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In these notes we collect various facts about quasi-coherent sheaves on a scheme. Nearly all of
the material is trivial or can be found in [Gro60]. These notes are not intended as an introduction
to the subject.
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1 Basic Properties

Definition 1. Let X be a scheme. We denote the category of sheaves of OX -modules by OXMod
or Mod(X). The full subcategories of qausi-coherent and coherent modules are denoted by
Qco(X) and Coh(X) respectively. Mod(X) is a grothendieck abelian category, and it follows
from (AC,Lemma 39) and (H, II 5.7) that Qco(X) is an abelian subcategory of Mod(X). If X is
noetherian, then Coh(X) is also an abelian subcategory.

The fact that Qco(X) is an abelian subcategory of Mod(X) means that the following operations
preserve the quasi-coherent property:

• If φ : F −→ G is a morphism of quasi-coherent sheaves and H is a quasi-coherent submodule
of G , then φ−1H is a quasi-coherent submodule of F .

• If F is a quasi-coherent sheaf and G1, . . . ,Gn are quasi-coherent submodules then the finite
union

∑
i Gi is quasi-coherent (we mean the categorical union in Mod(X), but it follows that

this submodule is also the union in Qco(X)). To see this, realise the union as the image of
a morphism out of a finite coproduct.

• Finite limits and colimits of quasi-coherent modules are quasi-coherent.

1

file:"AbelianCategories.pdf"


• If F is a quasi-coherent sheaf and G1, . . . ,Gn are quasi-coherent submodules then the finite
intersection

⋂
i Gi is quasi-coherent (we mean the categorical intersection in Mod(X)). This

follows from the fact that binary intersections are pullbacks.

If X is a noetherian scheme then all these statements are true with “quasi-coherent” replaced
by “coherent”. In fact we will see in Proposition 25 that arbitrary colimits of quasi-coherent
sheaves are quasi-coherent. In particular, the union of any family of quasi-coherent submodules
of a quasi-coherent module is quasi-coherent. Here’s another clever trick:

Lemma 1. Let X be a scheme. Let {Fi}i∈I be a nonempty set of sheaves of OX-modules and
suppose that the coproduct

⊕
i Fi is quasi-coherent. Then Fi is quasi-coherent for every i ∈ I. If

X is noetherian the same is true of coherent modules.

Proof. Let ui : Fi −→
⊕

i Fi be the injections, and induce projections pi :
⊕

i Fi −→ Fi in the
usual way such that piui = 1. Therefore Fi is the image of the composite piui, and since this is a
morphism of quasi-coherent sheaves it follows from (5.7) that Fi is quasi-coherent. The same is
true of coherent sheaves if X is noetherian.

Lemma 2. Let X be a scheme and φ : F −→ G be a morphism of quasi-coherent sheaves of
modules on X. Then

(i) φ is a monomorphism ⇔ φU is injective for all open affine U ⊆ X.

(ii) φ is an epimorphism ⇔ φU is surjective for all open affine U ⊆ X.

(iii) φ is an isomorphism ⇔ φU is bijective for all open affine U ⊆ X.

Proof. Let U ⊆ X be a nonempty affine open subset and let a : U −→ SpecOX(U) be the
canonical isomorphism. We have a commutative diagram

a∗(F |U )
a∗φ|U // a∗(G |U )

F̃ (U)

KS

fφU

// G̃ (U)

KS

The functor −̃ : OX(U)Mod is exact and fully faithful, and therefore preserves and reflects
monomorphisms, epimorphisms and isomorphisms. Therefore φU is a monomorphism, epimor-
phism or isomorphism iff. φ|U : F |U −→ G |U has that property, which completes the proof.

Proposition 3. Let A be a commutative ring and set X = SpecA. Then we have an adjoint pair
of functors

AMod
e−

--
Mod(X)

Γ(−)

mm −̃ � Γ(−)

The functor −̃ is additive, exact and fully faithful. For an A-module M the unit η : M −→ M̃(X)
is an isomorphism and for a sheaf of modules F on X the counit ε : Γ(F ) ˜ −→ F is an
isomorphism if and only if F is quasi-coherent.

Proof. See our solution to (H,Ex.5.3) for the adjunction. Clearly if ε is an isomorphism then F
is quasi-coherent, and the converse follows from (H,5.4).

Lemma 4. Let X be a scheme and F a quasi-coherent sheaf of modules on X. If U ⊆ X is
affine with canonical isomorphism f : U −→ SpecOX(U) then there is an isomorphism of sheaves
of modules on SpecOX(U) natural in F

f∗(F |U ) ∼= F (U)˜
If X is noetherian and F is coherent then it follows that F (U) is a finitely generated OX(U)-
module. In this case Fx is a finitely generated OX,x-module for every x ∈ X.
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Lemma 5. Let X be a scheme and suppose have a sequence of quasi-coherent sheaves of modules
on X

F ′ ϕ // F
ψ // F ′′ (1)

this sequence is exact in Mod(X) if and only if for every open affine U ⊆ X the following sequence
is exact in OX(U)Mod

F ′(U)
ϕU // F (U)

ψU // F ′′(U)

Proof. Using (MRS,Lemma 38) and Lemma 4 we reduce to showing that for any affine open
U ⊆ X the sequence F ′(U)˜ −→ F (U)˜ −→ F ′′(U)˜ is exact in Mod(SpecOX(U)) if and only
if F ′(U) −→ F (U) −→ F ′′(U) is exact in OX(U)Mod. But −̃ is exact and fully faithful, so it
preserves and reflects exact sequences.

Lemma 6. Let X be a scheme and {Fi}i∈I a nonempty family of quasi-coherent sheaves of
modules on X. If U ⊆ X is affine then there is a canonical isomorphism of OX(U)-modules

⊕
i

Fi(U) −→

(⊕
i

Fi

)
(U)

Proof. Let P be the presheaf coproduct P (U) =
⊕

i Fi(U). There is a canonical morphism of
presheaves of modules ψ : P −→

⊕
i Fi into the sheaf coproduct, and we claim that ψU is an

isomorphism for any open affine U ⊆ X. To this end consider the following isomorphisms of
sheaves of modules

f∗((
⊕
i

Fi)|U ) ∼= f∗(
⊕
i

(Fi|U )) ∼=
⊕
i

f∗(Fi|U ) ∼=
⊕
i

F̃i(U) ∼= (
⊕
i

Fi(U))˜
Evaluating this isomorphism on global sections gives the desired result.

Lemma 7. Let X be a scheme and F ,G quasi-coherent sheaves of modules on X. For affine open
U ⊆ X there is a canonical isomorphism of OX(U)-modules τ : F (U) ⊗ G (U) −→ (F ⊗ G )(U)
natural in both variables with

τ(f ⊗ g) = f ⊗̇ g

Proof. Let a : SpecOX(U) −→ U be the canonical isomorphism and consider the following iso-
morphism of sheaves of modules on U

(F ⊗ G )|U ∼= F |U ⊗ G |U
∼= a∗F̃ (U)⊗ a∗G̃ (U)

∼= a∗(F̃ (U)⊗ G̃ (U))
∼= a∗(F (U)⊗ G (U))˜

This gives the desired isomorphism τ , which is clearly natural in both variables F ,G .

Lemma 8. Let X be a scheme and F a quasi-coherent sheaf of modules on X. Given an affine
open subset U ⊆ X a nonempty subset {si}i∈I ⊆ F (U) generates the sheaf of modules F |U if and
only if the si generate F (U) as an OX(U)-module.

Proof. We reduce immediately to the case where X = SpecA is affine and F = M˜. In this case
we need only observe that elements si ∈M generate M as an A-module if and only if their images
generate Mp as an Ap-module for every prime ideal p.
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2 Ideals

In this section all rings and algebras are commutative.

Lemma 9. Let A be a ring and a ⊆ A an ideal. Then

(a) If B is an A-algebra then aB is an ideal of B and Ja · OSpecB = JaB.

(b) If S is a graded A-algebra then aS is a homogenous ideal of S and Ja · OProjS = JaS.

Proof. Both statements are easily checked, using (SIAS,Lemma 1), (SIPS,Lemma 1) and (MRS,Lemma
46).

