ + δ2

]
(1 + ha)

= (1 + ah)
[
(dM + δ)2 − d2

M

]
(1 + ha)

= (g · 1− f · 1)(1 + ah)(1 + ha)

= (g · 1− f · 1)(1 + ah+ ha)

proving (3).

(L, d′L) is a linear factorisation of g. We need to show that d′L
2 = g · 1. We have

d′L
2

= (dL + pai)2

= f · 1 + dLpai+ paidL + paipai

= f · 1 + dLpai+ paidL + p ((g · 1− f · 1)(1 + ah+ ha)− adM − dMa) i

= f · 1 + dLpai+ paidL + g · 1− f · 1− p (adM + dMa) i

= g · 1 + dLpai+ paidL − padM i− pdMai
= g · 1 + pa

(
idL − dM i

)
+
(
dLp− pdM

)
ai

= g · 1

where we use that pi = 1, pdM = dLp, idL = dM i, hi = 0, ph = 0, h2 = 0, and equation
(3) above.

i′ is a morphism. We need to show that i′d′L = (dM + δ)i′. We have

i′d′L − (dM + δ)i′ = (i+ hai)(dL + pai)− (dM + δ)(i+ hai)

= idL + haidL + ipai+ haipai− dM i− δi− dMhai− δhai
= haidL + ipai+ h

(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
i

− δi− dMhai− (a− δ)i
= haidL + ipai− h(adM + dMa)i− dMhai− ai
= ha(idL − dM i) + (ip− hdM − dMh− 1)ai

= 0

where we use (1), (3), hi = 0, h2 = 0, idL = dM i and ip− 1 = hdM + dMh.
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p′ is a morphism. We need to show that d′Lp
′ = p′(dM + δ). We have

d′Lp
′ − p′(dM + δ) = (dL + pai)(p+ pah)− (p+ pah)(dM + δ)

= dLp+ paip+ dLpah+ paipah− pdM − pahdM − pahδ − pδ
= paip+ dLpah+ p

(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
h

− pahdM − p(a− δ)− pδ
= paip+ dLpah− p(adM + dMa)h− pahdM − pa
= pa(ip− dMh− hdM − 1) + (dLp− pdM)ah

= 0

where we use (1), (3), ph = 0, h2 = 0, dLp = pdM and ip− 1 = dMh+ hdM .

p′i′ = 1. This is straightforward:

p′i′ = (p+ pah)(i+ hai) = 1

since ph = 0, hi = 0 and h2 = 0.

h′ is a homotopy from i′p′ to 1. We need to show i′p′−1 = h′(dM+δ)+(dM+δ)h′. Setting
d′M = dM + δ we have

1 + h′d′M + d′Mh
′ − i′p′ = 1 + (h+ hah)(dM + δ) + (dM + δ)(h+ hah)

− (i+ hai)(p+ pah)

= 1 + hdM + hahdM + hδ + hahδ + dMh+ dMhah+ δh+ δhah

− ip− ipah− haip− haipah
= hahdM + hδ + hahδ + dMhah+ δh+ δhah

− ipah− haip− haipah
= hahdM + hδ + h(a− δ) + dMhah+ δh+ (a− δ)h− ipah

− haip− h
(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
h

= hahdM + ha+ dMhah+ ah− ipah− haip+ h
(
adM + dMa

)
h

= ha(hdM + 1− ip+ dMh) + (dMh+ 1− ip+ hdM)ah

= 0

where we use (1), (3), h2 = 0 and ip− 1 = hdM + dMh.

This has shown that the maps i′, p′, d′L, d′M and h′ form a deformation retract. It is
clearly also a strong deformation retract, and so this completes the proof.

One can show that we can replace the condition that the initial deformation retract
in Theorem 4.3.2 be strong with the following conditions on the deformation retract and
small perturbation:

(1) pδ = 0 and ph = 0.

(2) (dM + δ)2 = d2
M .

Before discussing some corollaries of the Perturbation Lemma we note a useful suffi-
cient condition for a perturbation to be small. In fact, as explained in [Cra04, Remark
2.3.iii] a perturbation δ of the deformation retract (4.1) is small if and only if δh is locally
nilpotent, meaning for all x ∈ M we have (δh)n(x) = 0 for some n. For our purposes we
only need to show that if δh is nilpotent then δ is small.
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Lemma 4.3.3. A perturbation δ of the deformation retract (4.1) is small if (δh)n = 0 for
sufficiently large n, in which case (1− δh)−1 =

∑
k≥0(δh)k.

Proof. If (δh)n = 0 then
∑

k≥0(δh)k =
∑n−1

k=0(δh)k, so this sum is well-defined. We then
compute

(1− δh)
n−1∑
k=0

(δh) =
n−1∑
k=0

(δh)k −
n−1∑
k=0

(δh)k+1 =
n−1∑
k=0

(δh)k −
n∑
k=1

(δh)k = 1− (δh)n = 1

and likewise
∑n−1

k=0(δh)k(1− δh) = 1. Hence we have (1− δh)−1 =
∑n−1

k=0(δh)k.

Corollary 4.3.4. Consider the deformation retract of linear factorisations of f given in
(4.1) and suppose it is a strong deformation retract. Then for any linear factorisation
(Z, dZ) of g ∈ R the following is a strong deformation retract of linear factorisations of
f + g:

(L⊗R Z, dL ⊗ 1 + 1⊗ dZ) (M ⊗R Z, dM ⊗ 1 + 1⊗ dZ), h⊗ 1
i⊗1

p⊗1

.

Proof. Tensoring the modules in (4.1) by Z we obtain

(L⊗R Z, dL ⊗ 1) (M ⊗R Z, dM ⊗ 1), h⊗ 1
p⊗1

i⊗1
.

which is also a strong deformation retract. Note that 1⊗ dZ is a small perturbation since
(1− h⊗ dZ)−1 = (1 + h⊗ dZ). Set a = (1 + h⊗ dZ)(1⊗ dZ) = 1⊗ dZ + h⊗ d2

Z and apply
the Perturbation Lemma to the strong deformation retract above. Note that we have

(p⊗ 1)a(i⊗ 1) = pi⊗ dZ + phi⊗ d2
Z = 1⊗ dZ

so the new differential on the left is dL ⊗ 1 + 1⊗ dZ . We also have

(p⊗ 1)a(h⊗ 1) = ph⊗ dZ + ph2 ⊗ d2
Z = 0

and likewise (h ⊗ 1)a(i ⊗ 1) = 0 and (h ⊗ 1)a(h ⊗ 1) = 0. Hence we obtain the claimed
strong deformation retract from the Perturbation Lemma.

The Perturbation Lemma can also be used to produce a strong deformation retract
involving the Koszul matrix factorisation of some element f ∈ R. Suppose a1, . . . , an ∈ R
and t1, . . . , tn ∈ R are sequences such that f =

∑n
i=1 aiti and consider the Koszul complex

(K(t), dK) of t = (t1, . . . , tn). Set δ+ =
∑n

i=1 aiθi and δ− = dK =
∑n

i=1 tiθ
∗
i , where θi and

θ∗i are wedging and contraction operators on K(t) respectively as in Lemma 4.2.2. Suppose
we have a strong deformation retract of complexes over R

(R
/
I, 0) (K(t), δ−), h

i

p

(4.3)

where I = (t1, . . . , tn) is the ideal generated by the elements of t. We produced sim-
ilar strong deformation retracts in Corollary 2.4.3, Proposition 3.2.9 and Corollary 3.4.3.
Under these hypotheses we have a strong deformation retract involving a Koszul matrix
factorisation of f .

Corollary 4.3.5. Given the preceding assumptions, we have a strong deformation retract
over R

(R
/

(t), 0) (K(t), δ− + δ+), h′

of linear factorisations of f .
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Proof. First note that f acts by zero on R
/
I so (R

/
I, 0) is indeed a linear factorisation

of f .
Next note that we can regard the complexes in (4.3) as linear factorisations of zero and

so view (4.3) as a strong deformation retract of linear factorisations. With respect to the
usual Z-grading on K(t), both h and δ+ are degree +1 maps and so δ+h has degree +2.
Since K(t) is a bounded complex there exists a sufficiently large m such that (δ+h)m = 0.
Then by Lemma 4.3.3 we have that δ+ is a small perturbation of (4.3). The desired strong
deformation retract is obtained using the Perturbation Lemma, noting that δ+ is the zero
map on R

/
I.

Corollary 4.3.4 and Corollary 4.3.5 are not actually used in the following section (the
Perturbation Lemma is used directly) however these corollaries demonstrate how we use
the Perturbation Lemma. In each subsequent application of the Perturbation Lemma we
either use it to tensor a strong deformation retract of linear factorisations with a third
linear factorisation, or to introduce a perturbation which converts a Koszul complex into
a Koszul matrix factorisation. Nuances of these applications mean that the hypotheses of
Corollary 4.3.4 and Corollary 4.3.5 are not satisfied exactly. In Corollary 2.4.3, Proposition
3.2.9 and Corollary 3.4.3 R is a k-algebra for some commutative ring k and the strong
deformation retract produced by these results is over k not R, meaning that Corollary
4.3.4 and Corollary 4.3.5 cannot be applied in these settings. These two results, however,
capture the essence of how we use the Perturbation Lemma for linear factorisations.
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5 The bicategory of Landau-Ginzburg Models

In this section we describe the bicategory of Landau-Ginzburg models over a commutative
ring k, which we denote LGk, and prove that it is a bicategory. This bicategory was first
described in [BR07; McN09; CR10]. Here we take the approach of [Mur18; DM13; CM16]
and provide additional details and exposition which are not present in the literature.

We begin by defining the data of LGk in Section 5.1, and in Sections 5.2 and 5.3 we
prove that this data does indeed form a bicategory. Sections 5.4 and 5.5 address the
cut operation of [Mur18], which provides a means of computing compositions in LGk.
Examples of such computations are given in Section 5.6. The other sections of this
thesis provide important background to this section. Matrix factorisations, which were
introduced in Section 4, are the 1-morphisms in LGk and perturbation techniques for
matrix factorisations are used throughout this section. The explicit strong deformation
retract between the Koszul complex and its homology discussed in Section 3 is key to
constructing the cut operation. In Appendix A we discuss bicategories, and definition of
a bicategory is given in Definition A.2.1. Idempotent completion of categories also plays
a subtle but important role in defining LGk, and this is discussed in Appendix B.

5.1 The data of the bicategory

Let k be a commutative ring. The objects of LGk are certain types of polynomials called
potentials. Theorem 3.1.2 shows that the following definition of a potential is equivalent
to the definition given in [CM16, Definition 2.4].

Definition 5.1.1. Let k be a commutative ring. A polynomial U ∈ k[x] = k[x1, . . . , xn]
is called a potential if:

(1) The sequence of partial derivatives (∂x1U, . . . , ∂xnU) is Koszul-regular.

(2) The Jacobi ring k[x]
/

(∂x1U, . . . , ∂xnU) is a finitely generated free k-module.

Given potentials U ∈ k[x] and V ∈ k[y] we denote the homotopy category of finite
rank matrix factorisations of V (y)− U(x) over k[x, y] by

h(U, V ) = hmf(k[x, y], V (y)− U(x)) .

In order to define LGk we need to use the idempotent completion of h(U, V ) (Definition
B.2.1) which we denote by h(U, V )ω. Background on idempotent completion is given in
Appendix B. In particular, Corollary B.3.3 shows that we can regard h(U, V )ω as the full
subcategory of HMF(k[x, y], V (y)−U(x)) consisting of all direct summands of finite rank
matrix factorisations.

Definition 5.1.2. The bicategory of Landau-Ginzburg models over k, denoted LGk, con-
sists of the following data:

(1) The objects of LGk are pairs (k[x], U) where k[x] = k[x1, . . . , xn] is a polynomial
ring and U ∈ k[x] is a potential.

(2) The category of 1-morphisms (k[x], U)→ (k[y], V ) is h(U, V )ω.

