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In this note we give an exposition of the well-known results of Gabriel, which show how to
define affine schemes in terms of the theory of noncommutative localisation.
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1 Noncommutative Rings

Throughout this section a “ring” means a not necessarily commutative ring. All modules in this
section are right modules.

Definition 1. Let A be a ring, a a right ideal and h ∈ A. Then the set (a : h) = {a ∈ A |ha ∈ a}
is also a right ideal. If a is a left ideal then so is the set (h : a) = {a ∈ A | ah ∈ a}.

{definition_rightgabriel}
Definition 2. Let A be a ring. A set J of right ideals of A is a right gabriel topology if it satisfies
the following conditions

(i) The improper ideal A belongs to J .

(ii) If a ∈ J and h ∈ A then (a : h) ∈ J .

(iii) If a ∈ J and b is any right ideal with (b : h) ∈ J for every h ∈ a, then b ∈ J .

The set of all right gabriel topologies on A is partially ordered by inclusion. The sets J0 and J1

defined by J0 = {A} and J1 = {a | a is a right ideal} are right gabriel topologies, and they are
respectively the initial and terminal objects of the set of all right gabriel topologies.

{definition_leftgabriel}
Definition 3. Let A be a ring. A set J of left ideals of A is a left gabriel topology if it satisfies
the following conditions

(i) The improper ideal A belongs to J .

(ii) If a ∈ J and h ∈ A then (h : a) ∈ J .

(iii) If a ∈ J and b is any left ideal with (h : b) ∈ J for every h ∈ a, then b ∈ J .

The set of all left gabriel topologies on A is partially ordered by inclusion. The sets J0 and J1

defined above are also left gabriel topologies, and they are respectively the initial and terminal
objects of the set of all left gabriel topologies.
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Remark 1. Let A be a ring. A set of left ideals J is a left gabriel topology if and only if it is a
right gabriel topology on Aop, so it suffices to talk about right gabriel topologies. Throughout the
rest of this section, a gabriel topology is a right gabriel topology.

Remark 2. Let A be a ring with gabriel topology J . The following are trivial consequences of the
definition

• If a, b ∈ J then a ∩ b ∈ J .

• If a ∈ J and b ⊇ a then b ∈ J .
{definition_plus}

Definition 4. Let A be a ring with gabriel topology J and let M be an A-module. The set J
is a directed set under reverse inclusion and the abelian groups {HomA(a,M)}a∈J are a direct
system over this directed set. We define the abelian group M+ by

M+ = lim−→
a∈J

HomA(a,M)

Given h ∈ A and a morphism of A-modules ϕ : a −→M , we define a morphism of A-modules

ϕ · h : (a : h) −→M

x 7→ ϕ(hx)

It is not difficult to check that this makes M+ into a well-defined A-module. If α : M −→ N is a
morphism of A-modules then there is a well-defined morphism of A-modules

α+ : M+ −→ N+

α+(a, ϕ) = (a, αϕ)

This defines an additive functor (−)+ : ModA −→ ModA. We make the following comments

• We call a morphism of A-modules ϕ : a −→M an additive matching family and sometimes
represent it by the notation {xf | f ∈ a} where xf = ϕ(f). With this notation we have

{xf | f ∈ a}+ {yg | g ∈ b} = {xh + yh |h ∈ a ∩ b}
{xf | f ∈ a} · h = {xhx |x ∈ (a : h)}

• Given m ∈ M let ϕm denote the morphism of A-modules ϕm : A −→ M with ϕm(1) = m.
Then m 7→ ϕm defines a morphism of A-modules µ : M −→M+ which is natural in M .

• The construction of the A-module M+ depends on the topology J , which is not reflected in
the notation. Since we are only interested in M+ as an intermediate step, this will have no
chance to cause confusion.

{lemma_technical}
Lemma 1. Let A be a ring with gabriel topology J and suppose a, b ∈ J . If α : a −→ A is a
morphism of A-modules then α−1b ∈ J .

Proof. Clearly α−1b is a right ideal of A, and for a ∈ a we have

(α−1b : a) = {h | ah ∈ a and α(ah) ∈ b} = (a : a) ∩ (b : α(a))

Using the second and third axioms of a topology, we see that α−1b ∈ J , as required.

In terms of the additive matching family {af | f ∈ a} corresponding to α (so af = α(f)) the
right ideal α−1b is {f ∈ a | af ∈ b}.

Let A be a ring with gabriel topology J and fix an A-module M . We define a function
M+ × A+ −→M+ as follows. Given matching families {xf | f ∈ b} and {ag | g ∈ a} representing
elements of M+, A+ respectively, let c = {h ∈ a | ah ∈ b}. By the Lemma this belongs to
J . For h ∈ c we define ch = xah

. This gives an additive matching family {ch |h ∈ c} which
defines an element of M+. Our first task is to show that this assignment is well-defined: suppose

2



{xf | f ∈ b} = {x′f | f ∈ b′} in M+ and {ag | g ∈ a} = {a′g | g ∈ a′} in A+. Let e ⊆ b ∩ b′ and
d ⊆ a ∩ a′ be right ideals where the respective pairs of matching families agree. Let {ch |h ∈ c}
and {c′h |h ∈ c′} be produced using the original and prime matching families respectively, so

c = {h ∈ a | ah ∈ b}, c′ = {h ∈ a′ | a′h ∈ b′}

By Lemma 1 the right ideal t = {w ∈ a | aw ∈ e} belongs to J and hence so does d∩ t. It is easy to
see that cw = c′w for w ∈ d ∩ t, as required. So there is a well-defined action of A+ on M+ given
by choosing representatives and calculating:

{xf | f ∈ b} · {ag | g ∈ a} = {xah
|h ∈ c} where c = {h ∈ a | ah ∈ b}

One checks easily that this action is linear in each variable. This makes A+ into a ring with
identity {xf = f | f ∈ A} and M+ into a right A+-module. The canonical morphism of A-
modules A −→ A+ defined by a 7→ {af | f ∈ A} is a morphism of rings, and it is clear that if
M is an A-module then the A-module structure on M+ induced by A −→ A+ and the above
A+-module structure is just the canonical A-module structure.