Lemma 10. Let X be an affine scheme and SpecOX(X) ∼= X the canonical isomorphism. If
K is a quasi-coherent sheaf of ideals on X then K corresponds to the ideal sheaf JK (X) on
SpecOX(X).

Proof. Let f : X −→ SpecOX(X) be the canonical isomorphism. Then K corresponds to the
image of f∗K −→ f∗OX ∼= OSpecOX(X), and since f∗K is quasi-coherent it is equivalent as a
subobject of OSpecOX(X) to K (X) ,̃ which is equivalent by definition to JK (X).

Proposition 11. Let A be a ring, a ⊆ A an ideal and set X = SpecA. If M is an A-module then
ãM̃ = ãM . In particular we have ãb̃ = ãb and ãn = ãn for ideals a, b and n ≥ 1.

Proof. The functor −̃ : AMod −→ Mod(X) is exact, so we can identify ã and ãM with submodules
of OX , M̃ respectively. The fact that ãM̃ = ãM follows from commutativity of the following
diagram

˜a⊗AM //

��

˜A⊗AM +3

��

M̃

ã⊗OX
M̃ // Ã⊗OX

M̃

7?wwwwwwwww

wwwwwwwww

Corollary 12. Let X be a scheme and J a quasi-coherent sheaf of ideals on X. If F is a quasi-
coherent sheaf of modules on X, then so is J F . In particular any product of quasi-coherent
sheaves of ideals is quasi-coherent. If X is noetherian the same statements are true for coherent
sheaves.

Proof. Let U ⊆ X be an affine open subset with canonical isomorphism f : U −→ SpecOX(U).
Then using (MRS,Proposition 52), Proposition 11 and Lemma 10 we have

f∗(J F )|U = f∗(J |UF |U )
= (J |U · OSpecOX(U))f∗(F |U )

= J̃ (U)f∗(F |U )

∼= J̃ (U)F̃ (U)
∼= (J (U)F (U))˜

which shows that J F is quasi-coherent. If X is noetherian and J ,F are coherent then
J (U),F (U) are finitely generated, so it is not hard to see that J (U)F (U) is finitely generated,
and therefore J F is coherent.

Proposition 13. Let X be a scheme and J a quasi-coherent sheaf of ideals on X. If F is a
quasi-coherent sheaf of modules on X, then for any affine open U ⊆ X we have (J F )(U) =
J (U)F (U) as submodules of F (U). In particular we have J n(U) = J (U)n for any n ≥ 1.

Proof. The first claim follows from evaluating the isomorphism in the proof of Corollary 12 on
global sections. To prove J n(U) = J (U)n for all n ≥ 1 is a simple induction.
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Proposition 14. Let X be a scheme and F ,G submodules of a sheaf of OX-modules H . If x ∈ X
then we have (F : G )x ⊆ (Fx : Gx) as ideals of OX,x. If X is noetherian, F ,H quasi-coherent
and G coherent this is an equality.

Proof. The inclusion (F : G )x ⊆ (Fx : Gx) is easily checked. Now suppose that X is noetherian,
F ,H quasi-coherent and G coherent. For the reverse inclusion, we can reduce to the following
situation: X = SpecA for a commutative noetherian ring A, M,N are A-submodules of an A-
module S with N finitely generated, p ∈ SpecA and we have to show that the ring isomorphism
OX,p ∼= Ap identifies the ideals (M˜ : N˜)p and (Mp : Np). It is a standard result of commutative
algebra that (Mp : Np) = (M : N)p. Given a ∈ (M : N) and s /∈ p it is easy to see that the
section ˙a/s ∈ Γ(D(s),OX) has the property that ˙a/sN ˜(V ) ⊆ M ˜(V ) for any open V ⊆ D(s),
and therefore ˙a/s ∈ Γ(D(s), (M˜ : N˜)) which completes the proof.

Corollary 15. Let A be a commutative noetherian ring and M,N A-submodules of an A-module
S. If N is finitely generated then we have (M ˜ : N ˜ ) = (M : N)˜ as sheaves of ideals on
X = SpecA.

Proof. It suffices to show that (M ˜ : N ˜ )p = (M : N) ˜ p as ideals of OX,p for every point
p ∈ X. But the proof of Proposition 14 shows that the isomorphism OX,p ∼= Ap identifies both
these ideals with (M : N)p, so they must be equal.

Corollary 16. Let X be a noetherian scheme and F ,G quasi-coherent submodules of a quasi-
coherent sheaf of OX-modules H . If G is coherent then (F : G ) is a coherent sheaf of ideals on
X.

Proof. If U ⊆ X is an affine open subset and f : U −→ SpecOX(U) the canonical isomorphism,
then we have using (MRS,Lemma 53) and Corollary 15 an isomorphism of sheaves of modules

f∗(F : G )|U = f∗(F |U : G |U )
∼= (F |U : G |U ) · OY
= (f∗F |U : f∗G |U )
= (F (U)˜ : G (U)˜)
= (F (U) : G (U))˜

This shows that (F : G ) is coherent, since OX(U) is noetherian and therefore the ideal (F (U) :
G (U)) is finitely generated.

3 Special Functors

Let f : X −→ Y be a closed immersion of schemes. The direct image functor f∗ has a right adjoint
f ! : Mod(Y ) −→ Mod(X) (MRS,Proposition 97) and in this section we study the properties of
this functor.

Proposition 17. Let f : X −→ Y be a closed immersion of schemes, V ⊆ Y an open subset
and g : f−1V −→ V be the induced morphism. Then for a sheaf of modules F on Y there is a
canonical isomorphism of sheaves of modules on f−1V natural in F

θ : (f !F )|f−1V −→ g!(F |V )

That is, there is a canonical natural equivalence θ : (−|f−1V )f ! −→ g!(−|V ).

Proof. Set U = Y \ f(X) and U ′ = V \ g(f−1V ). Then U ′ = U ∩ V and for open W ⊆ f−1V we
have

Γ(W, f !F ) = {s ∈ Γ(f(W ) ∪ U,HomOY
(f∗OX ,F )) | s|U = 0}

Γ(W, g!F |V ) = {s ∈ Γ(f(W ) ∪ U ′,HomOY
(f∗OX ,F )) | s|U ′ = 0}

5

file:"RingedSpaceModules.pdf"
file:"RingedSpaceModules.pdf"


Since f(W ) ∪ U ′ ⊆ f(W ) ∪ U we can define the map θW : Γ(W, f !F ) −→ Γ(W, g!F |V ) by
θW (s) = s|f(W )∪U ′ . This is an isomorphism, since in the restriction we only remove part of the
open set where s is zero. This defines the isomorphism θ, which is clearly natural in F .

Proposition 18. Suppose there is a commutative diagram of ringed spaces

X

k

��

f // Y

h

��
X ′

g
// Y ′

with f, g closed embeddings. Then for any sheaf of modules F on Y there is a canonical isomor-
phism of sheaves of modules natural in F

µ : k∗f !F −→ g!h∗F

µQ(s)T = sh−1T ◦ ω(hf)−1T

where ω : (k−1)∗OX′ −→ OX is the canonical isomorphism. That is, there is a canonical natural
equivalence µ : k∗f ! −→ g!h∗.

Proof. Set U = Y \ f(X) and V = Y ′ \ g(X ′). For an open set Q ⊆ X ′ we have using
(MRS,Proposition 86) an isomorphism of OX′(Q)-modules

µQ : Γ(Q, k∗f !F ) = Γ(f(k−1Q) ∪ U,HomOY
(f∗OX ,F ))

∼= Γ(h−1(g(Q) ∪ V ),HomOY
(f∗(k−1)∗OX′ ,F ))

= Γ(g(Q) ∪ V, h∗HomOY
((h−1)∗g∗OX′ ,F ))

∼= Γ(g(Q) ∪ V,HomOY ′ (g∗OX′ , h∗F ))

= Γ(Q, g!h∗F )

One checks that together these morphisms define an isomorphism of sheaves of modules µ natural
in F , as required.

Corollary 19. Let f : X −→ Y be a closed immersion of noetherian schemes and G a sheaf of
modules on Y . Then for x ∈ X there is a canonical isomorphism of OX,x-modules natural in G

λ : f !(G )x −→ HomOY,f(x)(OX,x,Gf(x))

λ(V, s)(T, r) = (Q, sQ(r|T∩V ))

where Q = f(T ∩ V ) ∪ U .