(3) Composition of the 1-morphisms

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

is given by taking the tensor product of linear factorisations over k[y]:

(X, dX)⊗k[y] (Y, dY ) = (X ⊗k[y] Y, dX ⊗ 1 + 1⊗ dY ) .
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(4) Consider an object (k[x], U) where k[x] = k[x1, . . . , xn] and the polynomial ring
k[x, x′] = k[x1, . . . , xn, x

′
1, . . . , x

′
n]. The unit 1-morphism (IU , dIU ) of (k[x], U) is a

Koszul matrix factorisation (Definition 4.2.4) of U(x′)−U(x) ∈ k[x, x′] arising from
the Koszul complex of the sequence (x1 − x′1, . . . , xn − x′n) in k[x, x′].

According to the definition of a bicategory we also need to specify the associator, left
unitor and right unitor natural isomorphisms as part of the data of LGk. However, doing
so now is awkward so we delay this until Sections 5.2 and 5.3 where we show that such
natural isomorphisms exist and, together with the data given above, form a bicategory.

Note that it is not clear that the tensor product is a well-defined composition functor.
Consider the 1-morphisms

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

in LGk. Writing X = k[x, y]⊕m and Y = k[y, z]⊕m
′

for some m,m′ ∈ N we have that

X ⊗k[y] Y = (k[x, y]⊗k[y] k[y, z])mm
′
= k[x, y, z]mm

′

which is free, but not finitely generated over k[x, z]. Hence it is only clear that the
composition of (X, dX) and (Y, dY ) belongs to HMF(k[x, z],W (z) − U(x)), rather than
h(U,W )ω.

We adopt similar approaches, both based on the strategy of [Mur18, Strategy 4.2],
for showing that composition and unit 1-morphisms work as expected. In each case we
begin with a strong deformation retract between the Koszul complex of a Koszul-regular
sequence. We then modify this strong deformation retract using the perturbation tech-
niques described in Section 4.3 to produce a homotopy equivalence between appropriate
objects. In the case of composition this means showing that (X ⊗k[y] Y, dX⊗Y ) is, up to
homotopy, the direct summand of a matrix factorisation which is finite rank over k[x, z].

5.2 Composition

We begin with composition. The sequence of partial derivatives of a potential is Koszul-
regular by hypothesis so we will begin with a strong deformation retract between the
Jacobi ring of a potential and the Koszul complex of its sequence of partial derivatives.
Before proceeding to the main result in Proposition 5.2.5 we will need to develop tools
which allow us to remove the Koszul differential of this initial Koszul complex. The key
observation from [Mur18, Lemma 2.12] which allows us to do so is as follows.

Lemma 5.2.1. Let (Z, dZ) be a finite rank matrix factorisation of a polynomial U ∈
k[x] = k[x1, . . . , xn]. Multiplication by a partial derivative ∂xiU is a null-homotopic map
on (Z, dZ).

Proof. Since Z is free over k[x] we can fix a k[x]-basis for Z and write dZ as a matrix
with respect to this basis. We then differentiate the matrix of dZ entrywise with respect
to xi to obtain a matrix λi = ∂xi(dZ). By the Leibniz rule we have ∂xiU · 1Z = ∂xi(d

2
Z) =

dZλi + λidZ .

Lemma 5.2.2. Let α, β : (C, dC) → (D, dD) be morphisms of either chain complexes or
linear factorisations, and suppose they are homotopic via h : α ' β. Then cone(α) ∼=
cone(β).
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Proof. We define cone(α) as

· · · Cn+1 ⊕Dn+2 Cn ⊕Dn+1 Cn−1 ⊕Dn · · ·dα dα

where dα =
(
dC 0
α −dD

)
, and if (C, dC) is a linear factorisation then addition in the indices is

modulo 2. Likewise cone(β) is the graded object C⊕D[1] with differential dβ =
(
dC 0
β −dD

)
.

Define ϕ : C ⊕D[1]→ C ⊕D[1] as ϕ = ( 1 0
−h 1 ). We have

ϕdα =

(
dC 0

−hdC + α −dD

)
and

dβϕ =

(
dC 0

β + dDh −dD

)
.

These agree since α − β = hdC + dDh and so ϕ : cone(α) → cone(β) is a morphism.
Likewise we define ψ : cone(β) → cone(α) as ψ = ( 1 0

h 1 ), and we have ϕψ = 1 and
ψϕ = 1.

Let R be a commutative k-algebra, (Z, dZ) a linear factorisation in which Z is an
R-module and let t = (t1, · · · , tn) be a sequence of elements of R which all act null-
homotopically on (Z, dZ). Consider the Koszul complex (K(t), dK) of t. We now aim to
construct an isomorphism of linear factorisations

(K(t)⊗R Z, dK ⊗ 1 + 1⊗ dZ) (
∧

(
⊕n

i=1Rθi)⊗R Z, 1⊗ dZ)
∼=

where θ1, . . . , θn are formal generators. We begin by sketching why we expect such an
isomorphism to exist, and then in Lemma 5.2.4 we provide an explicit isomorphism.

For each ti consider the Koszul complex (K(ti), dKi) of ti regarded as a one element
sequence. It is straightforward to check that (K(ti), dKi) ⊗R (Z, dZ) ∼= cone(ti), where
cone(ti) is the cone of the map ti : (Z, dZ) → (Z, dZ) given by multiplication by ti. By
Lemma 5.2.2 we have cone(ti) ∼= cone(0). But cone(0) is just (Z ⊕Z[1], dZ ⊕ (−dZ)), and
Z ⊕Z[1] ∼= (R⊕R[1])⊗R Z as R-modules. Noting that we have K(t) = K(t1)⊗R · · · ⊗R
K(tn) we can inductively show (K(t) ⊗R Z, 1 ⊗ dZ) ∼= (K(t) ⊗R Z, dK ⊗ 1 + 1 ⊗ dZ) as
linear factorisations over R.

We now write down this isomorphism explicitly. First note that we have a canonical
isomorphism

∧
(
⊕n

i=1Rθi)⊗RZ ∼=
∧

(
⊕n

i=1 kθi)⊗kZ so it suffices to find an isomorphism

ϕ : (
∧

(
⊕n

i=1 kθi)⊗k Z, dK + dZ) (
∧

(
⊕n

i=1 kθi)⊗k Z, dZ) .

Let θ∗1, . . . , θ
∗
n be the contraction operators on

∧
(
⊕n

i=1 kθi) and for each i = 1, . . . , n let
λi : ti ' 0 be the homotopy on Z arising in Lemma 5.2.1. We consider both θ∗i and λ∗i
acting on

∧
(
⊕n

i=1 kθi) ⊗k Z as θ∗i = θ∗i ⊗ 1 and λi = 1 ⊗ λi respectively, recalling that
this tensor product is graded with respect to the Z2-grading. Following [Mur18, Section
4.2] we define

exp(δ) =
∑
m≥0

1

m!
δm and exp(−δ) =

∑
m≥0

(−1)m

m!
δm

where δ =
∑n

i=1 λiθ
∗
i . This definition makes sense because δ is nilpotent: δ has degree −1

with respect to the Z-grading on
∧

(
⊕n

i=1 kθi) and this graded module is zero in negative
degree.
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Lemma 5.2.3. δθ∗j = θ∗j δ for all j = 1, . . . , n.

Proof. Recall that for the graded tensor product

(ν1 ⊗ µ1)(ν2 ⊗ µ2) = (−1)|µ1||ν2|ν1ν2 ⊗ µ1µ2

where ν1, ν2, µ1, µ2 are appropriate homogeneous maps. Hence since λi = 1 ⊗ λi and
θ∗j = θ∗j ⊗ 1 we have λiθ

∗
j = −θ∗jλi and so

δθ∗j =
n∑
i=1

λiθ
∗
i θ
∗
j = −

n∑
i=1

λiθ
∗
jθ
∗
i = θ∗j δ

as claimed.

Lemma 5.2.4 ([Mur18, Proposition 4.12]). The map

exp(δ) : (
∧

(
⊕n

i=1 kθi)⊗k Z, dK + dZ) (
∧

(
⊕n

i=1 kθi)⊗k Z, dZ)

is an isomorphism with inverse exp(−δ).

Proof. Clearly exp(δ) and exp(−δ) are mutually inverse isomorphisms of modules so it
suffices to show that they commute with the differentials. We first show that [dZ , δ

m] =
mδm−1dK for m ≥ 1, where [dZ , δ

m] is the graded commutator with respect to the Z2-
grading. When m = 1 we have

[dZ , δ] =
n∑
i=1

[dZ , λi]θ
∗
i =

n∑
i=1

tiθ
∗
i = dK

where we recall that dK =
∑n

i=1 tiθ
∗
i . Now consider m > 1. First note that

m−1∑
i=0

δi[dZ , δ]δ
m−i−1 =

m−1∑
i=0

δidZδ
m−i −

m−1∑
i=0

δi+1dZδ
m−i−1

=
m−1∑
i=0

δidZδ
m−i −

m∑
i=1

δidZδ
m−i

= [dZ , δ
m]

and so we have

[dZ , δ
m] =

m−1∑
i=0

δi[dZ , δ]δ
m−i−1 =

m−1∑
i=0

δidKδ
m−i−1 =

m−1∑
i=0

δm−1dK = mδm−1dK

since by Lemma 5.2.3 we have dKδ = δdK . Next we compute [dZ , exp(δ)]. We have

[dZ , exp(δ)] =
∑
m≥0

1

m!
[dZ , δ

m] =
∑
m≥1

1

(m− 1)!
δm−1dK = exp(δ)dK .

Since [dZ , exp(δ)] = dZ exp(δ)− exp(δ)dZ , rearranging this expression gives

exp(δ)(dZ + dK) = dZ exp(δ)

which shows exp(δ) is a morphism of linear factorisations as required.
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Now consider the following 1-morphisms in LGk

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

where k[y] = k[y1, · · · , yn]. We now show that the composition of (X, dX) and (Y, dY ) is
well-defined. This is done in several places in the literature however these papers often
have other goals which can complicate the situation considerably and do not include
exposition which would be helpful to non-experts. Here we give a proof which presents
this result in isolation and includes details which are alluded to in the literature. There
are several ways to present this result, and here we most closely follow the approach of
[Mur18].

Proposition 5.2.5. The composition of (X, dX) and (Y, dY ), which is (X ⊗k[y] Y, dX⊗Y ),
is a direct summand of a matrix factorisation which is finite rank over k[x, z].

Proof. Let t = (∂y1V, . . . , ∂ynV ) be the sequence of partial derivatives in k[y]. Consider the
Jacobi ring JV = k[y]

/
(t) and the Kozul complex (K(t), dK) of t. Since V is a potential

JV is a free k-module and by Corollary 2.4.3 we obtain a strong deformation retract

(JV , 0) (K(t), dK), h
σ

π

over k. We would like to tensor both sides of this strong deformation retract by X⊗k[y] Y
and mix in the differential dX⊗Y along the lines of Corollary 4.3.4. However, while all the
modules in the above strong deformation retract are k[y]-modules, the maps σ and h are
only k-linear a priori.

The solution is to fix a k[x, z]-basis of the form {ea ⊗ fb}a,b for X ⊗k[y] Y and define
k[x, z]-linear maps

(X ⊗k[y] JV ⊗k[y] Y, 0) (K(t)⊗k[y] X ⊗k[y] Y, dK ⊗ 1), h̃
σ̃

π⊗1
(5.1)

as follows. Since π and dK in the original strong deformation retract are k[y]-linear we
obtain π ⊗ 1 and dK ⊗ 1 by applying the functor (−)⊗k[y] X ⊗k[y] Y . The maps σ̃ and h̃
are defined on the basis {ea ⊗ fb}a,b as

σ̃(ea ⊗ r ⊗ fb) = σ(r)⊗ ea ⊗ fb

for r ∈ JV , and for g ∈ K(t)

h̃(g ⊗ ea ⊗ fb) = h(g)⊗ ea ⊗ fb

where we extend k[x, z]-linearly. Notice that the maps σ̃ and h̃ depend on the choice of
basis for X ⊗k[y] Y . It is straightforward to see that (5.1) is a strong deformation retract
over k[x, z].

