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In this section we will define the sheaf of relative differential forms of one scheme over another.
In the case of a nonsingular variety over C, which is like a complex manifold, the sheaf of differential
forms is essentially the same as the dual of the tangent bundle in differential geometry. However,
in abstract algebraic geometry, we will define the sheaf of differentials first, by a purely algebraic
method, and then define the tangent bundle as its dual. Hence we will begin this section with
a review of the module of differentials of one ring over another. As applications of the sheaf of
differentials, we will give a characterisation of nonsingular varieties among schemes of finite type
over a field. We will also use the sheaf of differentials on a nonsingular variety to define its tangent
sheaf, its canonical sheaf, and its geometric genus. This latter is an important numerical invariant
of a variety.
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1 Kähler Differentials

See (MAT2,Section 2) for the definition and basic properties of Kähler differentials.

Definition 1. Let B be a local ring with maximal ideal m. A field of representatives for B is a
subfield L of A which is mapped onto A/m by the canonical mapping A −→ A/m. Since L is a
field, the restriction gives an isomorphism of fields L ∼= A/m.

Proposition 1. Let B be a local ring with field of representatives k. Then the canonical morphism
of k-modules δ : m/m2 −→ ΩB/k ⊗B k is an isomorphism.

Proof. The map δ is defined by x+m2 −→ dB/k(a)⊗1 (see (MAT2,Theorem 17)). Since Ωk/k = 0
it follows from (MAT2,Theorem 17) that δ is surjective. To show that δ is an isomorphism it
suffices by (MAT2,Theorem 17)(ii) to show that the morphism of k-algebras B/m2 −→ B/m has
a right inverse. Since every coset of B/m contains a unique element of k, this is easily checked.

Lemma 2. Let A be a noetherian local domain with residue field k and quotient field K. If M
is a finitely generated A-module with rankk(M ⊗A k) = rankK(M ⊗A K) = r then M is a free
A-module of rank r.
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Proof. Since rankk(M ⊗A k) = r, Nakayama’s Lemma tells us that M can be generated by r
elements. So there is a surjective map ϕ : Ar −→ M . Let R be its kernel. Then we obtain an
exact sequence

0 −→ R⊗A K −→ Kr −→M ⊗A K −→ 0

and since rankk(M⊗AK) = r, we have R⊗AK = 0. But R is torsion-free, so R = 0 and therefore
M is isomorphic to Ar.

Lemma 3. Let k be a field, A a finitely generated k-algebra and suppose that B = Ap is a domain
for some prime ideal p of A. Then B is isomorphic as a k-algebra to the localisation of an affine
k-algebra at a prime ideal.

Proof. Recall that an affine k-algebra is a finitely generated k-algebra which is a domain. Let A
be a finitely generated k-algebra, p a prime ideal of A and suppose that B = Ap is a domain. Let
q be the kernel of the ring morphism A −→ Ap. Then q is a prime ideal contained in p, and it is
not hard to check that B ∼= (A/q)p as k-algebras.

Theorem 4. Let B be a local ring with field of representatives k. Assume that k is perfect and
that B is isomorphic as a k-algebra to the localisation of a finitely generated k-algebra at a prime
ideal. Then B is a regular local ring if and only if ΩB/k is a free B-module of rank dimB.

Proof. By hypothesis B is noetherian. Suppose that ΩB/k is a free B-module of rank dimB. Then
by Proposition 1, rankkm/m2 = dimB, so B is a regular local ring. In particular this implies that
B is a normal domain (MAT,Theorem 108).

For the converse, suppose that B is a regular local ring of dimension r. Then rankkm/m2 = r so
by Proposition 1 we have rankk(ΩB/k⊗B k) = r. On the other hand, let K be the quotient field of
B. Then there is an isomorphism of K-modules ΩB/k⊗BK ∼= ΩK/k (MAT2,Corollary 15). Since k
is perfect, K is a separably generated extension field of k (H,I.4.8A), so rankKΩK/k = tr.deg.K/k
(MAT2,Corollary 20). We claim that dimB = tr.deg.K/k. By Lemma 3 we can find an affine k-
algebra A and a prime ideal p such that B ∼= Ap as k-algebras. Since k is a field of representatives
of B we have Ap/pAp

∼= k as k-algebras. Using (H, I.1.8A) and the fact that A/p is an affine
k-algebra with quotient field k-isomorphic to Ap/pAp, we have

coht.p = dim(A/p) = tr.deg.(Ap/pAp)/k = tr.deg.k/k = 0

Applying (H, I.1.8A) to A and using the fact that the quotient field of A is k-isomorphic to K,
we have dimB = dimA = tr.deg.K/k as claimed. It now follows from (MAT2,Corollary 16) and
Lemma 2 that ΩB/k is a free B-module of rank dimB.