Proof. Since f is a finite morphism of noetherian schemes, the sheaf f∗OX is coherent (H, II
Ex.5.5) and therefore locally finitely presented by Lemma 34. So the existence of the claimed
isomorphism is a special case of (MRS,Proposition 96).

Proposition 20. Let φ : A −→ B be a surjective morphism of noetherian rings and f : X −→ Y
the corresponding closed immersion of affine schemes. For any A-module M there is a canonical
isomorphism of sheaves of modules natural in M

ζ : HomA(B,M)˜ −→ f !(M̃)

ζV ( ˙u/s) 7→ ˙1/s · (ũρ)|f(V )∪U

where ρ : f∗OX −→ B̃ is the canonical isomorphism of sheaves of modules on Y .
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Proof. We define the additive functor HomA(B,−) : AMod −→ BMod in the usual way, and it
is easy to check this is right adjoint to the restriction of scalars functor. We set X = SpecB, Y =
SpecA in what follows. There is a canonical morphism of B-modules

HomA(B,M) −→ HomOY
(B̃, M̃) ∼= HomOY

(f∗OX , M̃) = Γ(X, f !(M̃))

and therefore an induced morphism of sheaves of modules ζ : HomA(B,M)˜ −→ f !(M˜). Given
p ∈ SpecB there is an isomorphism of OX,p-modules

(HomA(B,M)˜)p
∼= HomA(B,M)p

∼= HomAφ−1p
(Bp,Mφ−1p)

∼= HomOY,f(p)(OX,p, M̃f(p))

∼= f !(M̃)p

where we use Corollary 19 and (MAT,Proposition 15). One checks this agrees with ζp, which is
therefore an isomorphism. This shows that ζ is an isomorphism of sheaves of modules, which is
clearly natural in M .

Corollary 21. Let f : X −→ Y be a closed immersion of noetherian schemes. If F is a quasi-
coherent sheaf of modules on Y then f !F is also quasi-coherent. If F is coherent then so is
f !F .

Proof. Let F be a quasi-coherent sheaf of modules on Y , and let x ∈ X be given. Let V be an
affine open neighborhood of f(x) and set U = f−1V , which is also affine. Let g : U −→ V, F :
SpecOX(U) −→ SpecOY (V ) be the induced closed immersions and k : U −→ SpecOX(U), h :
V −→ SpecOY (V ) the canonical isomorphisms. Then using Proposition 17, Proposition 18 and
Proposition 20 we have an isomorphism of sheaves of modules

k∗(f !F |U ) ∼= k∗(g!F |V )
∼= F !h∗(F |V )
∼= F !(F (V )˜)
∼= HomOY (V )(OX(U),F (V ))˜

which shows that f !F is quasi-coherent. If F is coherent then f !F is coherent, since if A is a
commutative noetherian ring andM,N finitely generated A-modules, the A-moduleHomA(M,N)
is also finitely generated.

Remark 1. Combining Corollary 21 with (H, II 5.18) and (H, II Ex.5.5) we see that if f : X −→ Y
is a closed immersion of noetherian schemes, the three adjoints f∗, f∗, f ! all preserve quasi-coherent
and coherent sheaves.

4 Open Subsets

Lemma 22. If X is a scheme and U ⊆ X open, restriction preserves quasi-coherent and coherent
modules. There are induced additive functors Qco(X) −→ Qco(U) and Coh(X) −→ Coh(U).

Proof. This follows from the proof of (H,5.4). Note that X need not be noetherian in the coherent
case. For any scheme Qco(X) is an abelian subcategory of Mod(X), so it is clear that (−)|U :
Qco(X) −→ Qco(U) is exact. IfX is noetherian then (−)|U : Coh(X) −→ Coh(U) is also exact.

Lemma 23. If X is a scheme and U ⊆ X open with concentrated inclusion i : U −→ X, then the
functor (−)|U : Qco(X) −→ Qco(U) has a right adjoint given by direct image i∗. So we have an
adjoint pair of functors

Qco(U)
i∗ --

Qco(X)
−|U

mm
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Proof. It follows from (CON,Proposition 18) that i∗ restricts to give a functor Qco(U) −→
Qco(X), and it is easy to check that −|U is left adjoint to i∗. In particular this applies when
X is concentrated and U ⊆ X quasi-compact.

Lemma 24. Let X be a scheme and {Ui}i∈I a nonempty open cover. Then a sheaf of OX-modules
F is quasi-coherent (resp. coherent) if and only if F |Ui is a quasi-coherent (resp. coherent) sheaf
of modules on Ui for all i ∈ I.

Proof. Once again, this is very easily checked.

Proposition 25. Let X a scheme. Then finite limits and arbitrary colimits of quasi-coherent
modules are quasi-coherent. In other words the abelian category Qco(X) is cocomplete and the
inclusion Qco(X) −→ Mod(X) preserves colimits.

Proof. We have already checked Qco(X) is closed under finite limits and finite colimits. Using
Lemma 22 and (MRS,Proposition 37) we reduce easily to the case where X = SpecA is affine. In
this case Qco(X) is equivalent to AMod, so is cocomplete, and the inclusion Qco(X) −→ Mod(X)
preserves all colimits since the functor −̃ : AMod −→ Mod(X) does.

Corollary 26. Let X be a scheme and F a sheaf of modules on X. Then F is quasi-coherent
if and only if every point x ∈ X has an open neighborhood U such that F |U is the cokernel of a
morphism of free modules on U . If X is noetherian, then F is coherent if and only if it is locally
a cokernel of a morphism of free sheaves of finite rank.

Proof. Suppose that F is quasi-coherent. Given x ∈ X find an affine open neighborhood U of x.
Then in the usual way we can write F (U) as the cokernel of a morphism OX(U)I −→ OX(U)J

for possibly infinite index sets I, J . This leads to an exact sequence

OX |IU −→ OX |JU −→ F |U

as required. If X is noetherian and F coherent, then OX(U) is noetherian and F (U) finitely
generated so we can take I, J to be finite sets. The reverse implications follow immediately from
Proposition 25 and (H,5.7).

5 Locally Free Sheaves

Proposition 27. Let X be a nonempty scheme. A sheaf of OX-modules F is locally free of
finite rank n if and only if every point x ∈ X has an open affine neighborhood U together with an
isomorphism f : U −→ SpecA such that

f∗(F |U ) ∼= Ãn

as OSpecA-modules, where An is the free A-module of rank n.

Proof. The result is trivial in the case n = 0, since A0 = 0. So suppose F is locally free of finite
positive rank n and let x ∈ X be given. By assumption there is an open neighborhood V of x such
that F |V is free of rank n. Let U be an affine open subset of V containing x and g : U −→ SpecA
an isomorphism. The inclusion OX |U −→ OX |V is right adjoint to the restriction functor. Hence
restriction and .̃ both preserve coproducts, and we have

g∗(F |U ) = g∗ ((F |V )|U )

= g∗

(
(
n⊕
i=1

OX |V )|U

)

= g∗

(
n⊕
i=1

OX |U

)

∼=
n⊕
i=1

OSpecA ∼= Ãn

8
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The converse is clear, since if the condition is satisfied then F is free of rank n on an open cover
of X. In fact the above proof works just as well if F is locally free of infinite rank, we just end
up with g∗(F |U ) ∼= (

⊕
i∈I A)˜ for an infinite set I.

Corollary 28. Let X be a scheme. If F is locally free it is quasi-coherent, and if F is locally
finitely free, then F is coherent.

Lemma 29. Let X be a scheme and L an invertible sheaf. If U ⊆ X is open and f ∈ L (U)
then Xf = {x ∈ U | germxf /∈ mxLx} is an open set.

Proof. If Xf = ∅ then this is trivial. If x ∈ Xf then let x ∈ V ⊆ X be an affine neighborhood with
isomorphisms f : V −→ SpecB and α : OX |V −→ L |V . Let f ′ ∈ OSpecB(f(U ∩V )) correspond to
f |U∩V ∈ L (U ∩V ). It would suffice to show that f(Xf ∩V ) is open in SpecB. But for y ∈ SpecB
the following diagram commutes:

OSpecB,y
(f∗α)y+3

��

(f∗L |V )y

��
OX,f−1y αf−1y

+3 Lf−1y

It is not difficult to check that if R is a ring and M a free R-module of rank 1, α : R −→ M
corresponding to a basis element, then α(a) = aM for any ideal a. Hence

f(Xf ∩ V ) = {y ∈ f(U ∩ V ) | germf−1yf /∈ mf−1yLf−1y}

= {y ∈ f(U ∩ V ) | germf−1yf
#
f(U∩V )(f

′) /∈ mf−1y}

= {y ∈ f(U ∩ V ) | germyf
′ /∈ my}

But from earlier notes we know that this final set is open. Hence Xf is open, since it is a union
of open sets.