{definition_torsion}
Definition 5. Let A be a ring with gabriel topology J . The J-torsion submodule of an A-module
M is the submodule tJ(M) = {x ∈M |Ann(x) ∈ J}. Any morphism of A-modules ψ : M −→ N
restricts to a morphism of A-modules tJ(M) −→ tJ(N), and this defines an additive functor
tJ(−) : ModA −→ ModA. We say that M is J-torsion if tJ(M) = M and J-torsion-free if
tJ(M) = 0. Where there is no chance of confusion we will often drop J from the notation. It is
clear that the properties of being J-torsion and J-torsion-free are stable under isomorphism of A-
modules. If J,K are two gabriel topologies on A with J ⊆ K then it is clear that tJ(M) ⊆ tK(M).
In particular, K-torsion-free implies J-torsion-free.

Remark 3. With the notation of Definition 5 it is clear that the A-module tJ(M) is J-torsion.
{lemma_quotientistorsionfree}

Lemma 2. Let A be a ring with gabriel topology J . If M is an A-module, then M/tJ(M) is
J-torsion-free.

Proof. If m+ tJ(M) were a J-torsion element, say a ∈ J with m ·a ⊆ tJ(M). For f ∈ a let af ∈ J
be such that (m · f) · af = 0. Then c =

∑
f faf ∈ J and clearly m · c = 0, so m is J-torsion and

thus m+ tJ(M) = 0, as required.
{definition_injective}

Definition 6. Let A be a ring with gabriel topology J . An A-module M is J-injective if for every
a ∈ J and morphism of A-modules ϕ : a −→ M there is a morphism ψ : A −→ M making the
following diagram commute

M

a

ϕ
??~~~~~~~~ // A

ψ

OO

In other words, the canonical morphism of abelian groups

HomA(A,M) −→ HomA(a,M) (1) {eq_injectivehom}

is surjective. The property of being J-injective is stable under isomorphism of A-modules. It is
well-known that M is injective in the usual sense if and only if (1) is surjective for every right
ideal a. That is, injectivity and J1-injectivity are equivalent.

If J,K are two gabriel topologies on A with J ⊆ K then it is clear that K-injectivity implies
J-injectivity. In particular, if M is injective then it is J-injective for any gabriel topology J . At
the other extreme, every A-module M is J0-injective.

Remark 4. Let A be a ring with gabriel topology J . It is not hard to see that an A-module M is
J-torsion-free if and only if the map (1) is injective for all a ∈ J .
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{definition_closed}
Definition 7. Let A be a ring with gabriel topology J . An A-module M is J-closed if it is J-
torsion-free and J-injective. Equivalently, for every a ∈ J and morphism of A-modules ϕ : a −→M
there is a unique morphism ψ : A −→M making the following diagram commute

M

a

ϕ
??~~~~~~~~ // A

ψ

OO

The property of being J-closed is stable under isomorphism of A-modules. If J,K are two gabriel
topologies on A with J ⊆ K then it is clear that K-closed implies J-closed.

{definition_localisationcat}
Definition 8. Let A be a ring with gabriel topology J . We denote by Mod(A, J) the preaddi-
tive subcategory of ModA consisting of all J-closed A-modules. Observe that the zero module
is J-closed for any gabriel topology J . If J,K are two gabriel topologies with J ⊆ K then
Mod(A,K) ⊆ Mod(A, J).

1.1 Localisation
{definition_firstj}

Definition 9. Let A be a ring with gabriel topology J , and let M be an A-module. We denote the
A-module (M/tJ(M))+ by MJ , and call it the localisation of M with respect to J . If α : M −→ N
is a morphism of A-modules there is an induced morphism of A-modules α′ : M/tJ(M) −→
N/tJ(N), so we have a morphism of A-modules αJ = (α′)+ which is defined by

αJ : MJ −→ NJ

αJ(a, ϕ) = (a, α′ϕ)

This defines an additive functor (−)J : ModA −→ ModA. There is a canonical morphism of
A-modules M −→MJ natural in M , given by the composite M −→M/tJ(M) −→ (M/tJ(M))+.
By (LOR,Section 2.1) there is a canonical isomorphism of A-modules MJ

∼= (M+)+ natural in
M .

{prop_localisationisclosed}
Proposition 3. Let A be a ring with gabriel topology J . If M is an A-module then MJ is J-closed.

Proof. Since M/tJ(M) is J-torsion-free the result follows from (LOR,Proposition 9).
{prop_localisationuniversal}

Proposition 4. Let A be a ring with gabriel topology J , and let M be an A-module. Let N be a
J-closed A-module and suppose we have a morphism of A-modules θ : M −→ N . Then there is a
unique morphism of A-modules ψ : MJ −→ N making the following diagram commute

M

��

θ // N

MJ

ψ

==||||||||

(2) {eq_localisationuniversal}

Proof. By assumption N is J-closed, so θ sends J-torsion elements of M to zero, and we have an
induced morphism θ′ : M/tJ(M) −→ N . By (LOR,Proposition 7) there is a unique morphism
ψ : MJ −→ N making (2) commute, as required. For (a, ϕ) ∈ MJ , the element ψ(a, ϕ) ∈ N is
unique with the property that for all h ∈ a we have ψ(a, ϕ) · h = θ′ϕ(h).