Following Section 4.3 we now view d = 1⊗ dX⊗Y as a perturbation of (5.1). We aim
to show d is a small perturbation. By Lemma 4.3.3 it suffices to show that (dh̃)m = 0 for
sufficiently large m. With respect to the Z-grading arising from K(t) (and ignoring the
grading on X ⊗k[y] Y ) we note that dh̃ is a degree −1 operator. Since K(t) is a bounded

complex we have that (dh̃)m = 0 for some sufficiently large m.
Hence by the Perturbation Lemma (Theorem 4.3.2) we obtain a strong deformation

retract over k[x, z]

(Y |X, dY |X) (K(t)⊗k X ⊗k[y] Y, dK ⊗ 1 + 1⊗ dX⊗Y ), h′
σ′

π′
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where σ′ = σ̃ + h̃aσ̃, π′ = π ⊗ 1 + (π ⊗ 1)ah̃, h′ = h̃ + h̃ah̃ and a = (1− dh̃)−1d, and we
define Y |X = X ⊗k[y] JV ⊗k[y] Y and dY |X = dX ⊗ 1 + 1⊗ dY .

Lemma 5.2.1 shows that the partial derivatives of V act null-homotopically onX⊗k[y]Y
and so we have an isomorphism of linear factorisations

ϕ : (K(t)⊗k[y] X ⊗k[y] Y, dK ⊗ 1 + 1⊗ dX⊗Y ) −→ (
∧

(k⊕n)⊗k X ⊗k[y] Y, 1⊗ dX⊗Y )

by Lemma 5.2.4. Hence we obtain a strong deformation retract

(Y |X, dY |X) (
∧

(k⊕n)⊗k X ⊗k[y] Y, 1⊗ dX⊗Y ), ϕh′ϕ−1

ϕσ′

π′ϕ−1

(5.2)

over k[x, y]. Since V is a potential JV ∼= k⊕m for some m and so

Y |X = X ⊗k[y] JV ⊗k[y] Y ∼= k[x, z]⊕m .

So, the left-hand-side of (5.2) is a finite rank matrix factorisation and the right-hand-side
has (X ⊗k[y] Y, dY⊗X) as a direct summand.

It is worth comparing the perturbation step in the proof of Proposition 5.2.5 to the
proof of Corollary 4.3.4, where we showed that tensoring a strong deformation retract of
linear factorisations by a third linear factorisation does not disturb the strong deformation
retract. In Corollary 4.3.4 the strong deformation retract was over a commutative ring
R, and the tensor product was taken over the same ring. In Proposition 5.2.5 our strong
deformation retract was over k, but we wanted to take tensor products over k[y]. This
required us to introduce a basis in order to extend the maps in the strong deformation
retract to the new modules. Then, when showing the differential 1 ⊗ dX⊗Y is a small
perturbation of (5.1) we need to use the Z-grading on K(t) since the homotopy h̃ in (5.1)
does not commute with 1⊗ dX⊗Y .

Proposition 5.2.5 and Corollary B.3.3 show that the tensor product defines a functor

h(U, V )× h(V,W )→ h(U,W )ω .

By the property of idempotent completion given in Lemma B.3.4 this extends to a functor

h(U, V )ω × h(V,W )ω → h(U,W )ω

which is composition in the bicategory LGk. This shows that composition in LGk is well-
defined. Since tensor products are associative up to natural isomorphism this composition
functor is associative in the sense of Definition A.2.1. It is also straightforward to show
that it satisfies the relevant coherence condition given in Definition A.2.1.

5.3 Unit 1-morphisms

We now consider unit 1-morphisms in LGk. Let U ∈ k[x] = k[x1, . . . , xn] be a potential
and k[x, x′] = k[x1, . . . , xn, x

′
1, . . . , x

′
n]. Let t = x′i − xi and consider the regular sequence

t = (t1, . . . , tn) in k[x, x′]. There is clearly a sequence a = (a1, . . . , an) in k[x, x′] such that
U(x′)−U(x) =

∑n
i=1 aiti. Let (I, d) denote the Koszul matrix factorisation of U(x′)−U(x)

arising from this expression, as specified in Definition 4.2.4.

Proposition 5.3.1. (I, d) satisfies the properties of the unit 1-morphism of (k[x], U) in
LGk.
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Proof. We need to show given a 1-morphism (X, dX) : (k[x′], U)→ (k[y], V ) that (X, dX)
is isomorphic to (I, d) ⊗k[x′] (X, dX) in the category h(U, V ), and similarly given a 1-
morphism (Y, dY ) : (k[z],W )→ (k[x], U) that (Y, dY ) is isomorphic to (Y, dY )⊗k[x] (I, d)
in the category h(W,U).

We show the first isomorphism involving the matrix factorisation (X, dX). The second
proceeds similarly. Theorem 3.1.2 tells us that t is a Koszul-regular sequence, and so
using Corollary 2.4.3 we obtain a strong deformation retract over k

(k[x′], 0) (K(t), dK), h

where (K(t), dK) is the Koszul complex of t. As in the proof of Proposition 5.2.5 we fix
a k[x, y]-basis for X in order to define a strong deformation retract

(X, 0) (K(t)⊗k[x′] X, dK ⊗ 1), h̃ (5.3)

over k[x, y]. Now set δ+ =
∑n

i=1 aiθi where θ1, · · · , θn are the wedging operators on K(t).

Note that (δ+ ⊗ 1)h̃ is a degree +2 operator with respect to the Z-grading on K(t).
Since K(t) is bounded this means (δ+ ⊗ 1)h̃ is nilpotent. Likewise (1⊗ dX)h̃ is a degree
+1 operator with respect to the Z-grading on K(t) and so δ+ ⊗ 1 + 1 ⊗ dX is a small
perturbation of (5.3) by Lemma 4.3.3. Since d = dK + δ+ this gives a strong deformation
retract

(X, dX) (I ⊗k[x′] X, d⊗ 1 + 1⊗ dX), h′

over k[x, y] as required. That a 1-morphism (Y, dY ) : (k[y], V ) → (k[x], U) is homotopy
equivalent to (Y ⊗k[x] I, dY⊗I) is shown similarly.

Proposition 5.3.1 should be compared to Corollary 4.3.5, where we showed how to pro-
duce a strong deformation retract involving a Koszul matrix factorisation. In Proposition
5.3.1 we used a combination of the ideas Corollary 4.3.4 and Corollary 4.3.5 to simultan-
eously produce the Koszul matrix factorisation and tensor both sides of the deformation
retract by another matrix factorisation.

5.4 The cut operation

Let k be a commutative ring and consider following morphisms

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

in LGk. Let k[y] = k[y1, · · · , yn], t = (∂y1V, . . . , ∂ynV ) be the sequence of partial derivat-
ives of V , I = (∂y1V, . . . , ∂ynV ) the ideal generated by the elements of t and JV = k[y]

/
I

be the Jacobi ring of V .

Definition 5.4.1. The cut of the matrix factorisations (X, dX) and (Y, dY ) is the matrix
factorisation (Y |X, dY |X) where

Y |X = X ⊗k[y] JV ⊗k[y] Y and dY |X = dX ⊗ 1 + 1⊗ dY .

The cut operation on matrix factorisations was first defined in [Mur18]. The cut
(Y |X, dY |X) arose in the proof of Proposition 5.2.5 which showed that (X ⊗k[y] Y, dX⊗Y )
is the direct summand of a finite rank matrix factorisation. The key idea of this proof
was to show that there is a strong deformation retract

(Y |X, dY |X) (
∧

(k⊕n)⊗k X ⊗k[y] Y, 1⊗ dX⊗Y ), h (5.4)
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over k[x, z]. The cut (Y |X, dY |X) is finite rank, and the module on the right-hand-side of
(5.4) is a direct sum of copies of X ⊗k[y] Y , some of which are shifted in degree.

The goal of this section and the next is to better understand how (X ⊗k[y] Y, dX⊗Y )
sits inside the cut (Y |X, dY |X). This will involve producing explicit formulae for the maps
in (5.4). Let (K(t), dK) denote the Koszul complex of t. The key steps in producing the
strong deformation retract in (5.4) were as follows:

(1) We began with a strong deformation retract over k

(JV , 0) (K(t), dK), h
σ

π
.

(2) We tensored both sides of this strong deformation retract by X⊗k[y] Y and used the
Perturbation Lemma to mix in the differential dX⊗Y .

(3) We showed that there is an isomorphism

ϕ : (K(t)⊗k[y] X ⊗k[y] Y, dK ⊗ 1 + 1⊗ dX⊗Y ) −→ (
∧

(k⊕n)⊗kX ⊗k[y] Y, 1⊗ dX⊗Y ) .

The effect of the perturbation step on morphisms is explained in Theorem 4.3.2 and the
isomorphism in (3) is explicitly given in Lemma 5.2.4. So in order to produce formulae
for (5.4) all that remains is to give formulae for the strong deformation retract in (1).
For this we can either use Proposition 3.2.9 or Corollary 3.4.3. Proposition 3.2.9 is most

general but requires passing to the I-adic completion k̂[y] of k[y], while the Corollary
3.4.3 requires us to assume that the sequence of partial derivatives t is a Gröbner basis.
For the sake of working in the most general setting we will use Proposition 3.2.9, however
when coming up with examples of cuts it may be easier to avoid the completion and use
Corollary 3.4.3. Indeed, this is the approach we take in Section 5.6 when giving examples.

Let (X⊗̂Y, dX⊗̂Y ) denote the matrix factorisation obtained by applying the extension

of scalars functor k̂[y]⊗k[y] (−). Our first goal is to produce an explicit strong deformation
retract over k[x, z]

(Y |X, dY |X) (
∧

(k⊕n)⊗k X⊗̂Y, 1⊗ dX⊗̂Y ), h

following the strategy outlined above. Having done so we will then address the difference
between (X⊗̂Y, dX⊗̂Y ) and (X ⊗k[y] Y, dX⊗Y ) by showing that the canonical map κ :
X ⊗k[y] Y → X⊗̂Y is an isomorphism in the homotopy category.

We now ensure the conditions of Proposition 3.2.9 are satisfied. First of all suppose
Q ⊆ k. Since V is a potential, JV is free over k and t is Koszul-regular in k[y]. Since
JV is free we have a k-linear section JV → k[y] of the quotient map. This section can be
chosen so that 1 7→ 1 by choosing k-bases for JV and k[y]. For Proposition 3.2.9 we also

need t to be Koszul-regular in k̂[y]. This is clearly true if we assume that k is Noetherian,
however as shown in [Mur19, Appendix C] this assumption can be removed with some
thought.

Let ∂t1 , . . . , ∂tn : k̂[y]→ k̂[y] be the system of t-derivatives defined in Section 3.2. We

consider the Koszul complex (K̂(t), dK̂) of t over k̂[y] and denote its underlying module
as in Section 3.2 by

K̂(t) =
∧

(
⊕n

i=1
k̂[y]dti)

where dt1, . . . , dtn are formal generators. Let ∇ : K̂(t)→ K̂(t) be the connection arising
from ∂t1 , . . . , ∂tn of Definition 3.2.2. Given the above assumptions, Proposition 3.2.9 yields
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a strong deformation retract over k

(JV , 0) (K̂(t), dK̂), h
σ

π
(5.5)

where π is the quotient map, h = [dK̂ ,∇]−1∇ and σ is as given in Proposition 3.2.9. A
formula for [dK ,∇]−1 can be determined by inspecting the proof of Lemma 3.2.7.

Next, we tensor (5.5) by X⊗̂Y and mix the differential dX⊗̂Y using the Perturbation
Lemma as in the proof of Proposition 5.2.5. We fix a k[x, z]-basis for X⊗̂Y of the form
{ea ⊗ fb}a,b and define a strong deformation retract over k[x, z]

(JV ⊗k̂[y]
X⊗̂Y, 0) (K̂(t)⊗

k̂[y]
X⊗̂Y, dK̂ ⊗ 1), h̃

σ̃

π⊗1
(5.6)

where σ̃(r ⊗ ea ⊗ fb) = σ(r)⊗ ea ⊗ fb and h̃(g ⊗ ea ⊗ fb) = h(g)⊗ ea ⊗ fb. Note that on
the left-hand-side of (5.6) we have

JV ⊗k̂[y]
X⊗̂Y ∼=

(
X⊗̂Y

) /
I
(
X⊗̂Y

) ∼= X ⊗k[y] (k̂[y]
/
Ik̂[y])⊗k[y] Y ∼= Y |X

where we have that JV ∼= k̂[y]
/
Ik̂[y] by Lemma 3.1.5.

