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The fundamental Spec(—) construction associates an affine scheme to any ring. In this note we

study the relative version of this construction, which associates a scheme to any sheaf of algebras.
The contents of this note are roughly EGA 1T §1.2,§1.3.
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1 Affine Morphisms

Definition 1. Let f : X — Y be a morphism of schemes. Then we say f is an affine morphism
or that X is affine over Y, if there is a nonempty open cover {V, }oea of Y by open affine subsets
V,, such that for every a, f~1V,, is also affine. If X is empty (in particular if Y is empty) then
f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine
property is stable under composition with isomorphisms on either end.

Example 1. Any closed immersion X — Y is an affine morphism by our solution to (Ex 4.3).

Remark 1. A scheme X affine over S is not necessarily affine (for example X = S) and if an
affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then
an S-scheme X which is affine is affine over S.

Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine.

Proof. Let f: X — Y be affine. Then f is separated since any morphism of affine schemes is
separated, and the separatedness condition is local. Since any affine scheme is quasi-compact it
is clear that f is quasi-compact. It follows from (Ex. 3.4) that a finite morphism is an affine
morphism of a very special type. O

The next two result show that being affine is a property local on the base:
Lemma 2. If f : X — Y is affine and V C Y is open then f~'V — V is also affine.

Proof. Let {Yy}aca be a nonempty affine open cover of Y such that f=1Y,, is affine for every
a € A. For every point y € V find a such that y € VNY,. If Y, = SpecB, then there is g € B,
with y € D(g) CV NY,. If f~Y, = SpecA,, and ¢ : B, — A, corresponds to f~'Y, — Y,
then D(p(g)) = f~1D(g) is an affine open subset of f~1V. O

Lemma 3. If f : X — Y is a morphism of schemes and {Y,}aea is a nonempty open cover of
Y such that f~'Y, — Y, is affine for every «, then f is affine.

Proof. We can take a cover of Y consisting of affine open sets contained in some Y, whose inverse
image is affine. This shows that f is affine. O



Proposition 4. A morphism f : X — Y s affine if and only if for every open affine subset
U CY the open subset f~U is also affine.

Proof. The condition is clearly sufficient, so suppose that f is affine. Using Lemma 2 we can reduce
to the case where Y = SpecA is affine and we only have to show that X is affine. Cover Y with
open affines Y,, = SpecB, with f~1Y, affine. If x € Y, then there is g € A with = € D(g) C Yy,
and since D(g) corresponds to D(h) for some h € B, the open set f~1D(g) is affine. Therefore
we can assume Y, = D(g,) and further that there is only a finite number D(g;), ..., D(gy,) with
the g; generating the unit ideal of A. Let t; be the image of g; under the canonical ring morphism
A — Ox(X). Then the t; generate the unit ideal of Ox(X) and the open sets X;, = f~1D(g;)
cover X, so by Ex. 2.17 the scheme X is affine. O

Proposition 5. Affine morphisms are stable under pullback. That is, suppose we have a pullback
diagram
g

X—Y
GT>H

If f is an affine morphism then so is g.

Proof. By Lemma 3 it suffices to find an open neighborhood V' of each point y € Y such that
g1V — V is affine. Given y € Y let S be an affine open neighborhood of ¢(y) and set
U= f718,V = ¢7'S. By assumption U is affine and ¢~'V = p~!'U so we have a pullback
diagram

gV sy

|

U——S§

If W C V is affine then g;lVV = U xg W is a pullback of affine schemes and therefore affine.
Therefore gy is an affine morphism, as required. O

Lemma 6. Let X be a scheme and £ an invertible sheaf with global section f € I'(X,.%). Then
the inclusion Xy — X is affine.

Proof. The open set X is defined in (MOS,Lemma 29), and it follows from Remark (MOS,Remark
2) that we can find an affine open cover of X whose intersections with X, are all affine. This
shows that the inclusion Xy — X is an affine morphism of schemes. O