Remark 2. In the previous Lemma if f ∈ L (U) and V ⊆ U is affine with L |V free, and if
g : V −→ SpecB is an isomorphism, then g(Xf ∩ V ) = D(f ′) where f ′ ∈ B corresponds to
f |V ∈ L (V ) ∼= OX(V ).

Lemma 30. Let X be a locally ringed space and L an invertible sheaf with section s ∈ L (U).
Then for x ∈ X we have x ∈ Xs if and only if germxs is a OX,x-basis for Lx.

Proof. By assumption if θ is a basis for Lx then germxsi = λ · θ with λ /∈ mx. Therefore λ is a
unit and germxsi is a basis. The converse is just as easy.

Lemma 31. Let X be a locally ringed space, L an invertible sheaf and f ∈ Γ(X,L ) a global
section. Then there is a canonical isomorphism L |Xf

∼= OX |Xf
of sheaves of modules.

Proof. Let ϕ : OX −→ L be the morphism corresponding to the global section f . By Lemma
30 this induces an isomorphism on the stalks OX,x −→ Lx for every x ∈ Xf , and therefore the
restriction ϕ|Xf

must be an isomorphism.

Lemma 32. Let X be a scheme and L an invertible sheaf. If s1, . . . , sn ∈ Γ(X,L ) then these
global sections generate L if and only if the open sets Xsi

cover X.

Lemma 33. Let A be a local ring and M,M ′ A-modules with M finitely generated. If there is an
isomorphism of A-modules M ⊗AM ′ ∼= A then there is an isomorphism of A-modules M ∼= A.

Proof. Let m be the maximal ideal of A. If M⊗AM ′ ∼= A then tensoring with k = A/m we obtain
an isomorphism of k-vector spaces

M/mM ⊗kM ′/mM ′ ∼= k

9



It follows that M/mM and M ′/mM ′ both have dimension 1 as vector spaces. Therefore by
Nakayama’s Lemma M is generated by some element z ∈ M . In fact M is free on this element
since if a ∈ A annihilates z it must annihilate M ⊗A M ′ ∼= A, and therefore a = 0. This shows
that M ∼= A as A-modules.

Lemma 34. Let X be a noetherian scheme and F a sheaf of OX-modules. Then F is coherent
if and only if it is locally finitely presented.

Proof. This follows immediately from Corollary 26, and is the scheme version of the fact that over
a noetherian ring the conditions of “finitely generated” and “finitely presented” are equivalent.

Proposition 35. Let X be a nonempty noetherian scheme and F a coherent sheaf of OX-modules.
Then

(i) If Fx is a free OX,x-module of finite rank n then there is an open neighborhood U of x such
that F |U is a free OX |U -module of rank n.

(ii) F is locally free of finite rank n if and only if Fx is a free OX,x-module of rank n for every
x ∈ X. In particular F is invertible if and only if Fx

∼= OX,x as OX,x-modules for every
x ∈ X.

(iii) F is invertible if and only if there is a coherent sheaf G such that F ⊗ G ∼= OX as OX-
modules.

Proof. (i) and (ii) follow immediately from (MRS,Corollary 90) and Lemma 34, while (iii) follows
from (MRS,Lemma 83), Lemma 33 and (ii). In the reverse implication of (iii) we do not require
that G be coherent: that is, if F ⊗ G ∼= OX for any sheaf of modules G then F is invertible.

Proposition 36. Let A be a noetherian ring and X = SpecA. If M is a finitely generated
A-module then M˜ is a locally free sheaf if and only if M is a projective module.

Proof. It follows from Proposition 35 that M˜ is a locally free sheaf if and only if Mp is a free Ap-
module for every prime ideal p ∈ SpecA. So the result follows immediately from (MAT,Corollary
27).

Remark 3. Let (X,OX) be a ringed space and F a locally finitely free sheaf of modules on X.
It is not in general true that F is a projective object in the abelian category Mod(X). Take for
example F = OX . If φ : G −→ H is an epimorphism then for F to be projective we would
require the morphism φX : G (X) −→ H (X) to be surjective, which is not generally the case.
The problem is that projectivity in Mod(X) is a “global” condition. If we replace the usual Hom
with Hom then things are better.

Lemma 37. Let (X,OX) be a ringed space and F a locally finitely free sheaf of modules on X.
Then the functor Hom(F ,−) : Mod(X) −→ Mod(X) is exact.

Proof. We already know the functor Hom(F ,−) is left exact (MRS,Lemma 72), so it suffices to
show that if φ : G −→ G ′ is an epimorphism of sheaves of modules then so is Hom(F ,G ) −→
Hom(F ,G ′). But F is locally finitely presented so by (MRS,Proposition 89) we have a commu-
tative diagram for every x ∈ X

Hom(F ,G )x

��

// Hom(F ,G ′)x

��
HomOX,x

(Fx,Gx) // HomOX,x
(Fx,G ′

x)

The bottom row of this diagram is surjective since Fx is a projective OX,x-module, and we
infer that the top row is also surjective. This shows that Hom(F ,G ) −→ Hom(F ,G ′) is an
epimorphism and completes the proof.

10
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6 Exponential Tensor Product

Lemma 38. Let X be a scheme, L an invertible sheaf on X and s ∈ Γ(X,L ). Let Xs =
{x ∈ X | germxs /∈ mxLx} be the canonical open set associated with s. Then for n > 0 we have
Xs = Xsn for the global section sn ∈ Γ(X,L ⊗n).

Proof. Given x ∈ X let U be an affine open neighborhood with L |U free, and let f ∈ OX(U)
correspond to s|U . Then Xs ∩ U = Df and it is not hard to see that Xsn ∩ U = Dfn = Df , as
required.

Lemma 39. Let X = SpecA be an affine scheme and M an A-module. For d > 0 there is a canon-
ical isomorphism of sheaves of modules (M⊗d)˜∼= M̃⊗d natural in M . Under this isomorphism
we have

(m1 ⊗ · · · ⊗md)/̇s 7→ ˙m1/s ⊗̇ ˙m/1 · · · ⊗̇ ˙md/1

Proof. The case n = 2 is handled in (H,5.2) and the rest is a simple induction. Naturality is not
hard to check.

Lemma 40. Let X be a scheme and F a quasi-coherent sheaf of modules on X. If U ⊆ X
is an affine open subset and d > 0 then there is a canonical isomorphism of OX(U)-modules
τ : F (U)⊗d −→ F⊗d(U) natural in F defined by

τ(f1 ⊗ · · · ⊗ fd) = f1 ⊗̇ · · · ⊗̇ fd

Proof. For d = 1 this is trivial, so assume d > 1. If U is affine, let a : SpecOX(U) −→ U be the
canonical isomorphism. We have an isomorphism of sheaves of modules on U

F⊗d|U ∼= (F |U )⊗d

∼= (a∗F̃ (U))⊗d

∼= a∗(F̃ (U)
⊗d

)
∼= a∗(F (U)⊗d)˜

This gives rise to the desired isomorphism τ which is clearly natural in F .

7 Sheaf Hom

Lemma 41. Let X = SpecA be an affine scheme and M an A-module. Then M is finitely
presented if and only if M̃ is a globally finitely presented sheaf of modules.

Proposition 42. Let X = SpecA be an affine scheme and let M,N be A-modules. Then there is
a canonical morphism of sheaves of modules natural in M,N

λ : HomA(M,N)˜ −→ HomOX
(M̃, Ñ)

˙φ/s 7→ ˙1/s · φ̃|U

If M is finitely presented then this is an isomorphism.

