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Definition 1. Let S be a graded ring, set X = ProjS and let M a graded S-module. We define a
sheaf of modules M~ on X as follows. For each p € ProjS we have the local ring S(,,) and the S(;)-
module M,y (GRM,Definition 4). Let I'(U, M) be the set of all functions s : U — [[,cy M(p)
with s(p) € My for each p, which are locally fractions. That is, for every p € U there is an open
neighborhood p € V. C U and m € M, f € S of the same degree, such that for every q € V we
have f ¢ q and s(q) = m/f € M(q). It is easy to check that M~ is a sheaf of modules with the
obvious restriction maps and the action (r - s)(p) = r(p) - m(p).

If 9 : M — N is a morphism of graded S-modules then for every p € ProjS we have a
canonical morphism of S(,)-modules ¢y : M)y — Ny (GRM,Definition 4) and we define a
morphism of sheaves of modules

gv(s)(lﬂ) = d(p)(s(p))

This defines an additive functor (—)™ : SGrMod — 9M0d(X), where SGrMod is the complete,
cocomplete abelian category of graded S-modules (GRM,Proposition 21).

Remark 1. Let S be a graded ring, set X = ProjS and let f € S; be homogenous. The
ring morphism Sy — T'(D4(f), Ox) defined by a/f™ +— a/f™ induces a morphism of schemes
@ : Dy (f) — SpecS(y) which is precisely the isomorphism of (H, 2.5b).

Proposition 1. Let S be a graded ring, set X = ProjS and let M a graded S-module. Then
(a) Forp € X there is a canonical isomorphism of S(,)-modules Mp = Mpy natural in M.

(b) For homogenous f € Sy let v : Dy(f) — SpecS(y) be the canonical isomorphism. There
is a canonical isomorphism of sheaves of modules @.(M ™ |p, (5)) = (M)~ natural in M.

(c) The sheaf M~ is quasi-coherent. If S is noetherian and M finitely generated, M~ is coherent.

Proof. (a) Define a map (M™), — M, by (U, s) = s(p). The fact that this is an isomorphism
follows as in the proof of (H, 2.5a). It is easy to check that this maps the action of Ox , to the
action of S(;) in a way compatible with the ring isomorphism Ox , = S(,). Naturality in M is
obvious. (TODO) Copy the rest of the written proof. The iso of (b) should be the one arising
from adjoitness. O

Lemma 2. Let S be a graded ring and set X = ProjS. Then the functor (=)~ : SGrMod —
Moo(X) is exact.

Proof. A sequence in SGrMod is exact iff. it is exact as a sequence of S-modules. As in the
affine case, we show the functor * is exact by using the natural isomorphism M, = M, and the
fact that homogenous localisation is exact (GRM,Lemma 6).

Throughout this note the tensor product M ®s N has the canonical grading. If ¢ : M — M’
is a morphism of graded modules, the induced morphism M ® s N — M’'®g N is also a morphism
of graded modules. Similarly for a morphism N — N’. Let ¢ : S — T be a morphism of graded
rings. If M is a graded S-module, then M ®g T becomes a graded T-module by considering T as
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a graded S-module and using the canonical grading on the tensor product. If ¢ : M — M’ is a
morphism of graded modules, the induced morphism M ®gT — M’ ®g T is also a morphism of
graded modules.

Definition 2. Let ¢ : § — T be a morphism of graded rings and let U be the open subset
{plp 2 ©(S1)} of ProjT. In (H,Ex.2.14) we defined a morphism of schemes ® : U — ProjS
defined by ®(p) = ¢~ !p on points and on sections by

‘1)?/& : Oprojs(V) — Opyrojr(@71V)
7 (5)(p) = 2y (s(0 7))
where @) : S(,-1p) — T{p) is the ring morphism defined by a/s — ¢(a)/v(s).
We make a few small observations:

o If w : A — B is a ring morphism, M an A-module and N a B-module, v : M — N
a morphism of A-modules (where N becomes an A-module via u), and if S C A is a
multiplicatively closed set such that u(s) is a unit for all s € S, then v factorises uniquely as