Definition 10. Let A be a ring with gabriel topology J . It follows from Proposition 3 that
localisation defines an additive functor (−)J : ModA −→ Mod(A, J). By Proposition 4 this
functor is left adjoint to the inclusion Mod(A, J) −→ ModA, with unit given by the canonical
morphisms M −→ MJ . In fact Mod(A, J) is a grothendieck abelian category (LOR,Corollary
17), and the functor (−)J : ModA −→ Mod(A, J) is exact (LOR,Proposition 16).
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{lemma_secondusefulideal}
Lemma 5. Let A be a ring with gabriel topology J and suppose a, b ∈ J . If α : a −→ A/tJ(A) is
a morphism of A-modules then dα,b = α−1

(
(b + tJ(A))/tJ(A)

)
∈ J .

Proof. Clearly dα,b is a right ideal of A. For a ∈ a choose c ∈ A with α(a) = c+ tJ(A). Then

(dα,b : a) = {h | ah ∈ a and α(ah) ∈ (b + tJ(A))/tJ(A)} = (a : a) ∩ (b + tJ(A) : c)

Using the second and third axioms of a topology, we see that dα,b ∈ J , as required.

Let A be a ring with gabriel topology J and fix an A-module M . Let a, b ∈ J and suppose we
are given morphisms of A-modules

α : a −→ A/tJ(A)
ϕ : b −→M/tJ(M)

Since ϕ maps tJ(b) = tJ(A) ∩ b into tJ(M), there is an induced morphism of A-modules

ϕ′ : (b + tJ(A))/tJ(A) ∼= b/tJ(b) −→M/tJ(M)

Let dα,b be the right ideal of A defined in Lemma 5. Then α induces a morphism of A-modules

α′ : dα,b −→ (b + tJ(A))/tJ(A)

The composite ϕ′α′ : dα,b −→ M/tJ(M) is a morphism of A-modules which we denote by ϕ · α.
Given x ∈ dα,b we calculate (ϕ ·α)(x) by choosing b ∈ b with α(x) = b+ tJ(A). Then (ϕ ·α)(x) =
ϕ(b). We define a map

MJ ×AJ −→MJ

((b, ϕ), (a, α)) 7→ (dα,b, ϕ · α)

One checks this is well-defined and additive in each variable, and we write (b, ϕ) · (a, α) for
(dα,b, ϕ · α). Let 1 ∈ AJ denote the equivalence class of the canonical epimorphism of A-modules
A −→ A/tJ(A). Then (b, ϕ) · 1 = (b, ϕ). In particular we have a map AJ × AJ −→ AJ which
makes AJ into a ring, and then MJ ×AJ −→MJ makes MJ into an A-module.

Definition 11. Let A be a ring with gabriel topology J and let M be an A-module. Then we
have a ring AJ and a canonical AJ -module structure on MJ . If θ : M −→ N is a morphism
of A-modules then θJ : MJ −→ NJ defined in Definition 9 is a morphism of AJ -modules. This
defines an additive functor

(−)J : ModA −→ ModAJ

The canonical morphism of A-modules A −→ AJ is clearly a morphism of rings, and for an
A-module M the canonical A-module structure on MJ agrees with the structure obtained by
restriction of scalars.

{prop_localisationuniversal2}
Proposition 6. Let A be a ring with gabriel topology J , and let θ : A −→ R be a ring morphism
with R a J-closed A-module. Then there is a unique morphism of A-algebras ψ : AJ −→ R making
the following diagram commute

A

��

θ // R

AJ

ψ

>>}}}}}}}}

(3) {eq_localisationuniversal2}

Proof. We need only show the morphism ψ of Proposition 4 is a morphism of rings, which is
straightforward using the unique property of ψ(a, ϕ).

{lemma_morphismdense}
Lemma 7. Let A be a ring with gabriel topology J , b ⊆ a right ideals in J and M a J-torsion-free
A-module. If f, g : a −→M are morphisms of A-modules which agree on b, then f = g.
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Proof. It suffices to prove that if h : a −→M is a morphism of A-modules with h = 0 on b, then
h = 0. Let a ∈ a. Then (b : a) ∈ J and everything in (b : a) kills h(a), so Ann(h(a)) ⊇ (b : a)
and hence h(a) is J-torsion, which implies that h(a) = 0 since M is J-torsion-free.

{remark_equalitycondition}
Remark 5. Let A be a ring with gabriel topology J and let M be an A-module. By Lemma 2 the
A-module M/tJ(M) is J-torsion-free, so Lemma 7 implies that two pairs (b, ϕ), (b′, ϕ′) determine
the same equivalence class of MJ if and only if ϕ|b∩b′ = ϕ′|b∩b′ . In particular, (b, ϕ) = 0 in MJ

if and only if ϕ = 0. This shows that the canonical morphism of abelian groups

HomA(a,M/tJ(M)) −→MJ

is injective for every a ∈ J .
{definition_gammatoppresheaf}

Definition 12. Let A be a ring with gabriel topologies J ⊆ K and let M be an A-module. Then
tJ(M) ⊆ tK(M) so there is a canonical morphism of A-modules θ : M/tJ(M) −→M/tK(M) and
therefore a canonical morphism of A-modules

ϕJ,K : MJ −→MK

(a, ϕ) 7→ (a, θϕ)

One checks easily that ϕJ,J = 1 and for three gabriel topologies J ⊆ K ⊆ Q we have ϕK,QϕJ,K =
ϕJ,Q. In the special case M = A the morphism ϕJ,K : AJ −→ AK is a morphism of rings which
makes the following diagram commute

A

  A
AA

AA
AA

A
// AJ

��
AK

In fact the morphism MJ −→MK sends the action of AJ to the action of AK in a way compatible
with the ring morphism AJ −→ AK .