Proof. There is a canonical morphism of A-modules HomA(M,N) −→ HomOX
(M˜, N˜) given

by the functor −̃ : AMod −→ Mod(X). Using the adjunction between this functor and the
global sections functor Γ(−) : Mod(X) −→ AMod we obtain a canonical morphism of sheaves of
modules λ : HomA(M,N)˜ −→ HomOX

(M˜, N˜) with the required action. Naturality in both
variables is easily checked. Now suppose that M is finitely presented, so that for every p ∈ X
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we have a canonical isomorphism of Ap-modules HomA(M,N)p
∼= HomAp(Mp, Np). One checks

easily that the following diagram commutes

HomA(M,N)˜p

λp //

��

HomOX
(M̃, Ñ)p

��
HomAp(Mp, Np) +3 HomOX,p(M̃p, Ñp)

where the right hand side is the isomorphism of (MRS,Proposition 89). Therefore λp is an iso-
morphism for every p ∈ X, which shows that λ is an isomorphism of sheaves of modules.

Corollary 43. Let X be a scheme, F ,G quasi-coherent sheaves of modules with F locally finitely
presented. Then Hom(F ,G ) is quasi-coherent.

Proof. The question is local so we may assume that X = Spec(A) is affine and that F = M˜,G =
N˜ for modules M,N with M finitely presented. The claim now follows from Proposition 42.

Corollary 44. Let X be a noetherian scheme, F ,G quasi-coherent sheaves of modules. Then

(i) If F is coherent then Hom(F ,G ) is quasi-coherent.

(ii) If F ,G are both coherent then Hom(F ,G ) is coherent.

Proof. Recall that on a noetherian scheme the locally finitely presented sheaves of modules are
the same as the coherent sheaves, so (i) is Corollary 43. (ii) follows from the fact that if M,N are
two finitely generated modules over a noetherian ring A, the module HomA(M,N) is also finitely
generated.

8 Extension of Coherent Sheaves

Proposition 45. Let X = SpecA be a noetherian affine scheme and F a quasi-coherent sheaf.
Let {αi : Gi −→ F}i∈I the family of all coherent submodules of F . This is a direct family of
subobjects and F =

∑
i Gi = lim−→Gi. In particular F (U) =

⋃
i Gi(U) for any open set U .

Proof. When we write
∑
i Gi we mean the categorical union, which in the case of a noetherian

space X and a direct family of submodules is actually the pointwise union (MRS,Lemma 5).
For each i ∈ I the A-module Gi(X) is a finitely generated submodule of F (X) with Gi(X)˜ ∼=

Gi. Moreover the following diagram commutes

Gi

��

// F

��

G̃i(X) // F̃ (X)

It is not hard to see that every finitely generated submodule of F (X) is of the form G (X) for
some coherent submodule G of F . So {Gi(X)}i∈I is the set of finitely generated submodules of
F (X) (note that all these submodules are distinct). Since F (X) is the direct limit of its finitely
generated submodules and the functor −̃ : AMod −→ Mod(X) preserves colimits, it follows that
F = lim−→Gi and therefore F =

∑
i Gi.

It is clear that we can also apply the Proposition to any scheme isomorphic to SpecA for a
noetherian ring A.

Lemma 46. Let X be a locally noetherian scheme and F a coherent sheaf of modules on X. Any
quasi-coherent submodule of F is coherent.

12

file:"RingedSpaceModules.pdf"
file:"RingedSpaceModules.pdf"


Proof. The question is local, and on an affine noetherian scheme this follows from the fact that
over a noetherian ring, any submodule of a finitely generated module is finitely generated.

Proposition 47. Let X be a noetherian scheme and F a coherent sheaf. If F = lim−→Gi for a
direct family of quasi-coherent submodules Gi then F = G` for some index `.

Proof. First we prove it in the case where X = SpecA is an affine noetherian scheme. The functor
−̃ : AMod −→ Mod(X) is fully faithful, hence reflects colimits. The A-modules Gi(X) form a
direct family of submodules of F (X), and since F (X)˜ is the direct limit of the Gi(X)˜ it follows
that F (X) is the direct limit of the Gi(X) and therefore F (X) =

∑
i Gi(X). So we have reduced

to proving that if a finitely generated A-module M over a noetherian ring A is the sum
∑
iNi of

a nonempty direct family of submodules, then M = Nk for some k. But this is obvious, so we
have completed the proof in the affine case. It is therefore also true in the case of X ∼= SpecA
with A noetherian.

Now let X be an arbitrary noetherian scheme. Since X is quasi-compact we can cover it with
a finite collection of affine open sets U1, . . . , Un. If F = lim−→Gi then by the comment preceeding
(MRS,Lemma 5) we see that F =

∑
i Gi. That is, F (U) =

⋃
i Gi(U) for all open U . It is

immediate that F |Uk
=
∑
i Gi|Uk

and therefore F |Uk
= lim−→i

Gi|Uk
for 1 ≤ k ≤ n. Since F |Uk

is
coherent we have F |Uk

= Gik |Uk
for some index ik. Let ` be such that ik ≤ ` for all k. Then it is

clear that F = G`, as required.

Lemma 48. Let X = SpecA be a noetherian affine scheme, U an open subset and F a coherent
OX |U -module. Then there is a coherent OX-module F ′ with F ′|U = F .

Proof. If i : U −→ X is the inclusion then i∗F is quasi-coherent by (H, II 5.8). Therefore by
Proposition 45, i∗F =

∑
i Gi is the union of all its coherent submodules. It is clear that

F = (i∗F )|U =
∑
i

Gi|U = lim−→Gi|U

Therefore by Proposition 47 we see that F = Gi|U for some index i, which completes the proof.

Lemma 49. Let X = SpecA be a noetherian affine scheme, U an open subset and F a coher-
ent OX |U -module. Suppose that we are given a quasi-coherent sheaf G on X such that F is a
submodule of G |U . Then there is a coherent submodule F ′ of G with F ′|U = F .

Proof. Let i : U −→ X be the inclusion and let ρ : G −→ i∗(G |U ) be the morphism of modules
defined by restriction ρV : G (V ) −→ G (U ∩ V ). By assumption F is a submodule of G |U , so it
follows that i∗F is a submodule of i∗(G |U ). Let H be the submodule of G given by taking the
inverse image (MRS,Lemma 7) of i∗F along ρ, which fits into the following pullback diagram

H //

��

i∗F

��
G ρ

// i∗(G |U )

Since the functor |U : Mod(X) −→ Mod(U) is exact it preserves finite limits, so applying |U to the
above pullback diagram and using the fact that ρ|U = 1 we see that H |U = F . The subcategory
Qco(X) of quasi-coherent modules is an abelian subcategory of Mod(X) and i∗F ,G , i∗(G |U ) are
all quasi-coherent, so it follows that H is also quasi-coherent. If {Hi}i∈I is the collection of
coherent submodules of H then H =

∑
i Hi and by the method of Lemma 48 we see that

F = Hi|U for some index i, which completes the proof.

Of course it is immediate that we can also apply the Lemma in the case where X is isomorphic
to SpecA for some noetherian ring A. In the next Proposition we will use the following simple
pasting procedure:
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Lemma 50. Let (X,OX) be a ringed space and suppose that X = U ∪ V for two open sets
U, V . Suppose that G is a sheaf of modules on X and F ,F ′ are submodules of G |U ,G |V on U, V
respectively. If F |U∩V = F ′|U∩V then there is a unique submodule F ′′ of G with F ′′|U = F
and F ′′|V = F ′. Moreover if X is a scheme and both F ,F ′ are quasi-coherent (resp. coherent),
then so is F ′′.

Proof. Define F ′′(W ) = {s ∈ G (W ) | s|W∩U ∈ F (W ∩ U) and s|W∩V ∈ F ′(W ∩ V )}. It is not
hard to check this is a sheaf of OX -modules with the required property.

Proposition 51. Let X be a noetherian scheme, U an open subset and F a coherent sheaf on
U . Suppose that we are given a quasi-coherent sheaf G on X such that F is a submodule of G |U .
Then there is a coherent submodule F ′ of G with F ′|U = F .