If X is a scheme over S with structural morphism f : X — S then we denote by &/ (X) the
canonical Og-algebra f,Ox, when there is no chance of confusion. If X is an S-scheme affine over
S then it follows from Lemma 1 and (5.18) that &7 (X) is a quasi-coherent sheaf of Og-algebras.
If X)Y are two schemes over S with structural morphisms f, g then a morphism h : X — Y of
schemes over S consists of a continuous map ¥ : X — Y and a morphism of sheaves of rings
0 : Oy — h,Ox. The composite g.0y — ¢:h.Ox = fi.Ox is a morphism of Og-algebras
A (h): A (Y) — «/(X). This defines a contravariant functor

o/ (—) : Sch/S — Alg(S)

from the category of schemes over S to the category of sheaves of commutative Og-algebras.
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We showed in (Ex 2.4) that for a ring B, a B-algebra A and B-scheme X there is a bi-
jection Homp(X, SpecA) =2 Homp(A, Ox (X)) between morphisms of schemes over SpecB and
morphisms of B-algebras. We now present a relative version of this result:

Proposition 7. Let X,Y be S-schemes with Y affine over S. Then the map h — </ (h) gives a
bijection Homs(X,Y) = Homggs)(# (Y), o (X)).

Proof. We begin with the case where Y = SpecA and S = SpecB are affine for a B-algebra A. We
know from (Ex 2.4) that there is a bijection Homg(X,Y) 2 Homp(A,Ox(X)). Let f: Y — S
be the structural morphism, so that & (Y) = f,Oy. Then by (5.2) we have & (V) = A as
sheaves of algebras (see our Modules over a Ringed Space notes for the properties of the functor
~— : BAlg — lg(S)). Therefore the adjunction =———T (these are functors between BAlg
and Alg(S)) gives us a bijection

Homgg(s) (2 (Y), (X)) = Homgug(s)(A, (X)) = Homp(A, Ox (X))

It is not difficult to check that this has the desired form, so we have the desired bijection in this
special case. One extends easily to the case where Y = SpecA and S = SpecB.

In the general case, cover S with open affines S, with ¢~'S, an affine open subset of Y
(by Proposition 4 we may as well assume {S,}aca is the set of all affine subsets of S). Let
fa:f 18y — Sasga : 9718 — S, be induced by f, g respectively. Then by the special case
already treated, the following maps are bijections

Homs, (f~Sa, 97" Sa) — Homaug(s.)(# (Y)ls,, 7 (X)]s.) (1)

Suppose that h,h’ : X — Y are morphisms of schemes over S with &/ (h) = &/(h’). Then
' (h)|s, = (N)|s., and therefore h, = h.,. Since the g=1S, cover Y it follows that h = h'.
This shows that the map Homg(X,Y) — Homgyg(s)(#/(Y), (X)) is injective. To see that it
is surjective, let ¢ : & (Y) — o/ (X) be given, and let hy : f~1S, — g~ 1S, correspond to ¢|s,
via (1). Since every affine open subset of S occurs among the S,,, we can use injectivity of (1) to
see that the h, can be glued to give h: X — Y with &/ (h) = ¢, which completes the proof. [

Let Sch/4S denote the full subcategory of Sch/S consisting of all schemes affine over S.
Then there is an induced functor &7 (—) : Sch/4.S — QcoAlg(S) into the full subcategory of all
quasi-coherent sheaves of commutative Og-algebras.



Corollary 8. The functor &/ (—) : Sch/4S — QcoAlg(S) is fully faithful. In particular, if X,Y
are S-schemes affine over S then an S-morphism h : X — Y is an isomorphism if and only if
A (h): A (Y)— (X) is an isomorphism.

2 The Spec Construction

In this section X is a scheme and £ is a quasi-coherent sheaf of commutative Ox-algebras. Then
for an affine open subset U C X the scheme Spec#(U) is canonically a scheme over U, via the
morphism 7y : SpecB(U) — SpecOx (U) =2 U. It is clear that 7y is affine, and given another
affine open set V' we denote 7r51(U NV) by Xyy. If U CV are affine open subsets, then let
pu,v : SpecB(U) — Spec(V) be induced by the restriction Z(V) — A(U). Our aim in this
section is to glue the schemes Spec#(U) to define a “canonical” scheme affine over X associated
to ZA. We begin with an important technical Lemma (which will also be used in our construction
of Proj).