Now set d = 1 ⊗ dX⊗̂Y and view d as a perturbation of (5.6). Let a = (1 − dh̃)−1d

and, since dh̃ is nilpotent (see the proof of Proposition 5.2.5), we have that (1− dh̃)−1 =∑
l≥0(dh̃)l by Lemma 4.3.3. By the Perturbation Lemma (Theorem 4.3.2) we have a

strong deformation retract over k[x, y]

(Y |X, dY |X) (K̂(t)⊗
k̂[y]

X⊗̂Y, dK̂ ⊗ 1 + 1⊗ d), h∞
σ∞

π∞

where σ∞ = σ̃ + h̃aσ̃, π∞ = π ⊗ 1 + (π ⊗ 1)ah̃ and h∞ = h̃ + h̃ah̃. One can show via a
direct calculation that (π ⊗ 1)ah̃ = 0 and so π∞ = π ⊗ 1. The maps σ∞ and h∞ can be
written more conveniently as

σ∞ = σ̃ + h̃
∑
l≥0

(dh̃)ldσ̃ =
∑
l≥0

(h̃d)σ̃ (5.7)

and
h∞ = h̃+ h̃

∑
l≥0

(dh̃)ldh̃ =
∑
l≥0

(h̃d)h̃ . (5.8)

We now consider the isomorphism constructed in Lemma 5.2.4 which removes the
Koszul differential dK̂ ⊗ 1. Let α : K̂(t) ⊗

k̂[y]
X⊗̂Y →

∧
(
⊕n

i=1 kθi) ⊗k X⊗̂Y be the ca-

nonical k[x, z]-module isomorphism where θ1, . . . , θn are formal generators. Using Lemma
5.2.1 we construct homotopies λi : ti ' 0 on X⊗̂Y where ti acts by multiplication. Fol-
lowing Lemma 5.2.4 we set δ =

∑n
i=1 λiθ

∗
i and define

exp(δ) =
∑
m≥0

1

m!
δm and exp(−δ) =

∑
m≥0

(−1)m

m!
δm .

Taking ϕ = exp(δ)α and ϕ−1 = α−1 exp(−δ) gives us the isomorphism in (3). Putting all
of this together we have constructed a strong deformation retract over k[x, z]

(Y |X, dY |X) (
∧

(
⊕n

i=1 kθi)⊗k X⊗̂Y, 1⊗ dX⊗̂Y ), H
Φ

Φ′

(5.9)

where Φ = exp(δ)ασ∞, Φ′ = (π ⊗ 1)α−1 exp(−δ) and H = exp(δ)αh∞α
−1 exp(−δ).

It remains to address the difference between (X⊗̂Y, dX⊗̂Y ) and (X⊗k[y]Y, dX⊗Y ). The

canonical completion map k[y] → k̂[y] induces a k[x, y, z]-linear map κ : X ⊗k[y] Y →
X⊗̂Y . We now show that κ is an isomorphism in the homotopy category.
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Lemma 5.4.2. The canonical map κ : X ⊗k[y] Y → X⊗̂Y is a homotopy equivalence of
linear factorisations.

Proof. Let Z = X ⊗k[y] Y and Ẑ = X⊗̂Y . We have the following commutative diagram

Ẑ
/
IẐ

∧
(k⊕n)⊗k Ẑ Ẑ

Z
/
IZ

∧
(k⊕n)⊗k Z Z

∼=

p′

p

κ

of k[x, z]-linear maps. That Ẑ
/
IẐ ∼= Z

/
IZ follows directly from the fact that k[y]

/
I ∼=

k̂[y]
/
Ik̂[y] and was also shown above. The maps Ẑ

/
IẐ �

∧
(k⊕n) ⊗k Ẑ and Z

/
IZ �∧

(k⊕n)⊗kZ are each obtained in the same way using the idea of the proof of Proposition
5.2.5. That is, the former is the strong deformation retract (5.9) and the latter is the
strong deformation retract (5.4). In particular, each of these pairs of maps are homotopy
equivalences over k[x, z]. The maps p and p′ are both given by projecting on to the

degree zero part of
∧

(k⊕n), and the map
∧

(k⊕n) ⊗k Z →
∧

(k⊕n) ⊗k Ẑ is induced from

k[y]→ k̂[y].

Therefore
∧

(k⊕n) ⊗k Z and
∧

(k⊕n) ⊗k Ẑ are homotopy equivalent over k[x, z] and

hence so are Z and Ẑ. As well as being k[x, z]-linear, all maps involved are morphisms of
linear factorisations so this completes the proof.

A version of Lemma 5.4.2, which is proved in essentially the same way, holds for
pushing forward linear factorisations along any flat morphism of rings.5 This is discussed

in [DM13, Remark 7.7]. If k is Noetherian then k[y] → k̂[y] is flat, so in the Noetherian
setting Lemma 5.4.2 can be viewed as a special case of this result. However, as we
have previously stated, a Noetherian hypothesis on k is not required to construct the cut
operation. A proof of Lemma 5.4.2 without the Noetherian hypothesis is discussed in
[Mur19, Appendix C].

5Recall that a morphism of rings R → R′ is flat if the extension of scalars functor R′ ⊗R (−) preserves
exact sequences. By pushing forward we mean applying the extension of scalars functor to the linear
factorisation.
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5.5 The Clifford action on the cut

We retain the context from the previous section. In particular we consider the morphisms

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

in LGk and the strong deformation retract given in (5.9). For simplicity we will focus
on the matrix factorisation (X⊗̂Y, dX⊗̂Y ), rather than (X ⊗k[y] Y, dX⊗Y ). As shown in
Lemma 5.4.2 these are equivalent in the homotopy category.

We now consider the action (up to homotopy) of a Clifford algebra on the cut of
(X, dX) and (Y, dY ). Given the strong deformation retract (5.9) it is not surprising that
such an action exists. As shown in Lemma 4.2.2 the wedging and contraction operat-
ors θ1, . . . , θn, θ

∗
1, . . . , θ

∗
n on

∧
(
⊕n

i=1 kθi) satisfy the canonical anticommutation relations
(Definition 4.2.1), and any object with endomorphisms satisfying these relations admits
a Clifford algebra representation (this is essentially shown in Lemma 5.6.2).

The strong deformation retract (5.9) transfers this Clifford action to the cut, at least
up to homotopy. This Clifford action is interesting because it tells us how (X⊗̂Y, dX⊗̂Y )
— and hence (X ⊗k[y] Y, dX⊗Y ) — sits inside the cut (Y |X, dY |X). Consider the operator

e = θ∗1 · · · θ∗nθn · · · θ1 .

This is idempotent and projects onto the degree zero part of
∧

(
⊕n

i=1 kθi). If we consider
e acting on

∧
(
⊕n

i=1 kθi)⊗k X⊗̂Y then e splits as

e :
∧

(
⊕n

i=1 kθi)⊗k X⊗̂Y X⊗̂Y
∧

(
⊕n

i=1 kθi)⊗k X⊗̂Y .

We now define a Clifford action on the cut (Y |X, dY |X) and show that it is equal to
the Clifford action arising as described above. This is done closely following the approach
of [Mur18] but with additional exposition which is not found in the literature. In the
following, if α and β are endomorphisms of the same graded object then |α| denotes the
degree of the morphism α and [α, β] = αβ − (−1)|α||β|βα is the graded commutator.

Lemma 5.5.1 (Jacobi identity). Let E be a graded ring, not assumed to be commutat-
ive. For a, b ∈ E let |a| denote the degree of a and [a, b] = ab − (−1)|a||b|ba the graded
commutator on E. Then for all a, b, c ∈ E we have

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0 .

Proof. First note that the degree of [a, b] is |a|+ |b|. Then

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]]

= (−1)|a||c|a(bc− (−1)|b||c|cb)− (−1)|a||b|+2|a||c|(bc− (−1)|b||c|cb)a

+ (−1)|b||a|b(ca− (−1)|c||a|ac)− (−1)|b||c|+2|b||a|(ca− (−1)|c||a|ac)b

+ (−1)|c||b|c(ab− (−1)|a||b|ba)− (−1)|c||a|+2|c||b|(ab− (−1)|a||b|ba)c

= (−1)|a||c|abc− (−1)|a||c|+|b||c|acb− (−1)|a||b|bca+ (−1)|b||c|+|a||b|cba

+ (−1)|b||a|bca− (−1)|b||a|+|c||a|bac− (−1)|b||c|cab+ (−1)|b||c|+|c||a|acb

+ (−1)|c||b|cab− (−1)|c||b|+|a||b|cba− (−1)|c||a|abc+ (−1)|c||a|+|a||b|bac

= 0

proving the claim.

53



Our first step is to extend ∂t1 , . . . , ∂tn to k[x, z]-linear maps on X⊗̂Y . We do this
using the k[x, z]-basis {ea ⊗ fb}a,b we chose for X⊗̂Y in Section 5.4. Consider the map
X⊗̂Y → X⊗̂Y defined by sending

ea ⊗ h⊗ fb 7−→ ea ⊗ ∂ti(h)⊗ fb

for all basis elements ea ⊗ fb and h ∈ k̂[y], and extending k[x, z]-linearly. We also denote
this map by ∂ti .

Lemma 5.5.2. [∂ti , tj] = δij.

Proof. We first consider ∂ti : k̂[y]→ k̂[y]. By the Leibniz rule in Lemma 3.2.1 we have

∂ti(tjh) = ∂ti(tj)h+ tj∂ti(h) = δijh+ tj∂ti(h)

for all h ∈ k̂[y]. Rearranging the above gives [∂ti , tj](h) = δijh. For the extension of ∂ti
to X⊗̂Y , first note that tj and ∂ti are degree zero maps on X⊗̂Y . Then we have

[∂ti , tj](ea ⊗ h⊗ fb) = ea ⊗ [∂ti , tj](h)⊗ fb = ea ⊗ δijh⊗ fb

which proves the claim.

Lemma 5.5.3. The map [dX⊗̂Y , ∂ti ] induces a k[x, z]-linear map on Y |X.

Proof. Using Lemma 5.5.1 and Lemma 5.5.2 we have

[[dX⊗̂Y , ∂ti ], tj] = −[dX⊗̂Y , [∂ti , tj]]− [∂ti , [tj, dX⊗̂Y ]] = −[dX⊗̂Y , δij] = 0

where we have that [tj, dX⊗̂Y ] = 0 since dX⊗̂Y is k[y]-linear. This shows that [dX⊗̂Y , ∂ti ]
commutes with multiplication by tj. In particular this means that

[dX⊗̂Y , ∂ti ](I(X⊗̂Y )) ⊆ I(X⊗̂Y )

which, recalling that Y |X ∼= X⊗̂Y
/
I(X⊗̂Y ), implies that [dX⊗̂Y , ∂ti ] induces a map on

the cut.

Definition 5.5.4. For each i = 1, . . . , n, let

Ati : Y |X −→ Y |X

denote the map induced by [dX⊗̂Y , ∂ti ]. We call Ati the ith Atiyah class.

The maps Ati are called “Atiyah classes” because they arise from a concept in algebraic
geometry of the same name (see [Mur18, Definition 3.8] and [DM13, Section 9]). Now
denote d = dY |X and let λi be a homotopy λi : ti ' 0 on the cut Y |X from Lemma 5.2.1.

Lemma 5.5.5. [d,Ati] = 0

Proof. Noting that deg(Ati) = deg(d) = 1 we have

[d,Ati] = dAti + Ati d

= d[d, ∂ti ] + [d, ∂ti ]d

= d(d∂ti − ∂tid) + (d∂ti − ∂tid)d

= d2∂ti − ∂tid2

= 0

where we use that d2 is multiplication by W (z) − U(x) and that this commutes with
∂ti .
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Lemma 5.5.6. There is a homotopy µij : [λi, λj] ' ∂yiyj(V ).

Proof. Fix a basis for Y |X and let ∂yi(d) denote the matrix of d differentiated entrywise.
Recall from the proof of Lemma 5.2.1 that λj = ∂yj(d). Then, applying ∂yi to the equation
dλj + λjd = ∂yj(V ) gives

λjλi + d∂yjyi(d) + ∂yjyi(d)d+ λiλj = ∂yjyi(V ) .

Hence setting µij = −∂yjyi(d) proves the claim.

On the cut Y |X we define k[x, z]-linear maps

γi = Ati and γ†i = −λi −
1

2

n∑
p=1

∂yp(ti) Atp (5.10)

for i = 1, . . . , n. Note that these are odd. The next result is [Mur18, Theorem 3.11].