N A

S—iMm

where v’ is the morphism of A-modules defined by v'(m/s) = u(s)~! - v(m).

e Let S be a graded ring, p a homogenous prime of S. Then there is a canonical morphism
of rings ¢, : Sy — Sy defined by a/s — a/s. In fact this morphism is injective, since
if a,s € S are homogenous of degree e > 0 and s ¢ p and a/s = 0 in Sy, then there is
t ¢ p with ta = 0. Some homogenous component ¢4 of ¢ does not belong to p, and tga = 0
implies a/s = 0 in S(;). Similarly if M is a graded S-module there is an injective morphism
M,y — M, of S)-modules. If A is any ring considered as a graded ring and p a prime
ideal of A (which is of course homogenous) then ¢, : A,y — A, is an isomorphism and if
M is an A-module considered as a graded A-module then M,y — M, is an isomorphism.

e Let M, N be graded S-modules. The composite of M(,)®s, Ny — My®s, N (induced by
the inclusions of My, N(p), S(p)) With the canonical isomorphism M, ®s, Ny — (M ®sN),
gives a morphism of S(,)-modules

Mot M) ®s(,) Nepy — (M @5 N)p)
m/s@n/t— (m®n)/st

Proposition 3. Let S be a graded ring generated by S1 as an Sy-algebra, set X = ProjS and let
M, N be graded S-modules. We claim that there is an isomorphism of sheaves of modules on X
natural in M, N

A: Moo, N— (M®gN)~
m/s® n'/t — (m®n)/st
Proof. Let @ be the presheaf of Ox-modules on X defined by
Q) = M(U) ®oy @) N(U)
Previous notes show that for p € X there is an isomorphism

ap : Qp — M) ®s,,) Nip)
(U,s®1t) — s(p) @Lp)



Which maps the action of Ox p to the action of S(,). It is easy to check that the following defines
a morphism of O x-modules:
A:M(X)OXJ\~7—>(J\J@s]\f)~
Au(s)(p) = Apap(s(p))
Since S is generated by S; as an Sp-algebra, the open sets Dy (f) for f € S; cover X, and it

suffices to show that A|p_ (s is an isomorphism for all f € S;. The important step in the proof is
showing that the following is an isomorphism of S(y)-modules:

A M) @5 Nipy — (M ®s N)g)
Ap(m/fT@n/f*) = (m@n)/fF
The fact that this is a well-defined map follows from the same argument used above for A,. For
m,n € Z define a Z-bilinear map M,, x Ny, — My ®s,,) N(y) by mapping (z,y) to z/f™ @y/f"
(if m < 0 replace z/f™ by f~™x/1). This induces M, ®z N — My ®s,; N(y) and hence a

morphism M®zN — Ms)®s,,, N(s). This morphism maps elements of the form (sz)®y—r®(sy)
to zero, and hence induces

Yo M®s N — M(f) ®S(f) N(f)
yim@n) =Y ma/f*@ne/f°
d,e€Z

This is a morphism of S-modules relative to the canonical ring morphism S — S which maps
s € Sy to s/f9. Since this morphism maps powers of f to units, we obtain a morphism of S-
modules (M ®g N)j — My ®s,,, N(y) which maps (m @ n)/f? to v;(m ®@n). The restriction
to (M ®s N)(s) gives a morphism of S(y)-modules

Np o (M ®s Ny — Mp) ®s,) Ny
Ne((m@n)/f7) = > ma/f* @ne/f

d,e€Z

It is easily checked that X/ is inverse to A¢, completing the proof that Ay is an isomorphism. Let
@ : Dy(f) — Spec(S(sy) be the canonical isomorphism of schemes. Combining earlier notes,

there is an isomorphism of Oge( S f))—modules

wio. (M @ox Mlp.ir)) = (M. () Soxin, iy Nlp.(s)

= 0u(M|p, (£)) @Ospecs,, P+(Nlpy (1))