Lemma 9. Let X be a scheme and U C 'V affine open subsets. If F is a quasi-coherent sheaf of
modules on X then the following morphism of Ox (U)-modules is an isomorphism

F (V) ®ox ) Ox(U) — F(U)
a®b—b-aly

Proof. We reduce immediately to the case where X = V| and then to the case where X = SpecA
is actually an affine scheme. So there is a ring B and an open immersion i : ¥ = SpecB — X
whose open image in X is U. Factor U — X as an isomorphism j : U 2 Y followed by i.
Let .# be a quasi-coherent sheaf of modules on X and induce a morphism of Ox(U)-modules
F(X) @0y (x) Ox(U) — F(U) with a ® b+ b- aly. We have to show this is an isomorphism.
Using various isomorphisms defined in our Section 2.5 notes we have an isomorphism of abelian
groups

IR

F(X) ®ox(x) Ox(U) = F(X) @4 B = (F(X) ©a B)(Y)

—~—

FF(X)Y) =i Z(Y)
UFlu)(Y) = Z(U)

1%

I

Using the explicit calculations of of these isomorphisms, one can check that it sends a®b to b-aly,
which proves our claim. O

Proposition 10. Let X be a scheme and U C V affine open subsets. If B is a quasi-coherent
sheaf of commutative Ox-algebras then the following diagram is a pullback

SpecB(U) Lo SpecH (V)

U Vv

In particular py v is an open immersion inducing an isomorphism of SpecZ(U) with w;lU.

Proof. Tt follows from Lemma 9 that the following diagram is a pushout of rings

Ox(V) 4>Ox(U)

L

B(V) B(U)

That is, the morphism Z(V) ®o (v) Ox (U) — Z(U) given by a®b + b-a|y is an isomorphism
of Ox(V)-algebras (and Ox (U)-algebras). Applying Spec gives the desired pullback. Since open



immersions are stable under pullback, we see that py 1 is an open immersion. Since 7r‘_,1U is
another candidate for the pullback U xy Spec#(V) it follows that the open image of py v is
o U. O

For open affine U C X we denote by Z(U) the sheaf of algebras on U obtained by taking the
direct image along SpecOx (U) = U of the sheaf of algebras on SpecOx (U) corresponding to the
Ox (U)-algebra Z(U). There is an isomorphism of sheaves of algebras on U

ou : o (SpecB(U)) = B(U)

defined as the direct image of the isomorphism of sheaves on SpecOx(U) obtained from the
algebra analogue of (5.2d) (see our Modules over a Ringed Space notes). The sheaves of algebras
are compatible with restriction in the following sense

Lemma 11. Let X be a scheme, W C U affine open subsets and % a quasi-coherent sheaf of
commutative Ox -algebras. There is a canonical isomorphism of sheaves of algebras on W

e~ e~

ewuv : BU)|w — BW)
a]s — a|W]s\W

Proof. We have the following commutative diagram

SpecOx (W) N SpecOx (U)

kﬂ ﬂl

w U

Since j is an open immersion it induces an isomorphism SpecOx (W) = Imj. Let g : Imj —
SpecOx (W) be the inverse of this isomorphism, and let s : Imj — W be the morphism induced
by I. Let ew,u be the following isomorphism of sheaves of algebras (using some results from our
Modules over Ringed space notes)

—_~

eww : BO)w = 5 (B 1mj) = kuge( B0 | 1my)
= k. j* (B(U)) = k(BU) @0, @) Ox (W)™

—_—~

~ b, B(W) = BW)

Suppose we are given an open set T C W, a € Z(U) and s € Ox(U) with [71T C D(s). Then

—_~—

using the explicit forms of the above isomorphisms, one checks that the section a/s € Z(U)(T)

maps to the section a|w /s|w of B(W)(T).
O

Since £ is quasi-coherent, there is an isomorphism py : B(U) =& LBy of sheaves of algebras
on U. Together with dy this gives an isomorphism of sheaves of algebras on U

Bu = pudy : (SpecB(U)) = B(U) = By
In particular for affine W C U and b € B(U) we have the following action of Gy:

(Bu)w : Ospecawy(Xvw) — B(W) (2)
b/1 — bl

The schemes Xy and Xy, are both affine over U NV by Lemma 2. And on U NV we have an
isomorphism of sheaves of algebras

A (Xyyv) = (SpecB(U))|unv = Blunv = o (SpecB(V))|lunv = < (Xvu)



Therefore by Corollary 8 there is an isomorphism 0yv : Xy v — Xy, of schemes over U NV
with o (Ou.v) = (Bv)|lphy (Bv)|vav. If U C V then Xy = Spec#(U) and we claim that the
following diagram commutes

0
SpecB(U) —— Xy

PU,V \L

SpecB(V)

The two legs agree on global sections of SpecB(V') by (2), and they are therefore equal. It is clear
that 0yv = H;lU and for affine opens U, V,W C X we have 0y v (Xyv N Xuw) = Xvv N Xv,w
since 6y, is a morphism of schemes over U N V. So to glue the SpecZ(U) it only remains to
check that Oy w = 0y,w o 0yv on Xyy N Xyw. But these are all morphisms of schemes affine
over U NV NW, so by using the injectivity of «7(—) the verification is straightforward.