Proof. Let V1, . . . , Vn be a cover of X by open affine subsets. We can apply Lemma 49 to the
scheme V1 with open subset V1 ∩ U and sheaves F |V1∩U ,G |V1 to find a coherent submodule F ′

of G |V1 such that F ′|V1∩U = F |V1∩U . Since the coherent sheaves F ,F ′ agree on U ∩ V1 we can
paste them to get a coherent submodule F ′

1 of G |U1 where U1 = U ∪ V1, such that F ′
1|U = F

and F ′
1|V1 = F ′. Applying this argument again with U replaced by U1 and V1 replaced by V2 to

extend to a coherent sheaf on U2 = V2 ∪ U1, and eventually this produces the desired coherent
sheaf F ′

n on all of X.

Corollary 52. Let X be a noetherian scheme, U an open subset and F a coherent sheaf on U .
Then there is a coherent sheaf F ′ on X with F ′|U = F .

Proof. Take G = i∗F in the Proposition.

Lemma 53. Let (X,OX) be a ringed space and U an open subset. If F is a sheaf of modules
on X which can be written as the union F =

∑
i Gi of a nonempty collection of submodules, then

F |U =
∑
i Gi|U .

Proof. Realise the union as the image of a coproduct
⊕

i Gi −→ F and use the fact that functor
−|U : Mod(X) −→ Mod(U) is exact and preserves all colimits.

Lemma 54. Let X be a noetherian scheme and let F be a quasi-coherent sheaf which can be
written as the finite union F = G1 ∪ · · · ∪ Gn of coherent submodules. Then F is coherent.

Proof. Using Lemma 53 we reduce easily to the affine case, which follows easily from the fact
that a module which is the sum of a finite number of finitely generated submodules is finitely
generated.

Corollary 55. Let X be a noetherian scheme and F a quasi-coherent sheaf. Then the coherent
submodules {Gi}i∈I of F form a direct family of submodules with F =

∑
i Gi = lim−→Gi.

Proof. SinceX is quasi-compact we can cover it with a finite number of affine open sets U1, . . . , Un.
Suppose Gi,Gj are coherent submodules of F . For 1 ≤ k ≤ n it follows from Proposition 45 that
there is a coherent submodule Hk of F |Uk

with Gi|Uk
≤ Hk and Gj |Uk

≤ Hk. By Proposition
51 there is an index ik such that Hk = Gik |Uk

. We already know the union G ′ = Gi1 ∪ · · · ∪ Gin
is a quasi-coherent submodule of F , and since this is a finite union, G ′ is coherent and Gi ≤ G ′,
Gj ≤ G ′ which completes the proof that the family {Gi}i∈I is directed.

To complete the proof, it suffices to show that F |Uk
=
∑
i(Gi|Uk

) for 1 ≤ k ≤ n. So by
Proposition 45 it suffices to show that every coherent submodule of F |Uk

is of the form Gi|Uk
for

some index i. Since this follows immediately from Proposition 51, the proof is complete.
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8.1 Extension in general

Definition 2. Let (X,OX) be a ringed space and F a sheaf of modules on X. We say that F is
of finite type if for every x ∈ X there is an open neighborhood U of x such that F |U is generated
as a OX |U -module by a finite set of sections over U . Equivalently, F |U is a quotient of (OX |U )p

for some finite p > 0. This property is stable under isomorphism. If F is of finite type then Fx

is a finitely generated OX,x-module for every x ∈ X.

Remark 4. It is clear that any quotient of a sheaf of modules of finite type is also of finite type.
Also any finite direct sum of sheaves of modules of finite type is of finite type. Consequently, any
finite sum of submodules of finite type is also of finite type. Any locally finitely presented sheaf
of modules is of finite type. If X is a noetherian scheme and F a quasi-coherent sheaf then F is
coherent if and only if it is of finite type.

Lemma 56. Let (X,OX) be a ringed space and F a locally free sheaf of modules on X. Then F
is locally finitely free if and only if it is of finite type.

Proof. Suppose that F is locally free of finite type. Then for each x ∈ X the OX,x-module Fx

is free and finitely generated, and therefore of finite rank (provided OX,x is nonzero). It follows
that F is locally finitely free. The converse is trivial.

Lemma 57. Let (X,OX) be a ringed space whose underlying space is quasi-compact, and let
u : F −→ G be an epimorphism of sheaves of modules on X with G of finite type. Suppose that
F = lim−→λ∈Λ

Fλ is a direct limit of submodules. Then Fµ −→ G is an epimorphism for some
µ ∈ Λ.

Proof. For each point x ∈ X let U(x) be an open neighborhood of x and sx,i1 , . . . , sx,iNx
a finite

collection of sections of G over U(x) which generate G |U(x) as a sheaf of modules. Since u is an
epimorphism and the collection is finite, we can find an open set x ∈ V (x) ⊆ U(x) and sections
tx,i1 , . . . , tx,iNx

of F over V (x) such that sx,ij |V (x) = u(tx,ij ) for every 1 ≤ j ≤ Nx. Moreover by
shrinking V (x) if necessary we can assume by (MRS,Lemma 4) that there is a single index λ(x)
such that each tx,ij belongs to Γ(V (x),Fλ(x)). Since X is quasi-compact we can choose a finite
number of points x1, . . . , xn such that the V (xi) cover X, and also a single index µ ∈ Λ such that
every λ(xi) ≤ µ. Then it is clear that Fµ −→ G is an epimorphism, as required.

Example 1. As a special case, if (X,OX) is a ringed space with quasi-compact underlying
topological space, and F a sheaf of modules of finite type which is a direct limit F = lim−→λ

Fλ of
submodules, then F = Fλ for some λ. When we say “is a direct limit of submodules” we really
mean “is a direct limit of a direct family of submodules”, so that the index λ is unique with this
property.

Let (X,OX) be a ringed space, U ⊆ X an open subset and F a sheaf of modules on X. Let
i : U −→ X be the canonical injection, and G a submodule of F |U . Then i∗G is a submodule of
i∗(F |U ). Let G denote the submodule ρ−1i∗G of F where ρ is the canonical morphism

ρ : F −→ i∗(F |U )

It is clear from the definitions that for an open subset V ⊆ X

Γ(V,G ) = {s ∈ Γ(V,F ) | s|V ∩U ∈ Γ(V ∩ U,G )}

Therefore G |U = G as submodules of F |U , and G is the largest submodule of G with this
property (that is, it contains any other such submodule). We call G the canonical extension of
the submodule G of F |U to a submodule of F .

Proposition 58. Let X be a scheme, U an open subset of X such that the injection i : U −→ X
is quasi-compact. Then

(i) For any quasi-coherent sheaf of modules G on U , j∗G is quasi-coherent.
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(ii) For any quasi-coherent sheaf of modules F on X and quasi-coherent submodule G of F |U ,
the canonical extension G is quasi-coherent.

Proof. (i) The morphism i is quasi-compact by assumption, and quasi-separated since it is an
open immersion. The functor j∗ therefore preserves quasi-coherence by (CON,Proposition 18).

(ii) By construction G is the pullback along a morphism ρ of quasi-coherent sheaves, of a
quasi-coherent submodule i∗(G ). Since the quasi-coherent sheaves form an abelian subcategory
of Mod(X), it is therefore clear that G is quasi-coherent.

Example 2. If X is a quasi-separated scheme whose underlying space is noetherian, the inclusion
of every open subset is a quasi-compact morphism, so the result applies in this case. In particular
it is true for a noetherian scheme X.

Corollary 59. Let X be a scheme, U a quasi-compact open subset of X such that the injection
j : U −→ X is quasi-compact. Suppose that every quasi-coherent sheaf of modules on X is a direct
limit of quasi-coherent submodules of finite type. Then if F is a quasi-coherent sheaf of modules
on X and G a quasi-coherent submodule of F |U of finite type, then there exists a quasi-coherent
submodule G ′ of F of finite type such that G ′|U = G .

Proof. The canonical extension G is quasi-coherent and G |U = G . By assumption we have G =
lim−→λ

Hλ for some quasi-coherent submodules Hλ of finite type. Then

G = G |U = lim−→
λ

Hλ|U

and it follows from Example 1 that G = Hλ|U for some λ.

Remark 5. If X is an affine scheme then every quasi-coherent sheaf of modules is certainly a
direct limit of quasi-coherent submodules of finite type. Therefore for any open subset U ⊆ X
with quasi-compact inclusion, the conclusion of Corollary 59 holds.