= M) @0specs,;, Ni£)
= (M) ®s; Nipy)™

If V is an open subset of Spec(S(p)), p € ¢ 'V and s € (M®o, N)(¢~'V) with s(p) = (U, Do ai®
b;) with U C o~V and a; € M(U),b; € N(U) such that a;(p) = m;/s; € My and b;(p) = ng/t; €
N(p), then

kv (s)(@(p)) = D _(mi/ 7 @ nif f54) [ (siti ) F7H0)
where m;, s; are of degree j; and n;, t; of degree k; for all i. To show that A|p, (¢ is an isomorphism,
it suffices to show that ¢.A|p, () is an isomorphism. For this it suffices to check commutativity
of the following diagram:

~ e«Alp (f)

QD*(M(EQOX N) 0«((M ®s N)p, ()

(My) @505y Nip)) === ((M &5 N)())~
f




But given V,p and s as above, we have

7

Evmm@xﬂmw=uﬂwm<§]mﬂﬂ”®mU“V“ﬂMﬂﬁm0
= DA (ma/ 7 @mif &) [sits] 4F)
= 5 (e ) st 4
= g s st
(s () ()

as required. Hence A : M R0y N — (M ®g N) is an isomorphism of Ox-modules. It is
straightforward to check that A is natural in N and M. O

Corollary 4. Let S be a graded ring generated by S1 as an Sp-algebra. If M, N are graded
S-modules and p homogenous prime of S not containing S; then there is an isomorphism of
S(py-modules Ny : Mpy ®@s,,) Npy — (M @5 N)py natural in M, N.

Proof. We know that under the stated hypotheses A is an isomorphism. Hence the induced
morphisms on the stalks are isomorphisms, implying that A, is an isomorphism for all p € X.
Naturality of this isomorphism with respect to morphisms of graded modules is easy to check. [

Proposition 5. Let ¢ : S — T be a morphism of graded rings, where S is generated by Sy, as
an Sp-algebra. If p is a homogenous prime ideal of T not containing ¢(Sy) then for every graded
S-module M there is a canonical isomorphism of T(y)-modules

fr Mig-1p) @51, Tip) — (M @5 T)p)
m/s@r/t— (mer)/o(s)t

Proof. Note that T(,) becomes a S(,-1,)-module via the ring morphism @,y : Sip-15) — T(p)-
Define a map

€1 Mg-1p) X Ty — (M @5 T)p)
(m/s,1/1) = (m & ) fp(s)t

One checks that this map is well-defined and S(,-1p)-bilinear, so it induces a morphism of T(,)-
modules

K Mg-1p) @S -1, Ty — (M @5 T)

mfs @/t (m@r)/p(s)t

The tricky part is defining the inverse to . Let f € S7 be such that f ¢ ¢~ !p (this is possible
since the D4 (f) for f € Sy cover ProjS). For i € Z and j > 0 define a Z-bilinear map M, xT; —
Mp-1p) ®S (-1 T(p) by mapping (m,r) to m/fi@r/p(f)?. Inducing morphisms out of the tensor
products over Z gives a morphism of abelian groups M &z T — M, -1y ®S -1, T(p), which
maps elements of the form (m-s)®t—m®(s-t) to zero, and thus induces a morphism of T-modules
M®@sT — M,-1p) ®S -1, Tipy- The T-module structure on the second group is given by the
canonical ring morphism 7" — Ty, which maps ¢ € Tj, to t/o(f)?.

The morphism 7' — T{;,) maps homogenous elements of 7" not in p to units. So we end up
with a morphism of abelian groups

Ko (M @5 T) ) — Mg-1p) @5, Tip)
K ((mar)/q) =m/f @re(f)/q

where m € M;,r € T; and ¢ € T;4;. It is not difficult to check that x,x’ are mutually inverse,
completing the proof that  is an isomorphism of 7T{;)-modules. O