{prop_transitivelocalisering}
Proposition 8. Let A be a ring with gabriel topologies J ⊆ K, and let M be an A-module. Then
there is a canonical isomorphism of A-modules (MJ)K ∼= MK natural in M .

Proof. This follows immediately from (LOR,Corollary 23).

2 Commutative rings

Throughout this section a “ring” means a not necessarily commutative ring. All modules in this
section are right modules unless there is some indication to the contrary. If A is a commutative
ring, then an A-algebra is a (not necessarily commutative) ring B together with a ring morphism
A −→ B with image contained in the center of B. See (TES,Definition 1) for more details. We
only consider algebras over commutative rings A.

Let A be a commutative ring. A set of ideals J is a right gabriel topology if and only if it is
a left gabriel topology, and we simply call J a gabriel topology. Summarising the results of the
previous section, for every A-module M we have an A-module MJ defined as the following direct
limit of A-modules

MJ = lim−→
a∈J

HomA(a,M/tJ(M))

In particular we have a ring AJ , which together with the canonical ring morphism A −→ AJ
is an A-algebra. There is a canonical AJ -module structure on MJ which restricts to the above
A-module structure, and we have an additive functor (−)J : ModA −→ ModAJ .
Remark 6. In many cases the ring AJ is actually commutative, but I doubt this is true in general.
Elements of AJ are essentially morphisms a −→ A/tJ(A). The product of two such morphisms
α, β is essentially the composite α◦β, and composition of morphisms is certainly not commutative
(although when α, β are something like x 7→ x ·r, x 7→ x ·s then they can commute past each other
if r, s can, which is the source of commutativity of AJ in most of our examples).
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Remark 7. If A is a commutative ring then axiom (b) of a gabriel topology follows from axiom
(c). That is, a set of ideals J is a gabriel topology if and only if (a)A ∈ J and (c) If a ∈ J and b
is an ideal with (b : h) ∈ J for every h ∈ a, then b ∈ J .

{definition_topologyfrommultclosed}
Definition 13. Let A be a commutative ring and let S be a multiplicatively closed subset of A
(so 1 ∈ S and st ∈ S for any s, t ∈ S). It is easy to check that J(S) = {a | a ∩ S 6= ∅} is a gabriel
topology. If M is an A-module then x ∈ M is J(S)-torsion if and only if there exists s ∈ S with
m · s = 0.

{prop_generalises}
Proposition 9. Let A be a commutative ring, S ⊆ A a multiplicatively closed subset and M an
A-module. Then there is a canonical isomorphism of A-modules natural in M

φ : S−1M −→MJ(S)

φ

(
x

s

)
(sa) = xa+ tJ(S)(M)

Proof. Let x ∈ M, s ∈ S be given. Then (s) is an ideal belonging to J(S) and we define a
morphism of A-modules

ϕx,s : (s) −→M/tJ(S)(M)
ϕx,s(sa) = xa+ tJ(S)(M)

To see this is well-defined, suppose that sa = sb. Then s(a−b) = 0 and it follows that the element
x(a− b) of M is J(S)-torsion. Therefore xa+ tJ(S)(M) = xb+ tJ(S)(M), so ϕx,s is well-defined.
It is not difficult to check it is a morphism of A-modules. We define a morphism of A-modules

φ : S−1M −→MJ(S)

φ(x/s) = ((s), ϕx,s)

To see this is well-defined, suppose that x/s = y/t in S−1M . Then there is q ∈ S with (xt−ys)q =
0. The morphisms ϕx,s, ϕy,t therefore agree on the ideal (stq) ∈ J(S), so ((s), ϕx,s) = ((t), ϕy,t)
in MJ(S). Therefore φ is well-defined, and it is easy to see it is a morphism of A-modules natural
in M .

The map φ is injective since if φ(x/s) = 0 then ϕx,s = 0 by Remark 5. But this implies
x ∈ tJ(S)(M), which is another way of saying x/s = 0 in S−1M . Any element of MJ(S) can be
represented by a morphism of A-modules ϕ : (s) −→M/tJ(S)(M) for some s ∈ S. Choose m ∈M
with ϕ(s) = m+ tJ(S)(M). Then it is not hard to check that φ(m/s) = ((s), ϕ), which completes
the proof.

Remark 8. With the notation of Proposition ?? suppose that M = A. Then it is not difficult to
check that φ : S−1A −→ AJ(S) is actually an isomorphism of A-algebras. In particular, the ring
AJ(S) is commutative.

Corollary 10. Let θ : A −→ B be a morphism of commutative rings and S ⊆ A a multiplicatively
closed set. Then B is J(S)-closed as an A-module if and only if θ sends the elements of S to
units.

Proof. Suppose that B is J(S)-closed. Then by Proposition 9 and Proposition 6 there is a mor-
phism of A-algebras S−1A −→ B which implies the the images of the elements of S in B are all
units. Conversely, suppose that the elements of θ(S) are all units. Then it is clear that B is J(S)-
torsion-free. To see that it is J(S)-injective it suffices by Lemma 7 to show that any morphism of
A-modules ϕ : (s) −→ B for s ∈ S can be extended to all of A. If ϕ(s) = q then let ψ : A −→ B
be the morphism of A-modules 1 7→ qθ(s)−1. It is easy to check that ψ|(s) = ϕ, as required.

{lemma_commgabtop}
Lemma 11. Let A be a commutative ring with gabriel topology J . Then

(i) If a, b ∈ J then ab ∈ J .