Remark 6. Let X be a scheme, and suppose that for every affine open subset U ⊆ X the
inclusion U −→ X is quasi-compact. Suppose the conclusion of Corollary 59 holds for these open
sets. That is, assume that for every open affine U , quasi-coherent sheaf F on X and quasi-
coherent submodule G of F |U of finite type, there exists a quasi-coherent submodule G ′ of F of
finite type such that G ′|U = G . Then we claim every quasi-coherent sheaf F on X is the direct
limit of quasi-coherent submodules of finite type.

To see this, let U ⊆ X be affine. Then F |U is clearly the direct limit of quasi-coherent
submodules of finite type (since any module is a direct limit of its finitely generated submodules).
By assumption each of these submodules extends to a quasi-coherent submodule Gλ,U of F of
finite type. Take all finite sums of such submodules, as U ranges over all affine open subsets of X
and λ over the indices on each U . Each of these sums is quasi-coherent of finite type, and F is
the direct limit over all such sums.

Corollary 60. With the assumptions of Corollary 59, for every quasi-coherent sheaf of modules
G on U of finite type there exists a quasi-coherent sheaf of modules G ′ on X of finite type with
G ′|U = G .

Proof. We simply take F = j∗G in Corollary 59.

Lemma 61. Let X be a scheme, L a small limit ordinal, {Vλ}λ∈L a cover of X by open affines,
U an open subset of X, and for each λ ∈ L we set Wλ =

⋃
µ<λ Vµ. Suppose that

(a) For each λ ∈ L the open set Vλ ∩Wλ is quasi-compact.

(b) The inclusion U −→ X is quasi-compact.

Then for each quasi-coherent sheaf of modules F on X and quasi-coherent submodule G of F |U
of finite type, there exists a quasi-coherent submodule G ′ of F of finite type such that G ′|U = G .
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Proof. For each λ ∈ L we set Uλ = U ∪Wλ. To be clear, a small limit ordinal is a limit ordinal
in the sense of (BST,Definition 2) (where we work in ZFC, so an ordinal can be an arbitrary
conglomerate) which is small (i.e. bijective to a set). The idea is that we start with the sheaf F
and by transfinite recursion extend it along the following chain of open subsets

U = U0 ⊆ U1 ⊆ · · · ⊆ Uλ ⊆ Uλ+1 ⊆ · · ·

and then glue to obtain a sheaf on all of X. To be precise, we define for every λ ∈ L a quasi-
coherent submodule G ′

λ of F |Uλ
of finite type, with the property that G ′

λ|Uµ = G ′
µ for any µ < λ,

with G ′
0 = G . Then there is a unique submodule G ′ of F with G ′|Uλ

= G ′
λ for every λ ∈ L, and

it is clear that this is the desired sheaf.
If λ = 0 then we define G ′

λ = G . Suppose that λ ∈ L is a limit ordinal and that we have defined
G ′
µ with the correct property for all µ < λ. Then Uλ =

⋃
µ<λ Uµ so there is a unique submodule

G ′
µ of F |Uµ with G ′

µ|Uλ
= G ′

λ for every λ < µ. This sheaf is clearly quasi-coherent of finite type.
If λ is a successor ordinal, say λ = µ + 1, then Uλ = Uµ ∪ Vµ. By (b) the inclusion U −→ X

is quasi-compact, so U ∩ Vµ is a quasi-compact open subset of the affine scheme Vµ. By (a) the
open set Wµ ∩ Vµ is quasi-compact, and therefore so is the union

Uµ ∩ Vµ = (U ∩ Vµ) ∪ (Wµ ∩ Vµ)

An affine scheme is quasi-separated, so the inclusion Uµ∩Vµ −→ Vµ is quasi-compact. By Corollary
59 there exists a quasi-coherent submodule G ′′

µ of F |Vµ
of finite type, such that

G ′′
µ |Uµ∩Vµ = G ′

µ|Uµ∩Vµ

Let G ′
λ be the unique submodule of F |Uλ

with G ′
λ|Uµ = G ′

µ and G ′
λ|Vµ = G ′′

µ . This sheaf is
clearly quasi-coherent of finite type. By transfinite recursion, we have defined for every λ ∈ L a
quasi-coherent submodule G ′

λ with the required properties, so the proof is complete.

Remark 7. There is a small technical detail in the proof of Lemma 61 that we need to remark
upon. In any construction by transfinite recursion, the recursive steps cannot involve any arbitrary
choices. But in our construction from µ to µ + 1, we made such an arbitrary choice, because
extensions are not necessarily canonical. So before we begin the transfinite recursion, we need to
fix for every µ ∈ L, quasi-compact open subset T ⊆ Vµ and quasi-coherent submodule H of F |T
of finite type, a specific extension of H to Vµ.

Theorem 62. Let X be a concentrated scheme and U an open subset whose inclusion U −→ X
is quasi-compact. For any quasi-coherent sheaf of modules F on X and quasi-coherent submodule
G of F |U of finite type, there is a quasi-coherent submodule G ′ of F of finite type with G ′|U = G .

Proof. Let V0, . . . , Vn be an affine open cover of X. To make this into a cover indexed by a small
limit ordinal, set L = ω and Vi = ∅ for i > n. Since X is quasi-separated any intersection Vλ ∩ Vµ
is quasi-compact (CON,Proposition 12), and since only finitely many Vµ are nonempty, it follows
that Vλ∩Wλ is quasi-compact for every λ ∈ L. Therefore the conditions of Lemma 61 are satisfied
and we reach the desired conclusion.

Corollary 63. Let X be a concentrated scheme and U an open subset whose inclusion U −→ X
is quasi-compact. If G is a quasi-coherent sheaf of modules on U of finite type, there is a quasi-
coherent sheaf of modules G ′ on X of finite type with G ′|U = G .

Proof. Let i : U −→ X be the inclusion and set F = i∗G in Theorem 62.

Corollary 64. Let X be a concentrated scheme and F a quasi-coherent sheaf of modules on X.
Then F is the direct limit of its quasi-coherent submodules of finite type.

Proof. This follows from Corollary 63 and Remark 6.

17
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8.2 Categories of quasi-coherent sheaves

Lemma 65. Let X be a scheme. There is a nonempty set I of sheaves of modules on X of finite
type which is representative. That is, every sheaf of modules of finite type is isomorphic to some
element of I.

Proof. The proof is the same as (MRS,Proposition 11), with the obvious modifications.

Proposition 66. Let X be a concentrated scheme. Then Qco(X) is a grothendieck abelian cate-
gory. In particular it is complete and has enough injectives.

Proof. We already know from Proposition 25 that Qco(X) is a cocomplete abelian category. Since
Mod(X) is grothendieck the category Qco(X) clearly satisfies the condition Ab5, so it only remains
to show that Qco(X) has a generating family.

By Lemma 65 we can find a set of quasi-coherent sheaves of modules of finite type {FD}D∈G
such that every quasi-coherent sheaf of finite type is isomorphic to some FD. We claim that
{FD}D∈G is a generating family for Qco(X). If ϕ : F −→ G is a nonzero morphism of quasi-
coherent sheaves, then since F is the direct limit of its quasi-coherent submodules of finite type
by Corollary 64 we can find some D ∈ G and a morphism µ : FD −→ F with ϕµ 6= 0, which
completes the proof.

Remark 8. If X is noetherian then we can combine (MRS,Proposition 11) and Lemma 34 to
find a set of coherent sheaves {FD}D∈G with the property that every coherent sheaf is isomorphic
to some FD. Using Corollary 55 one checks that this is a generating family for Qco(X), slightly
refining Proposition 66 in this case. Actually if X is concentrated and admits an ample family of
invertible sheaves then the tensor powers of the ample family generate Qco(X) (AMF,Lemma 8).

Remark 9. This does not necessarily mean that arbitrary limits of quasi-coherent modules in
Mod(X) are quasi-coherent, since we don’t know that the inclusion Qco(X) −→ Mod(X) preserves
all limits.

Definition 3. Let X be a concentrated scheme. The inclusion i : Qco(X) −→ Mod(X) is
colimit preserving and therefore has a right adjoint Q : Mod(X) −→ Qco(X) which we call
the coherator (AC,Theorem 49). The coherator Q preserves all limits and sends injectives of
Mod(X) to injectives in Qco(X) (AC,Theorem 26). The unit 1 −→ Qi is a natural equivalence
(AC,Proposition 21).