Proposition 6. Let ¢ : S — T be a morphism of graded rings where S is generated by Sy as
an Sp-algebra, and let f : U — ProjS be the induced morphism of schemes. If M is a graded
S-module there is an isomorphism of sheaves of modules on U natural in M

n: f1(M) — (M &sT) |y
[T, m/s] &b/t — (m @ b)/(s)t
Proof. Let Z be the presheaf of Oy modules defined for W C U by
Z(W) = (7' M)(W) @105 w) Oy (W)
For p € U there is an isomorphism of groups
Ty Zp = Moty ®o, _, Ovip = Mgy 85y, Tip) = (M ©5 T)gp)

X, 1

IfW CU and a e (fXM)(W),b € Oy (W) with a(p) = (Q, (W,t)),W D f(Q),t € M(W) then
7 (V,a @ b) = (m @ 1) /p(s)t where t(o~'p) = m/s and b(p) = r/t. We define

n: ff(M) — (M esT) |u
nw ()(p) = 7p(s(p))

One checks that 7 is a well-defined morphism of Oy-modules, which is an isomorphism since 7, is
an isomorphism for every p € U. Naturality in M is easily checked. O

Proposition 7. Let o : S — T be a morphism of graded rings and f : U — ProjS the induced
morphism of schemes. If N is a graded T-module then there is an isomorphism of sheaves of
modules on ProjS natural in N

n:(sN)” — f(Nlo)
n/s—n/e(s)

Proof. For p € U define a morphism of abelian groups zp : (sV)(,-1p) — N(py by n/s +— n/o(s).
One checks that z, is compatible with the ring morphism @) : S(,-1,) — T(p). For V C X and
s€ (sN) (V) and g € f~'V we define

v (s)(a) = zq(s(¢™'a))

Since ny (s) is clearly regular, this is well-defined. One checks that 7 is a morphism of O x-modules
as in the affine case. Since the open sets D (f) for f € S; form a basis for X, to show that n
is an isomorphism it suffices to show that 7p, (y) is an isomorphism for all f € S;. But using
(5.11b) and the fact that f~1D,(f) = Dy (p(f)) for f € S we obtain a commutative diagram

Dy (f)

(sN)~(ﬂD+(f)) (fN[r)(D4(f))
(sN)(p) Ne(£))

Where the bottom map is the isomorphism of abelian groups n/f™ — n/@(f)™. This completes
the proof that 1 : (sN)"— f«(N|y) is an isomorphism, which one easily checks is natural in N.
In particular, considering T as a graded T-module, f.(Oy|y) = T as Ox-modules. O

Definition 3. Let A be a ring and S a graded A-algebra with structural morphism ¢ : A — S.
If we grade A-canonically then any A-module M is a graded A-module, and therefore M ®4 S
is canonically a graded S-module. If ¢ : M — M’ is a morphism of A-modules then ¢ ®4 S :
M®uyS— M ®4 S preserves grade, so we have an addtiive functor

—®4 S : AMod — SGrMod



It is not difficult to check that this morphism is left adjoint to the functor (=)o : SGrMod —
AMod which picks out the degree 0 subgroup, which is an A-module. The unit M — (M ®4.5)o
is the map m— m ® 1.

Proposition 8. Let A be a ring, S a graded A-algebra and p a homogenous prime ideal of S.
Then for every A-module M there is a canonical isomorphism of S(,)-modules

K Mq ®Aq S(p) — (M XA S)(p)
m/s@r/t— (mer)/e(s)t
where q = p N A.

Proof. Let ¢ : A — S be the structural morphism and note that S,y becomes an As-module via
the canonical ring morphism A, — S(;). Define a map
€: Mg x S(p) — (M ®2a S)(p)

(m/s,r/t) — (m@r)/p(s)t

One checks that this map is well-defined and Aq-bilinear, so it induces a morphism of S(,)-modules
ki Mg ®a, Sy — (M ®4.5)p)

m/fs @/t — (mer)/e(s)t

To show that x is an isomorphism we construct its inverse. Let ¢ ¢ p be homogenous of degree

d > 0 and define a bilinear map M x Sq — Mq ®4, S(p) by (m,s) — m/1® s/t. This induces a
morphism of abelian groups

gb; M ®y Sqg — M, ®Aa, S(p)

mes—m/l®s/t
Ifa: M®z5 — M®4S is the canonical morphism of abelian groups, then for d > 0 the graded
subgroup (M ®4 S)q is a((M ®z S)q) where (M ®z S)q is the image of the monomorphism of
abelian groups M ®z Sq — M ®z S (GRM,Section 6). Therefore there is an isomorphism of
abelian groups (M ®4 S)q & M ®gz Sq/K where K is the subgroup generated by elements of the
form (a-2)@y—x®(a-y) fora € A,z € M,y € Syq. But ¢} takes the value zero on such elements,
so we have a morphism of abelian groups