7



(ii) An ideal a maximal with respect to a /∈ J is prime.

(iii) If every ideal in J contains a finitely generated ideal in J , then for any ideal a /∈ J there
exists p ∈ V (a) with p /∈ J .

Proof. (i) For any a ∈ a we have (ab : a) ⊇ b so it is clear that ab ∈ J . (ii) Suppose a, b /∈ a with
ab ∈ a. Then by maximality (a)+a, (b)+a ∈ J and so by (i) ((a)+a)((b)+a) ∈ J . But this ideal
is contained in a, which contradicts the fact that a /∈ J . Hence a is prime. (iii) The idea is that
any ideal not in J can be expanded to a prime not in J . Suppose a /∈ J and let O be the set of all
ideals b ⊇ a not in J . The fact that chains in O have upper bounds follows from the assumption,
since if {bi} is a chain and

⋃
bi ∈ J then there is a finitely generated ideal c ∈ J with c ⊆

⋃
bi.

Hence c ⊆ bj for some j, which contradicts the fact that bj /∈ J . Hence we can use Zorn’s Lemma
to find an ideal p ⊇ a maximal with respect to p /∈ J , which is prime by (ii).

{prop_topologyfromprimeset}
Proposition 12. Let A be a commutative ring and let P be a set of prime ideals of A. Then the
following defines a gabriel topology

JP = {a |V (a) ∩ P = ∅}

Conversely associated to any gabriel topology J is the following subset of SpecA

D(J) = {p ∈ SpecA | p /∈ J}

The following conditions on a gabriel topology J are equivalent

(a) J = JP for some P ⊆ SpecA.

(b) J = JD(J).

(c) For every ideal a /∈ J there is p ∈ V (a) with p /∈ J .

Proof. Let P be any set of prime ideals. It is clear that A ∈ JP . Given a ∈ JP and b ∈ A we
must show that (a : b) is not contained in any of the primes in P. But if p ∈ P then a * p, say
a ∈ a \ p. Then a ∈ (a : b) \ p, as required.

To show transitivity let ideals a, b be given with a ∈ JP , so a * p for all p ∈ P. Suppose
(b : a) ∈ JP for all a ∈ a and suppose for a contradiction that b ⊆ p for some p ∈ P. Since a * p
there is a ∈ a \ p, and the fact that (b : a) * p means there exists c with c /∈ p and ca ∈ b, which
contradicts the fact that p is prime. Hence JP is a topology.

Now we show that the three conditions (a), (b), (c) are equivalent. First observe that JD(J) =
{a |V (a) ⊆ J} for any topology J and consequently JD(J) ⊇ J . Similarly P ⊆ D(JP) for any
subset P ⊆ SpecA. (a) ⇒ (b) Suppose J = JP . To show J = JD(J) it suffices to show JD(J) ⊆ J .
So suppose V (a) ⊆ J = JP . If q ∈ V (a) ∩ P then q ∈ JP implies that q /∈ P, a contradiction.
Hence V (a) ∩ P = ∅ and a ∈ J . (b) ⇒ (c) Suppose J = JD(J). If a /∈ J then a /∈ JD(J) and hence
V (a) * J as required. (c) ⇒ (a) We claim that J = JD(J). If a ∈ JD(J) then V (a) ⊆ J . By (c)
this implies a ∈ J .

Remark 9. Let A be a commutative ring. Note that J∅ is the topology consisting of all ideals,
whereas JSpecA = {A}. If P,Q are two subsets of SpecA with P ⊆ Q then it is clear that JQ ⊆ JP .

The topology J{p} consists of all a with a * p. Therefore J{p} is the topology J(A \ p) of
Definition 13. It follows from Proposition 9 that there is a canonical isomorphism of A-algebras
Ap −→ AJ{p} .

Lemma 13. Let A be a commutative ring and S ⊆ A a multiplicatively closed set. Set P =
{p | p ∩ S = ∅}. Then J(S) = JP .

Proof. The inclusion J(S) ⊆ JP is trivial. In the other direction, use the fact that any ideal not
meeting S can be extended to a prime ideal with this property.
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{definition_gabrielequivalence}
Definition 14. Let A be a commutative ring. We say that two subsets P,Q of SpecA are gabriel
equivalent and write P ∼ Q if we have JP = JQ. This is clearly an equivalence relation. We make
the following comments

• It follows from Proposition 12 that for any set of primes P we have P ∼ d(P) where
d(P) = D(JP). In fact it is easy to see that P ∼ Q if and only if d(P) = d(Q).

• By definition we can associate with every equivalence class E of ∼ a gabriel topology J with
J = JP for every representative P of E. In that case D(J) belongs to E, and it contains
every other representative of E.

• Clearly D(J∅) = ∅ and D(JSpecA) = SpecA.

• For a subset P we have P ∼ ∅ iff. P = ∅, so ∅ is the only set in its equivalence class.

• Let us consider the equivalence class of a singleton {p}. It is clear that {p} ∼ {q} iff. p = q,
so each prime lives in a distinct equivalence class. More generally {p} ∼ P iff. p ∈ P and
every element of P is contained in p.

Given a subset P let m(P) denote the primes in P not properly contained in any other prime of
P. These are precisely the closed points in the subspace topology on P. Observe that

m(P) = {p |V (p) ∩ P = {p}}
d(P) = {p |V (p) ∩ P 6= ∅}

and by definition m(P) ⊆ P ⊆ d(P).
{prop_psimclosed}

Proposition 14. Let A be a commutative noetherian ring and P a subset of SpecA. Then we
have P ∼ m(P).