The next result says intuitively that in a regular local ring (thought of as the local ring of a
nonsingular variety) regular systems of parameters define bases for the module of differentials.

Corollary 5. Let B be a regular local ring satisfying the hypothesis of Theorem 4 with n =
dimB ≥ 1. If x1, . . . , xn is a regular system of parameters then ΩB/k is a free B-module on the
basis {dx1, . . . , dxn}.

Proof. Let x1, . . . , xn be a regular system of parameters. That is, the elements xi + m2 are a
k-basis for m/m2 (notation of the proof of Theorem 4). It follows from Proposition 1 that the
elements dB/k(xi)⊗1 are a k-basis for ΩB/k⊗Bk and therefore by Nakayama the elements dB/k(xi)
generate ΩB/k as a B-module. The proof of Lemma 2 shows that this is a basis.

2 Sheaves of Differentials

Lemma 6. If f : X −→ Y is a morphism of schemes then the diagonal ∆ : X −→ X ×Y X is an
emmersion. In particular ∆ gives a homeomorphism of X with the locally closed subset ∆(X) of
X ×Y X.
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Proof. See (SI,Definition 6) for the definition of an emmersion. Let p1, p2 : X ×Y X −→ X
be the canonical projections. Since p1 ◦ ∆ = 1 it is clear that ∆ gives a continuous bijection
between X and ∆(X). If U ⊆ X is open then p−1

1 U ∩ p−1
2 U is a pullback U ×Y U and since

∆−1(p−1
1 U ∩ p−1

2 U) = U we have a pullback diagram

U

��

// U ×Y U

��
X

∆
// X ×Y X

Using (SPM,Proposition 11) we see that ∆(U) = ∆(X) ∩ (U ×Y U) is an open subset of ∆(X),
which shows that ∆ induces a homeomorphism X −→ ∆(X).

To see that ∆(X) is locally closed, let x ∈ X be given and find an affine open neighborhood
S of f(x) in Y . Let U be an affine open neighborhood of x contained in f−1S, and observe that
p−1
1 U ∩ p−1

2 U is a pullback U ×S U and the induced morphism U −→ U ×S U is the diagonal.
Since U, S are affine this is a closed immersion, so ∆(U) is closed in the open susbet U ×S U of
X ×Y X. This shows that ∆(X) is a locally closed subset of X ×Y X.

Since the composite OX,x −→ OX×Y X,∆(x) −→ OX,x is the identity it is clear that the local
maps OX×Y X,∆(x) −→ OX,x are all surjective, so by (SI,Proposition 12) the morphism ∆ is an
emmersion.

Definition 2. Let f : X −→ Y be a morphism of schemes, ∆ : X −→ X ×Y X the diagonal
and Wf the largest open subset of X ×Y X containing ∆(X) as a closed subset (SI,Definition 4).
Then by (SI,Remark 2) we have a canonical factorisation of ∆ as a closed immersion followed by
an open immersion

Wf

$$I
IIIIIIII

X

g
>>}}}}}}}}

∆
// X ×Y X

Let If be the quasi-coherent sheaf of ideals on Wf corresponding to the closed immersion g.
Then we define the sheaf of relative differentials of f to be Ωf = g∗(If/I 2

f ). This is a quasi-
coherent sheaf of OX -modules (H,5.8), (MOS,Corollary 12), (MOS,Definition 1). We write ΩX/Y
for Ωf , IX/Y for If and WX/Y for Wf if no confusion seems likely. If Y is noetherian and f is
a morphism of finite type then X ×Y X is also noetherian, so ΩX/Y is coherent.

Proposition 7. Let f : X −→ Y be a morphism of schemes. For affine open S ⊆ Y and
U ⊆ f−1S we have U ×S U ⊆WX/Y and the canonical ring isomorphism

OWX/Y
(U ×S U) ∼= OX(U)⊗OY (S) OX(U) (1)

identifies IX/Y (U ×S U) with the kernel of the product morphism. In fact if ψ : U ×S U −→
Spec(OX(U) ⊗OY (S) OX(U)) is the canonical isomorphism we have a canonical isomorphism of
sheaves of modules

θX/Y,U/S : (ΩOX(U)/OY (S))˜ −→ ψ∗(IX/Y /I
2
X/Y )|U×SU
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!!
X

U

X ×Y X
∆

WX/Y

U ×S U

∆(X)

∆(U)

=
⇒

OX(U) ⊗OY (S) OX(U)

Proof. By U ×S U we mean the open subset p−1
1 U ∩ p−1

2 U of X ×Y X, which together with the
canonical morphisms is a pullback. To show that U ×S U ⊆WX/Y it is enough by (SI,Lemma 10)
to show that Λ(U) = Λ(X) ∩ (U ×S U) is closed in U ×S U . But this follows from the fact that
morphisms of affine schemes are separated.