Lemma 67. Let X be a noetherian scheme. For any quasi-coherent sheaf F there is a quasi-
coherent sheaf G which is injective in Mod(X) together with a monomorphism F −→ G .

Proof. See Hartshorne’s Residues and Duality (I, 4.8) and (II, 7.18).

Proposition 68. If X is a noetherian scheme then the inclusion Qco(X) −→ Mod(X) preserves
injectives.

Proof. Let F be a quasi-coherent sheaf which is injective in Qco(X). By Lemma 67 we can find
a quasi-coherent sheaf G which is injective in Mod(X) together with a monomorphism F −→ G .
Since F is injective in Qco(X) this monomorphism splits, and it follows that F is injective in
Mod(X), as required.

Corollary 69. Let f : X −→ Y be an open immersion of noetherian schemes. Then the functor
f∗ : Qco(Y ) −→ Qco(X) preserves injectives.

Proof. We already know that f∗ : Mod(Y ) −→ Mod(X) preserves injectives (MRS,Corollary 28),
so this follows from Proposition 68.
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8.3 Finiteness Conditions

In our notes on Abelian Categories (AC) we introduced several finiteness conditions (AC,Definition
61) on objects of an abelian category. For example we defined the finitely generated and finitely
presented objects. In a category of modules these agree with the usual definitions (AC,Lemma 94)
(AC,Proposition 97) and in this section we examine the corresponding objects of Qco(X). The
reader should be careful to distinguish between the following three conditions that we have now
introduced for sheaves of modules:

(i) A globally finitely presented sheaf is one that can be written as the cokernel of a morphism
of two finite coproducts of the structure sheaf.

(ii) A locally finitely presented sheaf is one that can be locally written as such a cokernel.

(iii) A finitely presented sheaf is one satisfying the categorical property of (AC,Definition 61).
This makes sense in both Qco(X) and Mod(X) so we will specify the ambient category.

Lemma 70. Let X be a concentrated scheme and F a quasi-coherent sheaf. Then F is finitely
generated in Qco(X) if and only if it is coherent.

Proof. Recall that F is coherent if and only if it is of finite type. Suppose that F is of finite type.
It follows from Example 1 that F is a finitely generated object of Qco(X). In fact an arbitrary
sheaf of modules of finite type on a quasi-compact ringed space is a finitely generated object of
Mod(X) by this argument. Conversely, suppose that F ∈ Qco(X) is finitely generated. From
Corollary 64 we deduce that F is of finite type.

Remark 10. LetX be a noetherian scheme. From Lemma 46 and (AC,Lemma 92) we deduce that
every coherent sheaf F is a noetherian object of Qco(X), which is therefore a locally noetherian
grothendieck abelian category (AC,Definition 63). In particular for any quasi-coherent sheaf F
the following conditions are equivalent:

(i) F is of finite type.

(ii) F is coherent.

(iii) F is finitely generated in Qco(X).

(iv) F is noetherian in Qco(X).

(v) F is compact in Qco(X) (AC,Corollary 113).

Proposition 71. Let X be a concentrated scheme and F a quasi-coherent sheaf of modules. The
following are equivalent:

(a) The functor Hom(F ,−) : Qco(X) −→ Ab preserves direct limits. In other words, F is a
finitely presented object of Qco(X).

(b) The functor Hom(F ,−) : Qco(X) −→ Mod(X) preserves direct limits.

Proof. (b) ⇒ (a) The underlying topology of X is quasi-noetherian so the global sections func-
tor Γ(X,−) : Mod(X) −→ Ab preserves direct limits (COS,Proposition 23). Composing with
Hom(F ,−) we deduce (a). For (a) ⇒ (b) let U ⊆ X be a quasi-compact open subset with
inclusion i : U −→ X. This is a concentrated scheme so the functor

i∗ : Qco(U) −→ Qco(X)

exists and preserves direct limits (CON,Proposition 18) (HDIS,Proposition 37). From this fact
and the adjunction isomorphism

HomQco(U)(F |U ,−) −→ HomQco(X)(F , i∗(−))
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we deduce that Hom(F |U ,−) : Qco(U) −→ Ab also preserves direct limits. That is, any quasi-
compact restriction of F is finitely presented. Now let {Gλ, ϕµλ}λ∈Λ be a direct system in Qco(X)
with direct limit G = lim−→λ

Gλ. To show that the morphisms Hom(F ,Gλ) −→ Hom(F ,G ) are
a direct limit in Mod(X) it suffices to check after applying Γ(U,−) for every quasi-compact open
U ⊆ X, since such subsets form a basis of X. But the morphisms

Hom(F |U ,Gλ|U ) −→ Hom(F |U ,G |U )

are known to be a direct limit in Ab because F |U is finitely presented. This establishes (b) and
completes the proof.

Corollary 72. Let X be a concentrated scheme, U a quasi-compact open subset and F a finitely
presented object of Qco(X). Then F |U is finitely presented in Qco(U).

The most interesting consequence of this proposition is that being a finitely presented object
is local, which is slightly surprising given the very global form of the definition.

Lemma 73. Let X be a concentrated scheme. An object F ∈ Qco(X) is finitely presented if and
only if every x ∈ X has a quasi-compact open neighborhood U such that F |U is finitely presented
in Qco(U).

Proof. Every quasi-compact open subset of X is concentrated and we observed in the proof of
Proposition 71 that restricting to a quasi-compact open subset of a concentrated scheme preserves
the property of being finitely presented, so it is easy to see that X has a basis of quasi-compact
open subsets Uλ for which F |Uλ

∈ Qco(Uλ) is a finitely presented object. For each λ the functor
Hom(F |Uλ

, (−)|Uλ
) : Qco(X) −→ Ab preserves direct limits so using the argument of Proposition

71 part (a) ⇒ (b) one checks that Hom(F ,−) : Qco(X) −→ Mod(X) preserves direct limits. This
implies that F is finitely presented in Qco(X), as required.

Lemma 74. Let X = Spec(A) be an affine scheme. A quasi-coherent sheaf F is finitely presented
in Qco(X) if and only if Γ(X,F ) is a finitely presented A-module.

Proof. This is an immediate consequence of (AC,Proposition 97).

Proposition 75. Let X be a concentrated scheme and F a quasi-coherent sheaf. Then F is
finitely presented in Qco(X) if and only if it is locally finitely presented.

Proof. If F is locally finitely presented then every point x ∈ X has an affine open neighborhood
U for which Γ(U,F ) is a finitely presented Γ(U,OX)-module. From Lemma 74 and Lemma 73
we deduce that F is a finitely presented object of Qco(X). Conversely suppose that F is finitely
presented in Qco(X). Given x ∈ X let x ∈ U be an affine open neighborhood and observe that
F |U is finitely presented in Qco(U). We infer from Lemma 74 that F |U is actually globally
finitely presented on U . Hence F is locally finitely presented and the proof is complete.

Here is an amusing consequence in the world of commutative rings.

Corollary 76. Let A be a commutative ring, M an A-module and f1, . . . , fn ∈ A elements
generating the unit ideal. Suppose that each Mfi

is a finitely presented Afi
-module. Then M is a

finitely presented A-module.

Next we turn to an analysis of the compact objects of Qco(X). For the proof of the next
proposition and its corollary we simply copy the argument given in Proposition 71.

Proposition 77. Let X be a concentrated scheme and F a quasi-coherent sheaf of modules. The
following are equivalent:

(a) The functor Hom(F ,−) : Qco(X) −→ Ab preserves coproducts. In other words, F is a
compact object of Qco(X).

(b) The functor Hom(F ,−) : Qco(X) −→ Mod(X) preserves coproducts.
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Corollary 78. Let X be a concentrated scheme, U a quasi-compact open subset and F a compact
object of Qco(X). Then F |U is compact in Qco(U).

Lemma 79. Let X be a concentrated scheme. An object F ∈ Qco(X) is compact if and only if
every x ∈ X has a quasi-compact open neighborhood U such that F |U is compact in Qco(U).

Proposition 80. Let X be a concentrated scheme and F a quasi-coherent sheaf. Then F is
compact in Qco(X) if and only if every point x ∈ X has an open affine neighborhood x ∈ U such
that Γ(U,F ) is a compact Γ(U,OX)-module.
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