Thus our family of schemes and patches satisfies the conditions of the Glueing Lemma (Ex.
2.12), and we have a scheme Spec(Z) together with open immersions ¢y : SpecB(U) — Spec(A)
for each affine open subset U C X. These morphisms have the following properties:

(a) The open sets Imiyy cover Spec(A).

(b) For affine open subsets U,V C X we have vy (Xy,v) = Imyy N Imypy and Yy |x, ,0v,y =
1/}U|XU‘V'

In particular for affine open subsets U C V' we have a commutative diagram

SpecB(V) Y > Spec(B) (3)

SpecB(U)

The open sets I'miy are a nonempty open cover of Spec(Z), and it is a consequence of (b)
above and the fact that 6y, is a morphism of schemes over U NV that the morphisms Imyy =2
SpecB(U) — U — X can be glued (that is, for open affines U,V the corresponding morphisms
agree on I'miy N Imay ). Therefore there is a unique morphism of schemes 7 : Spec(#) — X
with the property that for every affine open subset U C X the following diagram commutes

SpecB(U) 2> Spec(B) (4)
U X

In fact it is easy to see that 7='U = Imay, the above diagram is also a pullback. Moreover 7 is
affine by Lemma 3 since all the morphisms 7y are affine.

Our next task is to show that o7 (Spec(#)) = %. For open affine U C X, let jy : Imipy — U
be the morphism induced by 7 and ¢}, : Spec#(U) = Imypy the isomorphism induced by ¥y, so
that jyiyy, = my. Then there is an isomorphism of sheaves of algebras on U

wy + & (Spec(X))|lu = (ju)«(Ospec(#) | rmyw)
(jU *((wb)*OSpecgg(U))
= (’/TU)*OSpec%(U)

o (SpecB(U))

1



For open affines W C U let my|x, , : Xuw — W be induced from 7y. Then there is an
isomorphism of sheaves of algebras on W

Cwu : A (SpecB(U))lw = (tulxp.w )« (Ospecaw)|xv.w)
= (TrU|XU,W)*((GW,U)*OSpec.%(W))
= o/ (SpecB(W))

Despite the complicated notation, if one draws a picture it is straightforward to check that the
following diagram commutes

wu|w

o (Spec(B A (SpecB(U))|w (5)

\/

o (SpecB(W

We claim that the isomorphism (i is compatible with the isomorphism ew iy defined earlier.

Lemma 12. Let X be a scheme, W C U affine open subsets and B a quasi-coherent sheaf of
commutative Ox -algebras. Then the following diagram of sheaves of algebras on W commutes

o (SpecB(U))|w Lé(\(f/ﬂw

CWYU\H EW’”H] w

A (SpecBHW) == (1) == Zlw

Proof. First we check that the square on the left commutes by beginning at (U )|w and showing
at the two morphisms to 7 (SpecZ(W)) agree. For this, we need only check they agree on sections
of the form a/ s, and this is straightforward. We can use the same trick to check commutativity
of the triangle on the right. O

For an affine open subset U C X let ¢y : o (Spec(X))|ly — PB|u be the isomorphism of
sheaves of algebras on U given by the composite ¢y = Sywy. Lemma 12 and (5) show that
oulw = ¢w for open affines W C U, so together the ¢y give an isomorphism of sheaves of
algebras ¢ : o/ (Spec(B)) — B with ¢l = dy.

In summary:

Definition 2. Let X be a scheme and % a commutative quasi-coherent sheaf of O x-algebras.
Then we can canonically associate to % a scheme 7 : Spec(#) — X affine over X. For every
open affine subset U C X there is an open immersion ¢y : SpecB(U) — Spec(9PB) with the
property that the diagram (4) is a pullback and the diagram (3) commutes for any open affines

~

U C V. There is also a canonical isomorphism of sheaves of algebras <7 (Spec(%)) =

‘\.