Proof. Since m(P) ⊆ P it suffices to prove that Jm(P) ⊆ JP . Suppose to the contrary that there
exists an ideal a not contained in any closed point of P but which is contained in some p ∈ P.
Then p is not closed, so there is p1 ∈ P with p ⊂ p1. For the same reason p1 cannot be closed, so
we produce in this way a strictly ascending chain p ⊂ p1 ⊂ p2 ⊂ · · · which is impossible since A
is noetherian. This contradiction shows that Jm(P) ⊆ JP and completes the proof.

{lemma_topclosedpoints}
Lemma 15. Let A be a commutative noetherian ring. The following conditions on a pair of
subsets P,P ′ ⊆ SpecA are equivalent

(i) P ∼ P ′.

(ii) For every p ∈ P there is a prime in P ′ containing p, and for every q ∈ P ′ there is a prime
in P containing q.

(iii) m(P) = m(P ′).

(iv) d(P) = d(P ′).

Proof. (i) ⇒ (ii) Suppose P ∼ P ′. By symmetry it suffices to show that every prime p ∈ P is
contained in a prime of P ′. But p ∈ P means that p /∈ JP and hence p /∈ JP′ , so this is trivial.
(ii) ⇒ (i) By symmetry it suffices to show JP ⊆ JP′ . Suppose a /∈ JP′ so a ⊆ q for some q ∈ P ′.
Then by (ii) there is p ∈ P with q ⊆ p and hence a /∈ JP , as required. (ii) ⇒ (iii) By symmetry
it suffices to show m(P) ⊆ m(P ′). But if p ∈ m(P) then there is q ∈ P ′ with q ⊇ p. Applying (ii)
again we find p′ ∈ P with p′ ⊇ q ⊇ p. Maximality of p implies that p = q, so at least p ∈ P ′. The
same argument shows that p ∈ m(P ′). The equivalence (i) ⇔ (iv) is trivial.

We have shown (iv) ⇔ (i) ⇔ (ii) ⇒ (iii) without using the noetherian hypothesis. But we use
it to prove (iii) ⇒ (i), which is an immediate consequence of Proposition 14.

9



Remark 10. Let A be a commutative noetherian ring. Then for any subset P ⊆ SpecA we have
m(P) ∼ P ∼ d(P) by Proposition 14. In fact it is not difficult to see that for another subset Q
we have P ∼ Q if and only if m(P) ⊆ Q ⊆ d(P).

{remark_generisationandsim}
Remark 11. Let A be a commutative noetherian ring. Another way of stating condition (ii) of
Lemma 15 is that every point of P is a generisation of a point of P ′, and every point of P ′ is a
generisation of a point of P. This has the following consequences

• Open subsets are stable under generisation, so if U, V are two open subsets of SpecA we
have U ∼ V if and only if U = V .

• It is easy to check that d(P) is stable under generisation for any subset P of SpecA.

• If P ⊆ Q are subsets of SpecA then P ∼ Q if and only if every point of Q is a generisation
of a point of P. In particular, every point of P is a generisation of a point of m(P) and d(P)
is the set of all generisations of the points of m(P).

• If Q is a subset of SpecA stable under generisation then we must have Q = d(Q).

• Taking P = {p} we see that d({p}) is the set of all generisations of the point p. In other
words, d({p}) = {q | q ⊆ p}.

Definition 15. Let A be a commutative ring, P a subset of SpecA and M an A-module. To
avoid excessive subscripts, we denote the A-submodule tJP (M) by tP(M).

{lemma_intersecttops}
Lemma 16. Let A be a commutative ring. For a nonempty family of subsets {Pi}i∈I of SpecA
we have J∪iPi

=
⋂
i JPi

. Consequently for an A-module M we have

t∪iPi
(M) =

⋂
i

tPi
(M)

Proof. Both claims follow directly from the definitions.
{prop_classifygabtop}

Proposition 17. Let A be a commutative noetherian ring. Then every gabriel topology J is of
the form JP for some subset P ⊆ SpecA. In fact we have J = JD(J).

Proof. If A is noetherian then it follows from Lemma 11(iii) that for any ideal a /∈ J there exists
a prime ideal p ⊇ a with p /∈ J . Then Proposition 12 implies that J = JD(J), as required.

Example 1. Let A be a commutative noetherian ring, set X = SpecA and let U ⊆ X be an open
subset. Let a be the radical ideal with U = X \ V (a). Then we have

JU = {b |V (b) ∩ U = ∅}
= {b |V (b) ⊆ V (a)}

= {b | a ⊆
√

b}
= {b | an ⊆ b for some n ≥ 1}

where we have used the fact that in a noetherian ring every ideal contains a power of its radical.
This shows that JU is precisely the set of open ideals in the a-adic topology on A.

{prop_setsclosedgenerisation}
Proposition 18. Let A be a commutative noetherian ring. Then J 7→ D(J) defines a bijection
between the set of gabriel topologies on A and the set of subsets of SpecA stable under generisation.

Proof. Let J be a gabriel topology on A. Then D(J) = {p | p /∈ J} is clearly stable under
generisation. Suppose Q is a subset of SpecA closed under generisation. Then it follows from the
comments of Remark 11 that Q = D(JQ), which shows that the map J 7→ D(J) is a bijection.
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3 Algebraic Geometry
{lemma_sectionstorsionfree}

Lemma 19. Let A be a commutative noetherian ring, set X = SpecA and let M be an A-module.
For any open U ⊆ X the A-module Γ(U,M˜) is JU -torsion-free.

Proof. Let a be the radical ideal with U = X \V (a) and suppose that x ∈ Γ(U,M˜) is JU -torsion.
That is, anx = 0 for some n ≥ 1. If a is generated by f1, . . . , fn then U is covered by the D(fi) and
since fni x|D(fi) = 0 we use the canonical isomorphism Γ(D(fi),M˜) ∼= Mfi

to see that x|D(fi) = 0
for each i. This shows that x = 0, as required.