Proposition 5.5.7. The operators γi, γ
†
i : Y |X → Y |X for i = 1, . . . , n satisfy the

canonical anticommutation relations of Definition 4.2.1 up to homotopy.

Proof. We need to show

[γi, γj] ' 0 , [γ†i , γ
†
j ] ' 0 , [γi, γ

†
j ] ' δij

for all i, j = 1, . . . , n. We have

[γi, γj] = [Ati,Atj]

= [Ati, [d, ∂tj ]]

= −[∂tj , [Ati, d]]− [d, [∂tj ,Ati]]

= −[d, [∂tj ,Ati]]

using Lemma 5.5.1 and Lemma 5.5.5. Setting hij = −[∂tj ,Ati] we have hij : [γi, γj] ' 0.
Next we compute

[λi,Atj] = [λi, [d, ∂tj ]]

= −[∂tj , [λi, d]] + [d, [∂tj , λi]]

= −[∂tj , ti] + [d, [∂tj , λi]]

= −δij + [d, [∂tj , λi]]

where we use Lemma 5.5.1, Lemma 5.5.2 and that [λi, d] = ti by definition. Set gij =
[∂tj , λi] so we have [λi,Atj] = −δij + [d, gij]. Then

[γ†i , γj] =

[
−λi −

1

2

n∑
p=1

∂yp(ti) Atp,Atj

]

= δij − [d, gij]−
1

2

n∑
p=1

∂yp(ti)[Atp,Atj]

= δij − [d, gij]−
1

2

n∑
p=1

∂yp(ti)[d, hpj]

= δij −

[
d, gij +

1

2

n∑
p=1

∂yp(ti)hpj

]
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which shows [γ†j , γj] ' δij. Finally we have

[γ†i , γ
†
j ] =

[
λi +

1

2

n∑
p=1

∂yp(ti) Atp, λj +
1

2

n∑
p=1

∂yp(tj) Atp

]

= [λi, λj] +
1

2

n∑
p=1

∂yp(tj)[λi,Atp]

+
1

2

n∑
p=1

∂yp(ti)[Atp, λj] +
1

4

∑
p,q

∂yp(ti)∂yq(tj)[Atp,Atq]

= ∂yiyj(V ) + [d, µij] +
1

2

n∑
p=1

∂yp(tj)(−δip + [d, gip])

+
1

2

n∑
p=1

∂yp(ti)(−δjp + [d, gjp]) +
1

4

∑
p,q

∂yp(ti)∂yq(tj)[d, hpq]

=

[
d, µij +

1

2

n∑
p=1

∂yp(tj)gip +
1

2

n∑
p=1

∂yp(ti)gjp +
1

4

∑
p,q

∂yp(ti)∂yq(tj)hpq

]

where µij : [λi, λj] ' ∂yiyj(V ) is the homotopy arising in Lemma 5.5.6.

We now prove that the operators γ†1, . . . , γ
†
n, γ1, . . . , γn on the cut arise via the strong

deformation retract from the wedging and contraction operators θ1, . . . , θn, θ
∗
1, . . . , θ

∗
n on∧

(
⊕n

i=1 kθi). This is done in [Mur18, Section 4.2], however the following contains many
details which are not given there. Consider the strong deformation retract in (5.9). It
consists of maps

(Y |X, dY |X) (K̂(t)⊗
k̂[y]

X⊗̂Y, d1) (
∧

(
⊕n

i=1 kθi)⊗k X⊗̂Y, d2)
σ∞

π⊗1

ϕ

ϕ−1

where d1 = dK ⊗ 1 + 1⊗ dX⊗̂Y , d2 = 1⊗ dX⊗̂Y and ϕ = exp(δ)α. The definitions of α, δ,
exp(δ) and exp(−δ) are given in just prior to (5.9). Recall that ϕ−1 = α−1 exp(−δ).

We define T (θ∗j ) = exp(−δ)θ∗j exp(δ) and T (θj) = exp(−δ)θj exp(δ). These are the
actions of θ∗j and θj respectively under the module automorphism exp(−δ).

Lemma 5.5.8. T (θ∗i ) = θ∗i .

Proof. Recall from Lemma 5.2.3 that δθ∗j = θ∗j δ. From this the result is immediate.

We now compute T (θj). Notice that

T (θj) = θj − [θj, exp(−δ)] exp(δ)

so it suffices to compute the commutator [θj, exp(−δ)]. We break this up over several
lemmas.

Lemma 5.5.9. [θj, δ] = −λj

Proof. We compute this directly:

[θj, δ] =
n∑
i=1

[θj, λiθ
∗
i ] =

n∑
i=1

θjλiθ
∗
i − λiθ∗i θj = −

n∑
i=1

λi(θjθ
∗
i + θ∗i θj) = −λj

where we use that θjθ
∗
i + θ∗i θj = δij, and that θjλi = −λiθj. For the latter, see the proof

of Lemma 5.2.3.
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Lemma 5.5.10. [θj, δ
m] =

∑m−1
p=0 δ

p[θj, δ]δ
m−p−1

Proof. We proved a similar result when proving Lemma 5.2.4. Notice that the right-hand-
side is a telescoping sum:

m−1∑
p=0

δp[θj, δ]δ
m−p−1 =

m−1∑
p=0

δpθjδ
m−p −

m−1∑
p=0

δp+1θjδ
m−p−1

=
m−1∑
p=0

δpθjδ
m−p −

m∑
p=1

δpθjδ
m−p

= [θj, δ
m]

which proves the claim.

Lemma 5.5.11. We have a homotopy δpλj ' λjδ
p− p

∑n
i=1 ∂yiyj(V )θ∗i δ

p−1 for all p ≥ 0.

Proof. First note that the p = 0 case is trivial. Recall from Lemma 5.5.6 that [λi, λj] '
∂yiyj(V ). Then

δλj =
n∑
i=1

λiθ
∗
i λj = −

n∑
i=1

λiλjθ
∗
i '

n∑
i=1

(λjλi − ∂yiyj(V ))θ∗i ' λjδ −
∑
i=1

∂yiyj(V )θ∗i

where we use Lemma 5.2.3. We now proceed by induction on p. Supposing the relation
holds for p− 1 and also using the p = 1 case shown above we have

δpλj ' δ(λjδ
p−1 − (p− 1)

n∑
i=1

∂yiyj(V )θ∗i δ
p−2)

'

(
λjδ −

n∑
i=1

∂yiyj(V )θ∗i

)
δp−1 − (p− 1)

n∑
i=1

∂yiyj(V )θ∗i δ
p−1

' λjδ
p − p

n∑
i=1

∂yiyj(V )θ∗i δ
p−1

where we also use Lemma 5.2.3.

Lemma 5.5.12. We have a homotopy T (θj) ' θj − λj − 1
2

∑n
i=1 ∂yiyj(V )θ∗i .

Proof. Using Lemma 5.5.9, Lemma 5.5.10 and Lemma 5.5.11 we have

[θj, exp(−δ)] =
∑
m≥0

(−1)m

m!
[θj, δ

m]

= −
∑
m≥0

(−1)m

m!

m−1∑
p=0

δpλjδ
m−p−1

'
∑
m≥0

(−1)m

m!

m−1∑
p=0

(
λjδ

p − p
n∑
i=1

∂yiyj(V )θ∗i δ
p−1

)
δm−p−1

' −λj
∑
m≥0

(−1)m

m!
mδm−1 +

∑
m≥0

(−1)m

m!

(
m−1∑
p=0

p

)(
n∑
i=1

∂yiyj(V )θ∗i

)
δm−2

' λj exp(−δ) +

(
n∑
i=1

∂yiyj(V )θ∗i

)∑
m≥0

(−1)m

m!

m(m− 1)

2
δm−2

' λj exp(−δ) +
1

2

n∑
i=1

∂yiyj(V )θ∗i exp(−δ)
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and so

T (θj) = θj − [θj, exp(−δ)] exp(δ) = θj − λj −
1

2

n∑
i=1

∂yiyj(V )θ∗i

as claimed.

The following result is [Mur18, Proposition 4.35]. The proof there is more terse and
we fill in more details in the proof below.

Lemma 5.5.13. We have a homotopy (π⊗1)α−1θ∗jασ∞ ' Atj and (π⊗1)α−1θjασ∞ = 0.

Proof. Recall that we denote K̂(t) =
∧

(
⊕n

i=1 k̂[y]dti) where dt1, . . . , dtn are formal gen-
erators. First note that α−1θ∗jα = dt∗j and α−1θjα = dtj. That (π ⊗ 1)dtjσ∞ = 0 is clear

since σ∞ = 0 except in degree zero of K̂(t), and likewise for π ⊗ 1. Wedging by dtj has

degree +1 with respect to the grading on K̂(t) so we have (π ⊗ 1)dtjσ∞ = 0.
Proving the other relation is more involved. In (5.7) we showed

σ∞ =
∑
l≥0

(h̃d)lσ̃

where the maps h̃ and σ̃ are defined as part of the strong deformation retract in (5.6).
Let ∇ =

∑n
i=1 ∂tidti be the connection of Definition 3.2.2 associated to the system of

t-derivatives ∂t1 , . . . , ∂tn . Let τ = [dK ,∇]. Then on the k[x, z]-basis for X⊗̂Y used to
define h̃ and σ̃ we have h̃ = τ−1∇.

We now work modulo the ideal I. By Lemma 3.2.6 we have that τ(rω) ≡ prω (mod I)
where ω = dti1 · · · dtip and r ∈ k[y]. Hence, since ∇ is k-linear, we have ∇τ−1 ≡ τ−1∇
(mod I). Then, for l > 0 we have

(h̃d)lσ̃ = τ−1∇dτ−1∇dτ−1 · · · ∇dτ−1∇dσ̃
= τ−1([d,∇]− d∇)τ−1∇dτ−1 · · · ∇dτ−1∇dσ̃
≡ τ−1[d,∇]τ−1∇dτ−1 · · · ∇dτ−1∇dσ̃ mod I

where to obtain the last line we use ∇τ−1 ≡ τ−1∇ (mod I) and that ∇2 = 0 by Lemma
3.2.3. By repeatedly applying the relation ∇dτ−1∇ ≡ [d,∇]τ−1∇ (mod I) we arrive at
the expression

(h̃d)lσ̃ ≡ (τ−1[d,∇])l−1τ−1∇dσ̃ mod I .

Next we note that ∇σ̃ = 0 since σ̃ is non-zero only in degree zero of K(t) and ∇(K0(t)) =
0. From this we find

(h̃d)lσ̃ ≡ (τ−1[d,∇])l−1τ−1∇dσ̃ mod I

≡ (τ−1[d,∇])l−1τ−1([d,∇]− d∇)σ̃ mod I

≡ (τ−1[d,∇])l−1τ−1[d,∇]σ̃ mod I

≡ (τ−1[d,∇])lσ̃ mod I .

Next note that [d,∇] =
∑n

i=1 ti[d, ∂ti ]. Then for rab = ea⊗r⊗fb ∈ Y |X, where r ∈ JV
and {ea ⊗ fb}a,b is the k[x, z]-basis for X ⊗k[y] Y used to define σ̃, we have

h̃dσ̃(rab) ≡
n∑
i=1

τ−1[d, ∂ti ](σ̃(rab)dti) mod I

≡
n∑
i=1

[d, ∂ti ](σ̃(rab))dti mod I
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and likewise

h̃dh̃dσ̃(rab) ≡ h̃d

(
n∑
i=1

[d, ∂ti ](σ̃(rab))

)
mod I

≡
∑
i,j

τ−1
(
[d, ∂ti ]

2(σ̃(rab))dtjdti
)

mod I

≡
∑
i,j

1

2
[d, ∂ti ]

2(σ̃(rab))dtjdti mod I .