Gt (M ®48S)a — Mg ®a, Sp)
mes—m/les/t

We define
K (M XA S)(p) — Mq ®Aq S(p)
z/t — ¢i(2)

To see this is well-defined, suppose that z/t = 2’ /t’ where t € Sq,t' € Se and z € (M ®4 S)q, 2" €
(M ®4 S)e. Suppose z = Y . m; ®s; and 2’ = ) . m; ® s; and let ¢ ¢ p be homogenous with
gt -z=gqt -2z in M ®4 S. Therefore

Zmi ® siqt’ = Zm; ® shqt
i i

Applying ¢gr to both sides gives ¢;(z) = ¢y (2’), which shows that £’ is a well-defined morphism
of sets. It is a morphism of abelian groups since

Gu(2) + o (2') = (t' 2 + t27)

Since « is clearly inverse to ' this completes the proof. O
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Corollary 9. Let A be a ring and S a graded A-algebra with structural morphism f : ProjS —
SpecA. For any A-module M there is an isomorphism of sheaves of modules on ProjS natural
mn M
C:f* (M) — (M ®a5)
[Q.m/s] &b/t — (m@b)/p(s)t

Proof. Set Y = ProjS, X = SpecA and for a homogenous prime ideal p write ¢ = pN A and using
Proposition 8 define ¢, to be the following isomorphism of Oy,,-modules

Cp : Zp = Mq ®ox,q OyﬂJ = ]\4q ®Aq S(p) = (M XA S)(p)

where Z is the presheaf of modules Z(U) = ffll\A/[/(U) ® Oy (U) on ProjS which sheafifies to give
f*(M), and ¢ : A — S is the structural morphism. Then for open U C ProjS we define

Cw(s)(p) = Go(s(p))

To see that this is a well-defined section of (M ® 4 S)~, note that every point p € U has an open
neighborhood p € V' C U such that s|y is of the form

n

sly = Z[Qamiysi] & b/t

i=1

where m; € M,s; € Aand b;,t; € S are homogenous of the same degree for each 7 and @ is an open
subset of X containing f(V'). Using this fact it is not difficult to see that (y(s) € (M ®4S)™(U).
One checks that ¢ is a well-defined morphism of sheaves of modules, which is an isomorphism
since (, is for every p € ProjS. Naturality in M is easily checked. O

Proposition 10. Let S be a finitely generated graded A-algebra with structural morphism f :
ProjS — SpecA. For any graded S-module M there is an isomorphism of sheaves of modules
on SpecA natural in M

¢:D(ProjS, M)~ — f.(M)
n/s = (1/¢(s)) - nls-v
where p : A — S is the structural morphism.

Proof. SetY = ProjS and X = SpecA. The canonical ring morphism A — T'(Y) makes T'(Y, M)
into an A-module. It follows from (TPC,Proposition 3), (TPC,Proposition 1) and (H,5.8) that the
functor fi : Mod(Y) — Mod(X) preserve quasi-coherentness. Therefore we have an isomorphism
of sheaves of modules on X (MOS,Proposition 3)

L(Y, M)~ = D(X, f.(M))™ = f.(M)
This is clearly natural in M and has the desired effect on the section n/s O

Definition 4. Let S be a graded ring and set X = ProjS. For any n € Z we define the sheaf of
modules Ox(n) = S(n)” (GRM,Definition 3) which we will denote by O(n) if there is no chance
of confusion. We call Ox (1) the twisting sheaf. For any sheaf of modules .# we denote .# ® Ox (n)
by .%(n), and tensoring with Ox (n) defines the additive functor —(n) : Mod(X) — Mod(X).