{prop_sectioninjective}
Proposition 20. Let A be a commutative noetherian ring, set X = SpecA and let M be an
A-module. For any open U ⊆ X the A-module Γ(U,M˜) is JU -closed.

Proof. By Lemma 19 it suffices to show that Γ(U,M˜) is JU -injective. Suppose we are given an
ideal b ∈ JU and a morphism of A-modules ϕ : b −→ Γ(U,M˜). There exists n ≥ 1 with an ⊆ b.
Suppose that the restriction of ϕ to an admits an extension to a morphism ψ : A −→ Γ(U,M˜),
as in the following diagram

an

##G
GG

GG
GG

GG
// b

ϕ

��

// A

ψ{{xx
xx

xx
xx

x

Γ(U, M̃)

By Lemma 19 the module Γ(U, M̃) is JU -torsion-free, so it follows from Lemma 7 that the above
diagram must commute, and we can reduce to the case b = an for some n ≥ 1. Suppose that
b = (f1, . . . , fn), in which case U = X \V (b) is covered by the open sets D(fi). For each i we can
write ϕ(fi)|D(fi) = ˙mi/fNi for some N ≥ 1 independent of i. Let xi be the section ˙mi/f

N+1
i of

Γ(D(fi),M˜). Then we have

fifj · xi|D(fifj) = fifjmi/̇f
N+1
i

= fj · ϕ(fi)|D(fifj)

= ϕ(fifj)|D(fifj)

= fifj · xj |D(fifj)

which shows that xi|D(fifj) = xj |D(fifj). Since theD(fi) cover U , there exists a unique element x ∈
Γ(U,M˜) with x|D(fi) = xi. Let ψ : A −→ Γ(U,M˜) be the morphism of A-modules corresponding
to x. To show that ψ|b = ϕ it suffices to show that they agree on each fi. Equivalently, we have
to show that fi · xj = ϕ(fi)|D(fj) for each pair i, j. We have

fj · (fi · xj) = fjfimj /̇f
N+1
j

= fi · ϕ(fj)|D(fj)

= ϕ(fifj)|D(fj)

= fj · ϕ(fi)|D(fj)

and therefore fi · xj = ϕ(fi)|D(fj), as required. This shows that ψ extends ϕ and completes the
proof.

{lemma_kernel}
Lemma 21. Let A be a commutative noetherian ring, set X = SpecA and let M be an A-module.
For any open U ⊆ X the kernel of the canonical morphism of A-modules θ : M −→ Γ(U,M˜) is
tU (M).

Proof. By Lemma 19 the A-module Γ(U,M˜) is JU -torsion-free, so the inclusion tU (M) ⊆ Kerθ
is trivial. As above, let a be the radical ideal with U = X \ V (a) and write a = (f1, . . . , fn). If
θ(m) = 0 then we have m = 0 in each Mfi

, and therefore fNi m = 0 for some N ≥ 1 independent
of i. We can therefore find M ≥ 1 so large that aMm = 0, which shows that m is JU -torsion and
completes the proof.
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{lemma_image}
Lemma 22. Let A be a commutative noetherian ring, set X = SpecA and let M be an A-module.
For any open U ⊆ X and s ∈ Γ(U,M˜) there exists an ideal b ∈ JU with b · s ⊆ Imθ.

Proof. That is, we claim that there exists an ideal b ∈ JU such that b · s is of the form ˙m/1 for
every b ∈ b. The first part of the proof uses a standard technique (see (H, II 2.2) for example).
Since X is noetherian U is quasi-compact, and we can cover U with a finite number of open sets
D(h1), . . . , D(hn) such that s|D(hi) = ˙mi/hi for each i. Since mi/hi = mj/hj on D(hihj) we
deduce that there is r ≥ 1 with

(hihj)r(hjmi − himj) = 0

where we may take r large enough to work for every pair i, j. Replacing hi by hr+1
i and mi by

hrimi we can assume that hjmi = himj in M for every pair i, j.
Let b be the ideal (h1, . . . , hn). Clearly V (b) ∩ U = ∅, so b ∈ JU . We define a map

ψ : b −→ Γ(U, M̃)
a1h1 + · · ·+ anhn 7→ θ(a1m1 + · · ·+ anmn)

To see that this map is well-defined, it suffices to show that if a1h1 + · · · + anhn = 0 then
θ(a1m1 + · · ·+ anmn) = 0. We have

0 = (a1h1 + · · ·+ anhn)mi = a1h1mi + · · ·+ anhnmi

= a1him1 + · · ·+ anhimn = hi(a1m1 + · · ·+ anmn)

Therefore Ann(
∑
i aimi) contains b, and thus itself belongs to JU . This shows that

∑
i aimi is

JU -torsion, so Lemma 21 implies that θ(a1m1 + · · ·+ anmn) = 0, as required. It is easy to check
that ψ is a morphism of A-modules.

By Proposition 20 there exists a unique element t ∈ Γ(U,M˜) with ht = ψ(h) for every h ∈ b.
In particular we have hit = θ(mi) for every i, from which we infer that

(hit)|D(hi) = θ(mi)|D(hi) = (his)|D(hi)

Or written differently, hi · (t|D(hi) − s|D(hi)) = 0. It follows that t|D(hi) = s|D(hi) for each i and
therefore t = s. By construction we have hs = ψ(h) ∈ Imθ for every h ∈ b, so b · s ⊆ Imθ, as
required.