In the same way we can show that (h̃d)lσ̃(rab) is in the degree l part of K̂(t).
We now compute (π ⊗ 1)dt∗jσ∞. First note that π ⊗ 1 sends anything involving an

element of I to zero, so when precomposing with π⊗ 1 all equivalences modulo I become
equalities. Next, we note that dt∗j anti-commutes with [d, ∂tj ]. Since π ⊗ 1 is zero away

from degree zero, the only term of σ∞ = σ̃+ h̃dσ̃+ (h̃d)2σ̃+ · · · which contributes to the
composition (π ⊗ 1)dt∗jσ∞ is h̃dσ̃. Then we have

(π ⊗ 1)dt∗jσ∞(r) =
n∑
i=1

(π ⊗ 1)dt∗j [d, ∂ti ]σ̃(r)dti

= −
n∑
i=1

Ati dt
∗
jdti

' Atj

by definition of the Atiyah classes.

Proposition 5.5.14. Let

(Y |X, dY |X) (
∧

(
⊕n

i=1 kθi)⊗k X⊗̂Y, 1⊗ dX⊗̂Y ), H
Φ

Φ′

be the strong deformation retract given in (5.9). Then γ†j ' Φ′θjΦ and γj ' Φ′θ∗jΦ.

Proof. Note that Φ′θjΦ = (π⊗ 1)α−1T (θj)ασ∞ and likewise for Φ′θ∗jΦ. The result follows
from Lemma 5.5.8, Lemma 5.5.12 and Lemma 5.5.13.

5.6 Examples

Let k be a commutative ring. In this section we consider examples of morphisms in
LGk between potentials which are quadratic forms. These examples arise from a corres-
pondence discussed in [BEH87] between matrix factorisations of a quadratic form and
modules over the Clifford algebra of that quadratic form. While we do not prove so here,
when k = C the examples of morphisms of quadratic forms discussed in this section are
exhaustive.

Consider the polynomial rings k[x] = k[x1, . . . , xn] and k[y] = k[y1, · · · , ym] and the
potentials U(x) =

∑n
i=1 x

2
i ∈ k[x]. and V (y) =

∑m
j=1 y

2
j ∈ k[y]. Let CUV denote the Z2-

graded k-algebra with odd generators µ1, . . . , µn and ν1, . . . , νm which satisfy the relations

[µi, µj] = −2δij , [νi, νj] = 2δij , [µi, νj] = 0 (5.11)

for all i = 1, . . . , n and j = 1, . . . ,m, where [a, b] is the graded commutator. Observe that
CUV is the Clifford algebra associated to the quadratic form V (y)−U(x). We can use Z2-
graded CUV -modules which are free and finitely generated over k to construct morphisms
(k[x], U)→ (k[y], V ) in LGk.
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Lemma 5.6.1. Let X̃ be a Z2-graded CUV -module which is free and finitely generated
over k. Let X = X̃ ⊗k k[x, y] and define dX : X → X as dX =

∑n
i=1 xiµi +

∑m
j=1 yjνj.

Then (X, dX) is a matrix factorisation of V (y)− U(x) over k[x, y].

Proof. The only thing to show is that d2
X = V (y)− U(x). We have

d2
X =

n∑
i=1

n∑
i′=1

xixi′µiµi′ +
n∑
i=1

m∑
j=1

xiyjµiνj +
n∑
i=1

m∑
j=1

xiyjνjµi +
m∑
j=1

m∑
j′=1

yjyj′νjνj′

=
n∑
i=1

x2
iµ

2
i +

∑
i<i′

xixi′ [µi, µi′ ] +
n∑
i=1

m∑
j=1

xiyj[µi, νj] +
∑
j<j′

[νj, νj′ ]yjyj′ +
m∑
j=1

y2
j ν

2
j

=
m∑
j=1

y2
j −

n∑
i=1

x2
i

= V (y)− U(x)

as required. Here we use that ν2
j = 1 and µ2

i = −1, which follow directly from the relations
in (5.11).

We now consider endomorphisms of (k[x], U). For notational clarity we consider a
second potential (k[y], V ) which is identical to (k[x], U) but with differently named vari-
ables. That is, both k[x] and k[y] are polynomial rings in n variables and U(x) =

∑n
i=1 x

2
i

and V (y) =
∑n

i=1 y
2
i . We consider morphisms (k[x], U) → (k[y], V ) which are the same

thing as endomorphisms of (k[x], U). As above we let CUV denote the Z2-graded k-algebra
with odd generators µ1, . . . , µn and ν1, . . . , νn satisfying the relations of (5.11) with m = n.

Denote the unit 1-morphism of (k[x], U) by (I, d). This arises from a Z2-graded CUV -
module as follows. Regarding (I, d) as a morphism (k[x], U) → (k[y], V ), recall from
Definition 5.1.2 that the unit 1-morphism is defined to be the Koszul matrix factorisation
of V (y) − U(x) arising from the sequence (y1 − x1, . . . , yn − xn). Concretely, this is the
matrix factorisation

(I, d) = (
∧

(
⊕n

i=1
k[x, y]θi),

∑n

i=1
(yi − xi)θ∗i +

∑n

i=1
(yi + xi)θi)

where θ1, . . . , θn are formal generators. Note that
∧

(
⊕n

i=1 k[x, y]θi) ∼=
∧

(
⊕n

i=1 kθi) ⊗k
k[x, y], and that we can rewrite the differential as

d =
n∑
i=1

(yi − xi)θ∗i +
n∑
i=1

(yi + xi)θi

=
n∑
i=1

yi(θi + θ∗i ) +
n∑
i=1

xi(θi − θ∗i ) .

Lemma 5.6.2. Set αi = θi − θ∗i and βi = θi + θ∗i . Then α1, . . . , αn and β1, . . . , βn satisfy
the relations of (5.11). That is,

[αi, αj] = −2δij , [βi, βj] = 2δij , [αi, βj] = 0

for all i, j = 1, . . . , n.

Proof. We have

[αi, αj] = (θi − θ∗i )(θj − θ∗j ) + (θj − θ∗j )(θi − θi)∗

= θiθj + θjθi − θ∗i θj − θjθ∗i − θiθ∗j − θ∗jθi + θ∗i θ
∗
j + θ∗jθ

∗
i

= [θi, θj]− [θj, θ
∗
i ]− [θi, θ

∗
j ] + [θ∗i , θ

∗
j ]

= −2δij
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by Lemma 4.2.2. The relations [βi, βj] = 2δij and [αi, βj] = 0 proceed in a similar
manner.

Lemma 5.6.2 means that
∧

(
⊕n

i=1 kθi) is a representation of CUV over k, where we let
µi act by θi− θ∗i and νi act by θi + θ∗i . Hence the unit 1-morphism of (k[x], U) arises from
the CUV -module

∧
(
⊕n

i=1 kθi) as described in Lemma 5.6.1. Lemma 5.6.2 also suggests
other CUV -representations on

∧
(
⊕n

i=1 kθi); we can let νi act by θj+θ
∗
j with possibly i 6= j.

We can describe all such representations of CUV as follows. Let Sn denote the symmetric
group on n integers and σ ∈ Sn. We define a representation of CUV on

∧
(
⊕n

i=1 kθi) by
mapping

µi 7→ θi − θ∗i νi 7→ θσ−1i + θ∗σ−1i .

Denote this representation of CUV by Ĩσ. Setting Iσ = Ĩσ ⊗k k[x, y] and

dσ =
n∑
i=1

xiµi +
n∑
i=1

yiνi

=
n∑
i=1

xi(θi − θ∗i ) +
n∑
i=1

yi(θσ−1i + θ∗σ−1i)

=
n∑
i=1

(yσi − xi)θ∗i +
n∑
i=1

(yσi + xi)θi

we obtain a matrix factorisation (Iσ, dσ) of V (y)− U(x) by Lemma 5.6.1.
We now study compositions of such endomorphisms of (k[x], U). Let (k[z],W ) de-

note a third potential identical to (k[x], U) and (k[y], V ). Let CVW denote the Z2-graded
k-algebra generated by odd generators ν1, . . . , νn and ω1, . . . , ωn, where νi and ωj sat-
isfy relations in (5.11), substituting µi for νi and νj for ωj. Given σ, τ ∈ Sn we define
morphisms

(k[x], U) (k[y], V ) (k[z],W )
(Iσ ,dσ) (Jτ ,dτ )

where (Iσ, dσ) is as above and (Jτ , dτ ) arises as in Lemma 5.6.1 from the representation
J̃τ of CVW given by letting νi and ωi act on

∧
(
⊕n

i=1 kψi) via

νi 7→ ψi − ψ∗i ωi 7→ ψτ−1i + ψ∗τ−1i .

Now consider the composition of (Iσ, dσ) and (Jτ , dτ ), or more specifically the finite rank
representative of this composition arising via the cut operation defined in Section 5.4.
Note that the Jacobi ring of V is JV = k. The cut of (Iσ, dσ) and (Jτ , dτ ) is the matrix
factorisation

Jτ |Iσ = Ĩσ ⊗k J̃τ ⊗k k[x, z] dJτ |Iσ =
∑n

i=1
ziωi +

∑n

i=1
xiµi .

Note that terms involving the variables y1, . . . , yn do not appear in the differential dJτ |Iσ
because elements of the ideal (y1, . . . , yn) act trivially on Jτ |Iσ. To extract the finite rank
representative of the composition of (Iσ, dσ) and (Jτ , dτ ) we consider the action of the
operators γ1, . . . , γn and γ†1, . . . , γ

†
n on (Jτ |Iσ, dJτ |Iσ) as defined at (5.10). By Proposition

5.5.7 these operators satisfy the canonical anticommutation relations. Matching the nota-
tion of (5.10) we set ti = ∂V

∂yi
= 2yi and so we have ∂ti = 1

2
∂
∂yi

. Then by the definition
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given in (5.10) we have

γj = Atj

= [dIσ⊗Iτ , ∂tj ]

=
1

2

[
n∑
i=1

xiµi +
n∑
i=1

yiνi +
n∑
i=1

yiνi +
n∑
i=1

ziωi, ∂tj

]

=
1

2

n∑
i=1

[yj, ∂tj ]νi +
1

2

n∑
i=1

[yj, ∂tj ]νi

=
−1

2
(νj + νj)

where we use that [∂tj , ti] = δij from Lemma 5.5.2, and that ∂tj commutes with xi and zj
(recall also that the commutator is graded and ∂tj is a degree zero map). For γ†j we have

γ†j = −∂tj(dσ)− 1

2

n∑
l=1

∂2V

ylyj
Atl

= −νj − Atj

= −1

2
(νj − νj) .

By inspecting the proof of Proposition 5.5.7 we see that in this case γ1, . . . , γn and
γ†1, . . . , γ

†
n satisfy the canonical anticommutation relations strictly, not just up to ho-

motopy. Hence by Proposition 5.5.14 the finite rank representative of the composition of
(Iσ, dσ) and (Jτ , dτ ) is given by splitting the idempotent

e = γ1 · · · γnγ†n · · · γ
†
1

=
1

2n
(ν1 + ν1) · · · (νn + νn)(νn − νn) · · · (ν1 − ν1) .

This can be seen to be

im(e) =
⋂
i

ker(γ†i ) =
⋂
i

ker(νi − νi) .
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A Bicategories

In this section we define and motivate the notion of a bicategory, closely following [Bor94,
Chapter 7].

A.1 2-categories

Let C be a category. First observe that for any object A of C, the identity morphism
1A : A→ A can be viewed as a morphism of sets uA : {∗} → C(A,A) which identifies 1A
(i.e. uA(∗) = 1A). With this interpretation the identity axioms of the category (1Af = f
for all f : B → A and g1A = g for all g : A→ B) can be expressed as the assertion that
the following diagrams in the category of sets

{∗} × C(A,B) C(A,B)

C(A,A)× C(A,B)

uA×1

∼=

cAAB

C(B,A) C(B,A)× {∗}

C(B,A)× C(A,A)

∼=

1×uAcBAA
(A.1)

commute for all pairs of objects A and B in C, where cXY Z : C(X, Y )×C(Y, Z)→ C(X,Z)
is composition. The associativity axiom can also be expressed as the assertion that the
diagram of sets

C(A,B)× C(B,C)× C(C,D) C(A,B)× C(B,D)

C(A,C)× C(C,D) C(A,D)

1×cBCD

cABC×1 cABD

cACD

(A.2)

commutes for all objects A, B, C and D of C.
Informally, a 2-category is a category in which we also have higher order morphisms

between the morphisms of objects, and everything “works”. To be more precise:

Definition A.1.1. A 2-category C is a category in which C(A,B) is a category for all
objects A and B, and:

(1) Composition C(A,B)× C(B,C)→ C(A,C) is a functor.