Corollary 13. Let S be a scheme. The functor o/ (—) : Sch/aS — QcoAlg(S) is an equivalence.
In particular schemes X,Y affine over S are S-isomorphic if and only if o/ (X) =2 (Y.

Proof. We know from Corollary 8 that the functor is fully faithful, and the above construction
together with the fact that o/ (Spec(#)) = % shows that it is representative. Therefore it is an
equivalence. O]

If A is a commutative ring, then the composite I'(—).«7 (—) gives an equivalence Sch/4 SpecA —
AAlg. Any quasi-coherent sheaf of commutative algebras on SpecA is isomorphic to B for some

commutative A-algebra B. The morphism SpecB — SpecA is affine and o/ (SpecB) & B, so it
follows that Spec(B) = SpecB as schemes over A. In particular any scheme X affine over SpecA
is A-isomorphic to SpecB for some commutative A-algebra B. Therefore

Lemma 14. Let S be an affine scheme. Then an S-scheme X is affine over S if and only if X
is an affine scheme.

3 The Sheaf Associated to a Module

Let X be a scheme and # a commutative quasi-coherent sheaf of Ox-algebras. Let 900 (%)
denote the category of all sheaves of Z-modules and Qco(Z) the full subcategory of quasi-coherent
sheaves of #-modules (SOA,Definition 1). Note that these are precisely the sheaves of Z-modules
that are quasi-coherent as sheaves of O x-modules, so in this section there is no harm in simply
calling these sheaves “quasi-coherent” (SOA,Proposition 19). In this section we define for every
finite morphism f: X — Y a functor

~: Qco( (X)) — Mod(X)

which is the relative version of the functor AMod — Mod(SpecA) for a ring A. Note that
Qco(e/ (X)) is an abelian category (SOA,Corollary 20).

Lemma 15. Let X be a scheme and U C V affine open subsets. If B is a commutative quasi-
coherent sheaf of Ox-algebras, and A a quasi-coherent sheaf of ZB-modules, then the following
morphism of Z(U)-modules is an isomorphism

M (V) @zv) BU) — M (U) (6)
a®b—b-aly (7)

Proof. Such a morphism of Z(U)-modules certainly exists. We know from Lemma 9 that there
are isomorphisms of Ox (U)-modules

BV) @oxv) Ox(U) = 2(U)
(V) oy (v) Ox(U) = 4 (U)
So at least we have an isomorphism of abelian groups
M(V)@z) BU) = MV)Rpv) (BV) @oxv) Ox(U))

= (M(V) @z B(V)) @oxv) Ox(U)
V) ®o, vy Ox(U)

Tt is easily checked that this map agrees with (6), which is therefore an isomorphism. O

Throughout the remainder of this section, f : X — Y is a finite morphism and &/ (X) = f.Ox
the corresponding commutative quasi-coherent sheaf of Oy -algebras.
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Proposition 16. Let .4 a quasi-coherent sheaf of o/ (X)-modules. There is a canonical quasi-

coherent sheaf of modules M on X with the property that for every affine open subset V-CY there
18 an tsomorphism

ny M1y — ()l (V)
where ¥y : SpecOx (f~1V) — f=1V is the canonical isomorphism.

Proof. Let U be the set of all open affine subsets of Y, so that ' = {f~1V}y ¢y is an indexed
affine open cover of X. For each V € U we have the T'(V, & (X)) = Ox (f~'V)-module .# (V) and
therefore a sheaf of modules .# (V)™ on Xy = SpecOx(f~'V). Taking the direct image along
Yy we have a sheaf of modules 4y = (Vv ). (V)  on f~1V. We want to glue the sheaves .Z .

Let W C V be affine open susbets of Y and pw,y : Xyw — Xy the canonical open immersion.
Using Lemma 15 we have an isomorphism of sheaves of modules on Xy,

awy : piyy (AV)) 2 (M (V) @0y (s-1v) Ox(fTIW) " = (W)™
[V,m/s]| & b/t — (b-m|w)/ts|w
Let Xy, be the affine open subset (1)~ (f~*W) of Xy, denote by Pwy + Xw — Xyw the

isomorphism induced by pw,y, and let ¢{,7W : Xy.w — f~'W be the isomorphism induced by
v . Notice that 91,y = 1w o (pyy1) ' We have an isomorphism of sheaves of modules on f~'W

w = Ww)«(AW)7) = @w)epiyv (A (V)7)
= () (P ) (A (V) | xvr)
= (Yw ()™ (A (V) | 00)
= Wy« (A (V) xyw) = @v) (A V)| p-21w
= Mv|-w
using (MRS, Proposition 107) and (MRS,Proposition 111). So for every affine open inclusion