Proposition 11. Let S be a graded ring generated by S1 as an Sp-algebra and set X = ProjsS.
For m,n € Z there is a canonical isomorphism of sheaves of modules

" Ox(m) ® Ox(n) — Ox(m +n)
a/s @b/t — ab/st
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Lemma 12. Let S be a graded ring generated by S1 as an Sp-algebra and set X = ProjS. For
n,e,d € Z the following diagram commutes

(Ox(n) @ Ox(e)) @ Ox(d) Ox(n) ® (Ox(e) ® Ox(d))
‘r""ﬁ@lﬂ/ ﬂl@‘rc’d
Ox(n+e) ® Ox(d) /OX(n) ® Ox(e+d)

T Ox(n+e+d) '

Proposition 13. Let ¢ : S — T be a morphism of graded rings where S is generated by S1 as
an Sp-algebra. If ® : U — ProjS is the induced morphism of schemes then there is a canonical
isomorphism of sheaves of modules on U

B:20(1) — O()|u
Ba([W,a/s] & b/t) = p(a)b/p(s)t

Where @ C U, W 2 ®(Q) are open with QQ nonempty, a € Sgy1,s € Sq for some d > 0 and
bt € T, for some e >0 be such that Q C Dy (t) and W C D, (s).

Proof. This follows immediately from the definition of the isomorphism (3 and our notes in previous
Sections. 0

1 Sheaf Hom

Lemma 14. Let S be a graded ring generated by Sy as an Sy-algebra, and set X = ProjS. For
n € 7 there is a canonical isomorphism of sheaves of modules

A:O(=n) — O(n)Y

Au(a/s)v (b/t) = ab/st
Proof. There is a canonical isomorphism of sheaves of modules 7" : O(n) ® O(—n) = Ox.
Tensoring both sides with O(n)Y and using (MRS, Lemma 83) we obtain an isomorphism. There is
another morphism of sheaves of modules \' : O(—n) — O(n)¥ corresponding under the bijection

of (MRS,Proposition 76) to 7=™" : O(—n) @ O(n) — Ox. It is straightforward to check that in
fact A’ = A, which yields the action of A on the special sections in the statement. O

Proposition 15. Let S be a graded ring generated by Sy as an Sp-algebra, and set X = ProjS.
For sheaves of modules F,4 on X and n € 7Z there are canonical isomorphisms of sheaves of
modules natural in F,9

Hom(F,9(n)) =2 stom(F(—n),9) = Hom(F,9)(n)

Proof. Using Lemma 14, (MRS,Proposition 75) and (MRS,Proposition 77) we have a canonical
isomorphism of sheaves of modules

Hom(F,9(n)) 2 Hom(F,0n)RY)
= Hom(F,0(—n)" @ 9)
> tom(F, #om(O(—n),¥9))
> om(F @ O(—n),¥) = Hom(F(—n),9)
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Continuing we have
Hom(F(—n),9) =2 Hom(O(—n) @ F,9)
= Hom(O(—n), Hom(F,9))
~ O(—n)Y @ Hom(F,9)
>~ O(n) @ Hom(F,9) = Hom(F,9)(n)
as required. O

Corollary 16. Let S be a graded ring generated by S1 as an Sp-algebra, and set X = ProjS. For
sheaves of modules 7,9 on X and n € Z there is a canonical isomorphism of T'(X, Ox)-modules
natural in F,9

Hom(%,4(n)) 2 Hom(F(—n),9)