(2) The map uA : {∗} → C(A,A) which identifies 1A is a functor, where {∗} is regarded
as the category with one object and one morphism.

(3) The diagrams in (A.1) and (A.2) above commute as diagrams of categories.

The objects of C(A,B) are called 1-morphisms and the morphisms of C(A,B) are called
2-morphisms.

Following [Bor94], we denote objects in a 2-category by capital letters A, B, C. . . ,
1-morphisms by lower-case letters a, b, c. . . , and 2-morphisms by Greek letters α, β, γ. . . .
A 1-morphism is denoted with an arrow A → B as usual, and a 2-morphism is denoted
with an arrow a⇒ b.

Now let C be a 2-category, In C there are two notions of composition of 2-morphisms:
applying the composition functor cABC : C(A,B) × C(B,C) → C(A,C) to a pair of 2-
morphisms, and composing 2-morphisms within C(A,B). For the first case, consider the
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following situation:

A B C

f

g

`

m

α β .

In the category C(A,B) × C(B,C) we have objects (f, `) and (g,m) and a morphism
(α, β) : (f, `) ⇒ (g,m). Via the composition functor cABC we obtain a 2-morphism
cABC(α, β) : `f ⇒ mg. Such composition is sometimes called horizontal composition or
composition along objects and we denote this by β ∗ α = cABC(α, β). This is in contrast
to vertical composition or composition along morphisms, where in the situation of the
diagram

A B

f

g

h

ψ

ϕ

we obtain a morphism denoted ϕ ◦ ψ : f ⇒ h. Functoriality of composition means that
in the situation of

A B C

f

g

h

`

m

n

ψ

ϕ

α

β

we have

(β ∗ ϕ) ◦ (α ∗ ψ) = cABC(ϕ, β) ◦ cABC(ψ, α)

= cABC((ϕ, β) ◦ (ψ, α))

= cABC(ϕ ◦ ψ, β ◦ α)

= (β ◦ α) ∗ (ϕ ◦ ψ) .

The prototypical example of a 2-category is one in which the objects are categories,
the 1-morphisms are functors and the 2-morphisms are natural transformations. Many
familiar concepts in this setting transfer naturally to a general 2-category.

Definition A.1.2. A pair of 1-morphisms f : A→ B and g : B → A in a 2-category are
adjoint if there exist 2-morphisms η : 1B ⇒ fg and ε : gf ⇒ 1A such that the diagrams

f fgf

f

ιf

η∗ιf

ιf∗ε

g gfg

g

ιg

ιg∗η

ε∗ιg

commute in C(B,A) and C(A,B) respectively, where ιf denotes the identity 2-morphism
on f and likewise for ιg.

A.2 Bicategories

Consider any diagram of 1-morphisms in a 2-category C, for example a square:

A B

C D

f

i g

j

. (A.3)
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To say that (A.3) commutes is to say that gf = ji, or equivalently that we have the
identity 2-morphism ι : gf ⇒ ji. This may be indicated on (A.3) by filling in its face like
so:

A B

C D

f

i g
ι

j

.

Of course, in a 2-category we may have 2-morphisms which are not the identity. It is
therefore natural to consider diagrams which do not commute, but in which the faces are
filled in with 2-morphisms. Of particular interest in defining bicategories are diagrams in
which the faces are filled with 2-isomorphisms.

Suppose we have a collection of objects together with some candidate 1-morphisms
and 2-morphisms. We would like to define a 2-category using this data, but the diagrams
at (A.1) and (A.2) above do not commute. If these diagrams can instead be filled in
with natural isomorphisms (2-isomorphisms in a category of categories) then this data
describes a bicategory.

Definition A.2.1. A bicategory B consists of the following data:

(1) A collection of objects.

(2) For every pair of objects A, B a category B(A,B) of 1-morphisms. An object f of
this category is denoted f : A→ B.

(3) For each object A a functor uA : {∗} → B(A,A), where we denote 1A = uA(∗).

(4) For all objects A, B, C a composition functor cABC : B(A,B)×B(B,C)→ B(A,C).
For f : A→ B and g : B → C we denote gf = cABC(f, g).

(5) For all objects A, B, C, D a natural isomorphism αABCD called the associator
satisfying:

C(A,B)× C(B,C)× C(C,D) C(A,B)× C(B,D)

C(A,C)× C(C,D) C(A,D)

1×cBCD

cABC×1 cABD

cACD

αABCD
.

(6) For all objects A, B natural isomorphisms λAB and ρAB, called the left and right
unitors respectively, which satisfy:

{∗} × C(A,B) C(A,B)

C(A,A)× C(A,B)

uA×1

∼=

cAAB

λAB

C(A,B) C(A,B)× {∗}

C(A,A)× C(A,B)

∼=

1×uAcAAB

ρAB
.

This data is subject to two conditions, called coherence conditions, which are:
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(I) Given 1-morphisms A B C D E
f g h j

the following diagram
in B(A,E) commutes

((jh)g)f (j(hg))f j((hg)f)

(jh)(gf) j(h(gf))

αg,h,j∗ιf

αf,g,jh

αf,gh,j

ij∗αf,g,j

αgf,h,j

where we have written αf,g,h for αABCD(f, g, h) and so on.

(II) Given 1-morphisms A B C
f g

the following diagram in B(A,C) com-
mutes

(giB)f g(iBf)

gf

αf,1B,g

ρg∗ιf ιg∗λf

where iB = uB(∗ → ∗) and again we write αf,1B ,h for αABBC(f, 1B, g) and so on.

Note that in general a bicategory is not a category. Due to the coherence conditions
the definition of a bicategory appears very cumbersome in comparison to a 2-category.
However, since many mathematical objects are defined only up to isomorphism, the bic-
ategory is a more ‘natural’ concept.

Example A.2.2. We can define a bicategory in which the objects are rings (not neces-
sarily commutative), and for rings R and S the category of 1-morphisms is the category
of R-S-bimodules. Composition is given by taking the tensor product of bimodules. If
we wanted to define a 2-category along these lines we would need to somehow arrange
for the tensor products (A ⊗R B) ⊗S C and A ⊗R (B ⊗S C) to be equal — rather than
naturally isomorphic — for associativity of composition to hold.
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B Idempotents in Preadditive Categories

In this section we give a brief introduction to idempotent morphisms and idempotent
completion of categories, focusing on categories which are preadditive. This topic is
also covered in [Bor94, Section 6.5] (where “idempotent completion” is called “Cauchy
completion”) but no special attention is paid to preadditive categories. Throughout let
C be a category, which for now we do not assume is preadditive, and let Cop denote the
opposite category.

B.1 Definitions and basic results

Definition B.1.1. An endomorphism e : C → C in C is an idempotent if e2 = e.

Consider a pair of morphisms s : R → C and r : C → R such that rs = 1R. Then
e = sr is an idempotent.

Definition B.1.2. We call an idempotent e : C → C split if there exist morphisms
s : R → C and r : C → R such that e = sr and rs = 1R. We call the category C
idempotent complete if all idempotents split.

Lemma B.1.3 (Proposition 6.5.4 [Bor94]). Let e : C → C be an idempotent. The
following are equivalent:

(1) e = sr is split, where s : R→ C and r : C → R.

(2) The equaliser eq(e, 1C) exists and is equal to (R, s).

(3) The coequaliser coeq(e, 1C) exists and is equal to (R, r).

Proof. Suppose e is split, so we have morphisms s : R → C and r : C → R such that
rs = 1R. We now prove that eq(e, 1C) = (R, s) by showing (R, s) has the required
universal property. We have es = s, and given another morphism d : D → C where
ed = d, we have

R C C

D

s e

1C

d
rd d

where all four triangles commute. Indeed, setting n = rd we have sn = srd = ed = d.
Moreover if n′ : D → R is another morphism which satisfies sn′ = d we have sn = sn′

and so rsn = rsn′ = n = n′. This shows eq(e, 1C) = (R, s) and so (1) =⇒ (2). This also
shows (1) =⇒ (3), since this statement is equivalent to (1) =⇒ (2) holding in Cop.

Supposing (2), there exists r : C → eq(e, 1C) such that

eq(e, 1C) C C

C

s e

1C

e
∃!r e

commutes. By applying the universal property to the morphism s : eq(e, 1C) → C and
appealing to uniqueness we have rs = 1, which proves (2) =⇒ (1). By making use of
Cop this also shows (3) =⇒ (1).
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Lemma B.1.4. If C is a preadditive category then the following are equivalent:

(1) C is idempotent complete.

(2) All idempotents have a kernel.

(3) All idempotents have a cokernel.

Proof. The equivalence (1) ⇐⇒ (2) can be proved using Lemma B.1.3 by observing
that if e : C → C is an idempotent then so is 1− e, and that eq(1− e, 1) = ker(e). The
equivalence (1) ⇐⇒ (3) can be proved in the same way in Cop.

As a corollary note that any abelian category is idempotent complete. For an additive
category, the property of “being idempotent complete” can be viewed as a weakening of
“being abelian”.

Lemma B.1.5. Suppose C is preadditive. Let e : C → C be an idempotent such that e
and 1− e both split as e = sr and 1− e = s′r′, where s : R→ C, r : C → R, s′ : R′ → C
and r′ : C → R′. Then C ∼= R⊕R′.

Proof. Since rs = 1R and r′s′ = 1R′ we have that s and s′ are monomorphisms, and r
and r′ are epimorphisms. Also note that rs′ = 0 since rs′r′ = r(1 − e) = 0 and r′ is an
epimorphism. Likewise r′s = 0.

Suppose we have morphisms f1 : D → R and f2 = D → R′. Then we have

D

R C R′

f1 f2
f

r r′

where f = sf1+s′f2. Clearly both triangles in this diagram commute. Suppose g : D → C
also makes both triangles in the diagram above commute. Then r′g = f2 = r′sf1+r′s′f2 =
r′f . Since r′ is an epimorphism this gives g = f , so f is unique and hence C = R × R′.
A similar argument shows that C is also the coproduct of R and R′, which proves the
lemma.

B.2 Idempotent completion

Definition B.2.1. The idempotent completion of C is an idempotent complete category
Cω together with a full and faithful functor C → Cω such that, given a functor F : C → D
where D is idempotent complete, there exists functor F ω : Cω → D such that

C Cω

D
F

Fω

commutes, and moreover F ω is unique up to isomorphism of functors.

Using the standard argument for objects defined via universal properties one can show
that if Cω exists it is unique up to equivalence of categories. If Cω exists we can without
loss of generality consider C to be a full subcategory of Cω. In [Bor94, Proposition 6.5.9]
it is proved that Cω exists when C is small.
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Our goal now is to prove that when C is a subcategory of a preadditive, idempotent
complete category A, that Cω exists and is the full subcategory of A consisting of all
objects which are a direct summand of some object of C. Let A and B be objects of the
same category. We say B is a retract of A if there exist morphisms

B A Bs r

such that rs = 1B.

Proposition B.2.2. Let C → D be a fully faithful functor. Suppose D is idempotent
complete and that every object of D is a retract of an object of C. Then D is the idempotent
completion of C.

Proof. Without loss of generality suppose C is a full subcategory of D. Let F : C → E be a
functor to an idempotent complete category E . We aim to construct a functor F̃ : D → E
which fills in the diagram in Definition B.2.1.

Let D be an object of D and C an object of C such that D is a retract of C, so we
have

D C Ds r

where rs = 1D. In order to ensure F̃ is equal to F when restricted to objects of C, if D
happens to be an object of C then choose C = D and s = r = 1D. Consider the morphism
e = sr : C → C, which is an idempotent in C. Since E is idempotent complete F (e) splits

and, using Lemma B.1.3, we can define F̃ (D) = eq(F (e), 1F (C)). In the case that D is
an object of C choose the equaliser to be (F (C), 1). We denote the associated equaliser

morphism in E by σ : F̃ (D)→ F (C). Also note that by the same argument as in Lemma

B.1.3 we have a morphism ρ : F (C)→ F̃ (D) in E such that F (e) = σρ and ρσ = 1F̃ (D).
Let f : D1 → D2 be a morphism in D. For i = 1, 2 let Ci be an object of C such that

Di is a retract of Ci. Let si : Di → Ci and ri : Ci → Di be the morphisms in D in this
retract and ei = siri. Let ρi : F (Ci)→ F̃ (Di) and σi : F̃ (Di)→ F (Ci) be the morphisms
in E which split F (ei). Note that the composition s2fr1 : C1 → C2 is a morphism in C
and so in E we have the diagram

F̃ (D1) F (C1) F (C1)

F̃ (D2) F (C2) F (C2)

σ1
F (e1)

1

F (s2fr1)
∃!f̃

σ2

F (e2)

1

where f̃ exists by the universal property of the equaliser. We define F̃ (f) = f̃σ1.
To see that this defines a functor, first consider the case when D1 = D2 and f = 1D1 .