W C V we have an isomorphism

ovw My |prw — Mw
m/s — mlw/slw

Clearly oy, = 1 and if Q € W C V are open affine subsets then ¢v,o = ¢w,q © pv,w|f-1¢. This
means that for open affine U,V C Y the isomorphisms gpz,}WgoV,W for open affine W C UNYV glue
together to give an isomorphism of sheaves of modules

v My|f-rung-rv — Myl f-rung-rv
vuw o pvulf-1w = @v,w for affine open W C U NV

The notation is unambiguous, since this definition agrees with the earlier one if U C V. By
construction these isomorphisms can be glued (GS,Proposition 1) to give a canonical sheaf of
modules .7 on X and a canonical isomorphism of sheaves of modules uy : A4 \ g1y — My for
every open affine V' C Y. These isomorphisms are compatible in the following sense: we have
pv = puyvopy on f1UN 7V for any open affine U,V C Y. It is clear that .# is quasi-coherent
since the modules . (U)™ are. O

Proposition 17. If 8 : #4 — N is a morphzsm of quasi-coherent sheaves of </ (X )-modules

then there is a canonical morphism B M — N of sheaves of modules on X and this defines an
additive functor — : Qco( (X)) — Mod(X).

Proof. For every affine open V- C Y, By : A (V) — A(V) is a morphism of I'(V, &/ (X)) =
Ox(f~'V)-modules, and therefore gives a morphism (By)~ : (V)™ — A (V)™ of sheaves of
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modules on Xy . Let by : Ay — A be the morphism (¢y)«(8y)~. One checks easily that for
open affine U,V CY and T = f~1(U N V) the following diagram commutes

by |
My |r —= N |7

.

/%U|Tb4></1/U|T
vlr

Therefore there is a unique morphism of sheaves of modules 3~ with the property that for every
affine open V C X the following diagram commutes (GS,Proposition 6)

— Bl1y —
M |p-1v N p-1v
HVH/ H/Mv
//V </VV
by
Using this unique property it is easy to check that — defines an additive functor. O

Proposition 18. The additive functor — : Qco(/ (X)) — Mod(X) is evact.

Proof. Since Qco(/ (X)) is an abelian subcategory of Mod (7 (X)) (SOA,Corollary 20), a sequence
is exact in the former category if and only if it is exact in the latter, which is if and only if it
is exact as a sequence of sheaves of abelian groups. So suppose we have an exact sequence of
quasi-coherent 7 (X )-modules

Mt >
This is exact in 9Mod(X), so using (MOS,Lemma 5) we have for every open affine V' C Y an exact
sequence of Ox (f~1V)-modules

M) (V) = (V)

Since the functor — : Ox(f~'V)Mod — Mod(Xy) is exact, we have an exact sequence of
sheaves of modules on Xy

V)Y e (VY (V)
Applying (v ). and using the natural isomorphism (v )..Z (V)™
following sequence of sheaves of modules on f~'V is exact

& M |f-1y we see that the

- Ple—1 . Pl ,—1 -
-ﬁ/ |fflvu% |f*1V f*;/%// |f—1v

It now follows from (MRS, Lemma 38) that the functor — is exact. O

Definition 3. Let f : X — Y be a finite morphism of noetherian schemes and % a quasi-
coherent sheaf of modules on Y. Then &7(X) coherent (H, II Ex.5.5) and therefore the sheaf
of Oy-modules #omo, ((X),.F) is quasi-coherent (MOS,Corollary 44). This sheaf becomes a
quasi-coherent sheaf of .27 (X)-modules with the action (a - ¢)w (t) = ¢w(a|s-1wt). Therefore we
have a quasi-coherent sheaf of modules on X

fUF) = Homo, (/(X), F)~
This defines an additive functor f!(—) : Qco(Y) — Qco(X).

Remark 2. For any closed immersion f : X — Y of schemes there is a right adjoint f' :
Mod(Y) — Mod(X) to the direct image functor f. (MRS,Proposition 97). In the special case
where X,Y are noetherian we have just defined another functor f!: Qco(Y) — Qco(X) and as
the notation suggests, these two functors are naturally equivalent.
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