{theorem_deligne}
Theorem 23. Let A be a commutative noetherian ring and set X = SpecA. For every A-module
M and open set U ⊆ X there is a canonical isomorphism of A-modules natural in M and U

ψ : MJU
−→ Γ(U, M̃)

Proof. Let θ : M −→ Γ(U,M˜) be the canonical morphism of A-modules. By Proposition 20 the
A-module Γ(U,M˜) is JU -closed, so by Proposition 4 there is a unique morphism of A-modules
ψ : MJU

−→ Γ(U,M˜) making the following diagram commute

M

��

θ // Γ(U, M̃)

MJU

ψ

::vvvvvvvvv

Since Γ(U,M ˜) is JU -torsion-free, there is an induced morphism θ′ : M/tU (M) −→ Γ(U,M ˜)
which by Lemma 21 is injective. For (b, ϕ) ∈MJU

the element ψ(b, ϕ) ∈ Γ(U,M˜) is unique with
the property that h · ψ(b, ϕ) = θ′ϕ(h) for all h ∈ b.

Injectivity of ψ follows from injectivity of θ′, so it only remains to show that ψ it is surjective.
Let s ∈ Γ(U,M˜) be given, and define the following ideal of A

b = {h ∈ A |h · s ∈ Imθ}
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It follows from Lemma 22 that b contains an ideal of JU , and therefore belongs itself to JU . For
each h ∈ b there is a unique element ξ ∈ M/tU (M) mapping to h · s, and we define ϕ(h) = ξ.
This defines a morphism of A-modules ϕ : b −→ M/tU (M). It is easy to check that ψ(b, ϕ) = s,
which shows that ψ is an isomorphism. Naturality in M and U is straightforward, so the proof is
complete.

{corollary_deligneforring}
Corollary 24. Let A be a commutative noetherian ring and set X = SpecA. For every open set
U ⊆ X there is a canonical isomorphism of A-algebras natural in U

ψ : AJU
−→ OX(U)

In particular, the ring AJU
is commutative.

Proof. We need only check that the isomorphism of Theorem 23 is a morphism of rings, which is
straightforward.

Definition 16. Let A be a commutative ring and set X = SpecA. Let M be an A-module. For
every open subset U ⊆ X we have the gabriel topology JU and an A-module GM (U) = MJU

. For
an inclusion U ⊆ V we have JV ⊆ JU and therefore a morphism of A-modules MJV

−→ MJU
as

in Definition 12. This defines the presheaf of abelian groups GM on X.
In particular we have a presheaf of rings GA on X. For each open set U there is a canonical

GA(U)-module structure on the abelian group GM (U), and this makes GM into a presheaf of right
modules over GA (the only fact that needs checking is that restriction on GM commutes with the
action of GA, but we observed this in Definition 12). If α : M −→ N is a morphism of A-modules,
the morphisms of A-modules MJU

−→ NJU
of Definition 9 define a morphism of presheaves of

right modules Gα : GM −→ GN . This defines an additive functor

G(−) : ModA −→ModGA
(Gα)U = αJU

{remark_sheavesoflocalisations}
Remark 12. Let A be a commutative noetherian ring and set X = SpecA. By Corollary 24 there
is a canonical isomorphism of presheaves of rings ψ : GA −→ OX . In particular, GA is a sheaf
of commutative rings and the pair (X,GA) is a scheme canonically isomorphic to X. If M is an
A-module then by Theorem 23 there is a canonical isomorphism of presheaves of abelian groups
GM −→ M ˜, so GM is a sheaf of left modules on the scheme (X,GA). This defines an additive
functor

G(−) : AMod −→ Mod(X,GA)
(Gα)U = αJU

{prop_isoofmodules}
Proposition 25. Let A be a commutative noetherian ring and set X = SpecA. For every A-
module M there is a canonical isomorphism of sheaves of modules natural in M

ψ : GM −→ M̃

Proof. By Theorem 23 there is a canonical isomorphism of sheaves of abelian groups ψ : GM −→
M˜. Here GM is a sheaf of modules on (X,GA) while M˜ is a sheaf of modules on (X,OX). By
saying that ψ is an isomorphism of sheaves of modules, we mean that it sends the action of GA(U)
to the action of OX(U) for every open set U . This is easy to check, and we already know that ψ
is natural in M .

{remark_universalpropopen}
Remark 13. Let A be a commutative noetherian ring and set X = SpecA. Fix an open set U ⊆ X
and let θ : M −→ Γ(U,M˜) be the canonical morphism of A-modules. The A-module Γ(U,M˜)
is JU -closed by Proposition 20, which means that given b ∈ JU and a morphism of A-modules
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ϕ : b −→ Γ(U,M ˜) there is a unique morphism of A-modules ψ making the following diagram
commute

b

��

ϕ // Γ(U, M̃)

A

ψ

77ooooooooooooo

Moreover by Theorem 23 the A-module Γ(U,M˜) is universal with this property. That is, given
another JU -closed A-module N and a morphism of A-modules α : M −→ N there is a unique
morphism of A-modules κ making the following diagram commute

M

θ
��

α // N

Γ(U, M̃)

κ

;;wwwwwwwww

{remark_universalpropopenring}
Remark 14. With the notation of Remark 13 the commutative ring Γ(U,OX) is the universal
JU -closed A-algebra. That is, given another JU -closed A-algebra R there is a unique morphism
of A-algebras Γ(U,OX) −→ R. In other words, the morphism κ of Remark 14 is a morphism of
rings.

Remark 15. Let A be a commutative noetherian ring. It follows from Corollary 24 that if A is a
domain then so is AJU

for any nonempty open U ⊆ X. On the other hand, it is not necessarily
true that AJU

is noetherian (since the ring OX(U) is not always noetherian).
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