Corollary 17. Let S be a graded ring generated by Sy as an Sy-algebra, and set X = ProjS. For
m,n € Z there is a canonical isomorphism of sheaves of modules

v:O(m —n) — FHom(O(n),O(m))
vu(a/s)v (b/t) = ab/st
Proof. For m,n € Z we have an isomorphism of sheaves of modules (MRS,Proposition 75)
Hom(0(n),0(m)) =2 O(n)” @ O(m)
= O(—n) ® O(m)
>~ O(m —n)
Call the inverse of this morphism ;. There is another morphism of sheaves of modules 5 :
O(m —n) — Hom(O(n),O(m)) corresponding under the bijection of (MRS,Proposition 76) to
the morphism 7~™"" : O(m —n) ® O(n) — O(m). We claim that 71 = 72. To show this, we
reduce to a section a/s € I'(U, O(m —n)) with U contained in D (f) for some f € Si. Then using

the fact that 1/f" & af"/s € I'(U, O(—n) ® O(m)) maps to a/s under 7-™™ one checks that v,
and 7, agree on a/s. This isomorphism v now has the required properties. O

Remark 2. With the notation of Proposition 17, let s € S,,,_, be given. Then multiplication by
s defines a morphism of graded S-modules S(n) — S(m), which induces a morphism of sheaves

of moduels O(n) — O(m). This is precisely the morphism vx(s/1).

2  Quasi-Structures

See (GRM,Definition 10) for the definition of the equivalence relation of “quasi-isomorphism” on
graded modules over a graded ring, which we use in the next result.

Proposition 18. Let S be a graded ring generated by S1 as an So-algebra. If M, N are quasi-
isomorphic graded S-modules then there is a canonical isomorphism of sheaves of modules M = N.
In particular if M ~ 0 then M~ = 0.

Proof. Let M be a graded S-module, p € ProjS and d > 0. Let f € S; be such that f ¢ p and
define a morphism of S(,)-modules

s M{d} ) — M)
m/s— m/sf?
This is an isomorphism with inverse m/s — f%m/s. If N is a graded S-module with M ~ N,

so there is an isomorphism of graded S-modules ¢ : M{d} — N{d} for some d > 0, then the
following composite is an isomorphism of S(,)-modules

My = M{d}p) = N{d}p) = Ny
m/s s fim/s — ¢(fim)/s — o(fim)/sf?
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One checks easily that this does not depend on the homogenous f € S; \ p chosen, so we have
a canonical isomorphism of S,)-modules 7, : M,y — N, for every homogenous prime ideal
p € ProjS. In the usual way one checks that this gives rise to an isomorphism of sheaves of
modules

T:M — N
v (s)(p) = 7p(s(p))
which completes the proof. O

Corollary 19. Let S be a graded ring generated by S1 as an Sy-algebra. If ¢ : M — N is a
morphism of graded S-modules then

(i) ¢ is a quasi-isomorphism = (;: M — N is an isomorphism.
(ii) ¢ is a quasi-monomorphism —> %: M —Nisa monomorphism.
(iii) ¢ is a quasi-epimorphism —> 5: M — N is an epimorphism.
Proof. The claims (4), (i), (iii) follow from (GRM,Lemma 26) and exactness of the functor —. [

Proposition 20. Let S be a graded ring finitely generated by S1 as an Sy-algebra, and let M be
a quasi-finitely generated graded S-module. Then

(i) M ~ 0 if and only if M~ = 0.
(i) If S is noetherian then M~ is a coherent sheaf of modules on ProjsS.

Proof. (i) We know from Proposition 18 that if M ~ 0 then M~ = 0. For the converse we can
reduce to the case where M is finitely generated (GRM,Lemma 24). If M =0 then M,y = 0 for
every p € ProjS, and therefore M ~ 0 by (GRM,Proposition 30).

(#4) Using Proposition 18 and (GRM,Lemma 24) we can reduce to the case where M is finitely
generated, which is (H,5.11¢). O

Corollary 21. Let S be a noetherian graded ring finitely generated by S1 as an Sy-algebra and
¢: M — N a morphism of quasi-finitely generated graded S-modules. Then

(i) ¢ is a quasi-monomorphism < ¢7: M —Nisa monomorphism.
(i) ¢ is a quasi-epimorphism < 5: M — N is an epimorphism.
(iii) ¢ is a quasi-isomorphism < 5: M — N is an isomorphism.

Proof. Using (GRM,Lemma 25) and Proposition 20 we can prove the reverse implications in
Corollary 19 using exactness of —. O
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