Then f̃ on the diagram above is a morphism such that σ1f̃ = F (e1), so by uniqueness

f̃ = ρ1. Therefore F̃ (1C1) = ρ1σ1 = 1F̃ (D1) as required.
Consider another morphism g : D2 → D3 in D. We have the following diagram

F̃ (D2) F (C2) F (C2)

F̃ (D3) F (C3) F (C3)

σ2
F (e2)

1

F (s3fr2)
∃!g̃

σ3

F (e3)

1
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in E . Let h̃ : F (C1) → F̃ (D3) be the unique morphism in E satisfying σ3h̃ = F (s3gfr1),

so by definition we have F̃ (gf) = h̃σ1. Note that

σ3g̃σ2f̃ = F (s3gr2)F (s2fr1) = F (s3gfr1)

and so h̃ = g̃σ3f̃ by uniqueness. Therefore F̃ (gf) = F̃ (g)F̃ (f) as required and hence we

have shown that F̃ defines a functor and by construction F̃ |C = F .

For uniqueness, suppose we have two functors F̃1, F̃2 : D → E such that F̃1|C = F̃2|C =
F . Let D be an object in D and

D C Ds r

be a retract with C an object of C. Then for i = 1, 2 we have the retract

F̃i(D) F (C) F̃i(D)
F̃i(s) F̃i(r)

in E . Noting that F̃i(s)F̃i(r) = F (e), we have (F̃i(D), F̃i(s)) is the equaliser eq(F (e), 1F (C))
by Lemma B.1.3. Therefore the functors are naturally isomorphic.

Corollary B.2.3. Let C be a subcategory of a preadditive, idempotent complete category
A. Then Cω is the full subcategory of A consisting of all objects which are direct summands
of an object of C.

Proof. Let D be this subcategory. Clearly C is a subcategory of D, and every object of
D is a retract of some object of C.

We now show that D is idempotent complete. If e : D → D is an idempotent in D
then it splits in A as e = sr where s : R→ D and r : D → R. By Lemma B.1.5 we have
that R is a direct summand of D. Since D is a direct summand of an object of C we have
that R is also a direct summand of the same object of C and hence R is in D. Therefore
the morphisms s : R→ D and r : D → R are in D and e splits in D.

Corollary B.2.4. The idempotent completion of the category of free modules over a
commutative ring R is the category of projective modules over R.

Proof. It is well-known that a module is projective if and only if it is a direct summand
of a free module.

B.3 Results used in Section 5

Let R be a commutative ring, f ∈ R. We quote the following result without proof.

Theorem B.3.1 (Proposition 1.6.8 [Nee01]). Any triangulated category which admits all
countable coproducts is idempotent complete.

Corollary B.3.2. HMF(R, f) is idempotent complete.

Proof. HMF(R, f) admits all countable coproducts and the shift functor X 7→ X[1] in-
duces a triangulated structure on HMF(R, f).

Corollary B.3.3. hmf(R, f)ω is the full subcategory of direct summands of objects of
hmf(R, f).

Proof. See Corollary B.2.3.

Lemma B.3.4. Let C be a preadditive category with a zero object and Cω its idempotent
completion. A functor C × C → Cω extends uniquely to a functor Cω × Cω → Cω.

Proof. We can embed C into C × C via the functor C 7→ (C, 0) or via the functor C 7→
(0, C). Using this we can show (C × C)ω is Cω × Cω directly from the definition.
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C A geometric interpretation of matrix factorisations

In this section we give a geometric interpretation of matrix factorisations of polynomials
by relating them to algebraic subsets of the zero set of the polynomial being factorised.
We do this with the aim of providing a geometric intuition for working with matrix
factorisations.

Matrix factorisations were first introduced in [Eis80] and were initially used in the
study of maximal Cohen-Macaulay modules [Yos90, Definition 1.1] over a local ring rep-
resenting a hypersurface. Let S be a commutative ring and f ∈ S be not a zero divisor.
Set R = S

/
(f) and let M be an R-module which, when regarded as an S-module, fits

into a short exact sequence of the form

0 S⊕m S⊕m M 0

for some m ∈ N. Denote the full subcategory of such R-modules by C(R). When S is a
regular local ring C(R) is the category of maximal Cohen-Macaulay R-modules [Yos90,
Chapter 7], although that is not how this category is usually defined.

Let mf(S, f) denote the category of finite rank matrix factorisations of f over S. We
define a functor from mf(S, f) to C(R) as

Γ : mf(S, f) −→ C(R), (X, d) 7−→ coker(d0)

on objects and on morphisms by applying the universal property of the cokernel.

Lemma C.1.1. The map Γ is well-defined.

Proof. Let (X, d) be a finite rank matrix factorisation and set M = coker(d0). Since
d1d0 = f · 1X1 and f is not a zero divisor we have that d0 is a monomorphism, hence
it is clear that M fits into a short exact sequence of S-modules of the required form. It
remains to show that M is naturally an R-module. Denote the cokernel epimorphism by
e : X1 → M . Then for m = e(s) ∈ M we have fm = e(fs) = ed0d1(s) = 0, so fM = 0.
Hence M is naturally an R-module.

Theorem C.1.2 ([Eis80, Corollary 6.3]). The functor Γ induces an equivalence of cat-
egories from the homotopy category hmf(S, f) to the quotient category C(R)

/
R.

A proof of Theorem C.1.2 can be found in [Eis80] or [Yos90, Chapter 7]. The proofs
in [Eis80; Yos90] are given in the context in which S is a regular local ring and so C(R) is
the category of maximal Cohen-Macaulay R-modules, however they work in this broader
context.

We now set S = k[x] = k[x1, · · · , xn]. Let V (f) = {a ∈ kn | f(a) = 0} denote the zero
set of f and (X, d) be a finite rank matrix factorisation of f . Since ΓX is naturally an
R-module we have AnnS(ΓX) ⊇ (f) and so the support of ΓX is the following algebraic
subset of V (f):

SuppS(ΓX) = {a ∈ kn | g(a) = 0 for all g ∈ AnnS(ΓX)} .

The map

mf(S, f) −→ {algebraic subsets of V (f)} (X, d) 7−→ SuppS(ΓX) (C.1)

is well-defined and many algebraic subsets arise in its image.
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Example C.1.3. Let W ⊆ V (f) be an algebraic subset of the same dimension as V (f).
Then W is associated to a principal ideal (g) ⊇ (f). That is W = V (g). Writing f = gh
where h ∈ k[x], we have the matrix factorisation

(Xg, dg) = S S S
g h

of f . We have ΓXg = S
/

(g) and SuppS(ΓXg) = W .

The issue with the map (C.1) is as follows. Let g ∈ k[x] be such that (g) ⊇ (f) and
consider the matrix factorisation (Xg, dg) defined in Example C.1.3. Since the unit element
1 ∈ k[x] is such that (1) ⊇ (f) we can also consider the matrix factorisation (X1, d1)
defined in the same way. Consider the matrix factorisation (Y, dY ) = (Xg, dg) ⊕ (X1, d1)
which is

S ⊕ S S ⊕ S S ⊕ S
(

1 0
0 g

) (
f 0
0 h

)
.

In this case we have ΓY = R ⊕ R
/

(g) and so SuppS(ΓY ) = V (f). However there is a
sense in which (Y, dY ) ought to be associated to the subvariety V (g) since it is obtained
from (Xg, dg) by adding a direct summand of the trivial matrix factorisation. It encodes
no additional information about how f can be factorised, and indeed (Y, dY ) and (Xg, dg)
are isomorphic in the homotopy category hmf(S, f). More generally we note that for any
matrix factorisation (Y, dY ) if ΓY has a direct summand of R then SuppS(ΓY ) = V (f).
In other words, direct summands of R in ΓY obscure geometric information about the
matrix factorisation (Y, dY ).

It is therefore natural to consider the quotient category C(R)
/
R in which objects that

differ by only by direct summands of R are isomorphic. Theorem C.1.2 gives us that
Γ is an equivalence of categories hmf(S, f) → C(R)

/
R, so the task is now to associate

objects of C(R)
/
R to subvarieties of V (f) in a sensible way. The obvious approach is,

for a module M in C(R)
/
R, to take a representative M ′ of its isomorphism class which

has no direct summands of R and map M 7→ SuppS(M ′). However, when S = k[x] this
module M ′ is not likely to be unique up to isomorphism. Whether or not isomorphism
classes of C(R)

/
R have unique representatives is closely related to whether the category

of R-modules satisfies the Krull-Remak-Schmidt property, for which we refer to [LW12,
Chapter 1].

Since modules in C(R) are finitely generated, if the ring R has the property that
R⊕M ∼= R⊕N implies M ∼= N for R-modules M and N then every isomorphism class
of C(R)

/
R has a unique representative which does not have R as a direct summand.

Lemma C.1.4 ([LW12, Lemma 1.2]). Suppose A is an idempotent complete category. Let
M , X and Y be objects of A, and suppose that End(M) is a local ring. Then M ⊕X ∼=
M ⊕ Y implies X ∼= Y .

By Lemma B.1.4 the category of R-modules is idempotent complete, and it is a
standard exercise to show that that EndR(R) ∼= R. Hence this approach would work
if R = k[x]

/
(f) was a local ring, which is true only in trivial cases.

Instead we consider the power series ring Ŝ = k[|x|] and define R̂ = Ŝ
/

(f). By

extension of scalars we can embed hmf(S, f) as a full subcategory of hmf(Ŝ, f). Let

Γ̂ : hmf(Ŝ, f) → C(R̂)
/
R̂ denote the equivalence of categories of Theorem C.1.2. Given

a matrix factorisation (X̂, d̂) of f over Ŝ there is a unique R̂-module in the isomorphism

class of Γ̂X̂ which has no direct summands of R̂ and so without loss of generality we
can assume that Γ̂X̂ is this unique representative for all such matrix factorisations. Then
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given a matrix factorisation (X, d) in hmf(S, f) we can consider Σ̂X = SuppŜ(Γ̂(X⊗S Ŝ)).

Since Γ̂(X ⊗S Ŝ) is a finitely generated Ŝ-module we have

Σ̂X = {p ∈ Spec(Ŝ) | p ⊇ AnnŜ(Γ̂(X ⊗S Ŝ))} .

The next step is to pull back the primes in Σ̂(X) along the ring morphism S → Ŝ. Denote

ΣX = {p ∩ S | p ∈ Σ̂X} .

We can do the same for the ideal AnnŜ(Γ̂(X ⊗S Ŝ)). Set A(X) = AnnŜ(Γ̂(X ⊗S Ŝ)) ∩ S.

Since S → Ŝ has the going down property one can show

ΣX = {q ∈ Spec(S) | q ⊇ A(X)}

and so ΣX corresponds to the zero set of the ideal A(X). Hence we define

Σ : hmf(S, f) {algebraic subsets of V (f)}

as sending (X, d) 7→ ΣX as defined above. Notice that given a principal ideal (g) ⊇ (f)
in S we still have that V (g) is in the image of this map.

The map Σ is compatible with direct sums in the following sense. Let (X, dX) and

(Y, dY ) be objects of hmf(S, f) considered as objects of hmf(Ŝ, f). The functor Γ̂ is

additive, so we have Γ̂(X ⊕ Y ) = Γ̂X ⊕ Γ̂Y . For any ring T and T -modules M and N we
have AnnT (M ⊕N) = AnnT (M)∩AnnT (N), so following this through gives Σ(X ⊕Y ) =
ΣX ∪ ΣY . A consequence of this is that the map Σ is not injective and as such Σ is not
likely to be a useful way of studying hmf(S, f). Nonetheless, this map illustrates how one
can think about matrix factorisations geometrically.
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