Set I = IX/Y . Since I |U×SU is the ideal sheaf of the closed immersion U −→ U ×S U the
scheme isomorphism U ×S U ∼= Spec(OX(U) ⊗OY (S) OX(U)) identifies I |U×SU with the ideal
sheaf I˜ where I is the kernel of the product morphism ε : OX(U) ⊗OY (S) OX(U) −→ OX(U).
It is now clear that the ring isomorphism (1) identifies I (U ×S U) with I and that we have an
isomorphism of sheaves of modules

θX/Y,U/S : (I/I2)˜ ∼= I˜/(I2)˜ ∼= ψ∗(I |U×SU )/ψ∗(I |2U×SU )
∼= ψ∗(I |U×SU/I |2U×SU ) ∼= ψ∗(I /I 2)|U×SU

which completes the proof.

Remark 1. With the notation of Proposition 7 if T ⊆ S and Q ⊆ U ∩ f−1T are affine open
sets then Q ×T Q ⊆ U ×S U . Put k = OY (S), k′ = OY (T ), A = OX(U), A′ = OX(Q) and
B = A⊗k A,B′ = A′ ⊗k′ A′. It is not hard to check that the following diagram commutes, where
the bottom row is induced by the ring morphism a⊗ b 7→ a|Q ⊗ b|Q

Q×T Q

ψQ

��

// U ×S U

ψU

��
Spec(B′)

ρQ,U

// Spec(B)

(2)

The restriction map A −→ A′ induces a canonical morphism of A-modules

(−)|Q : ΩA/k −→ ΩA′/k′

(a⊗ b+ I2) 7→ a|Q ⊗ b|Q + I ′2
(3)

We claim that the following canonical morphism of B′-modules is an isomorphism

µX/Y,U/S,Q/T : ΩA/k ⊗B B′ −→ ΩA′/k′

(a⊗ b+ I2)⊗ (c⊗ e) 7→ ca|Q ⊗ eb|Q + I ′2
(4)

To show this, we first observe that by Proposition 7 we have canonical isomorphisms of sheaves
of modules

θX/Y,U/S : (ΩA/k)˜ −→ (ψU )∗(I /I 2)|U×SU

θX/Y,Q/T : (ΩA′/k′)˜ −→ (ψQ)∗(I /I 2)|Q×TQ
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Using (MRS,Proposition 108),(MRS,Proposition 110) we have an isomorphism of sheaves of mod-
ules

(ΩA/k ⊗B B′)˜ ∼= (ρQ,U )∗(ΩA/k)˜
∼= (ρQ,U )∗(ψU )∗(I /I 2)|U×SU

∼= (ψQ)∗(I /I 2)|Q×TQ

∼= (ΩA′/k′)˜
one checks that the corresponding morphism of modules is (4), which is therefore an isomorphism.
By construction we have a commutative diagram of sheaves of modules on Spec(B′)

(ρQ,U )∗(ΩA/k)˜
��

ρ∗Q,U (θX/Y,U/S)
+3 (ρQ,U )∗(ψU )∗(I /I 2)|U×SU

��

(ΩA/k ⊗B B′)˜
(µX/Y,U/S,Q/T )e

��
(ΩA′/k′)˜

θX/Y,Q/T

+3 (ψQ)∗(I /I 2)|Q×TQ

(5)

which expresses the naturality of θ in the affine open set U .
Let L ⊆ U×SU be open and let L′ = ψU (L) be the corresponding open subset of Spec(B). Sup-

pose we have a ∈ ΩA/k and s ∈ B with L′ ⊆ D(s). Then ˙a/s defines an element of Γ(L′, (ΩA/k)˜)
which we can identify with a section of Γ(L,I /I 2) via the isomorphism θX/Y,U/S . Commuta-
tivity of (5) says that this identification behaves under restriction. That is, if L ⊆ Q ×T Q then
˙a/s and a|Q/̇s|Q denote the same section of I /I 2 (using ψQ to identify the section a|Q/̇s|Q of

ΩA′/k′ with a section of I /I 2).

Lemma 8. Let k be a ring, A a k-algebra and I the kernel of the product morphism A⊗kA −→ A.
Then there is a canonical isomorphism of A-modules I/I2 ⊗A⊗kA A

∼= ΩA/k.

Proof. By definition ΩA/k is I/I2 with the A-module structure induced by the ring morphism
A −→ A⊗k A with a 7→ a⊗ 1. It is not hard to see that the map ΩA/k −→ I/I2 ⊗ A defined by
t 7→ t⊗ 1 is an isomorphism of A-modules.

Proposition 9. Let f : X −→ Y be a morphism of schemes, S ⊆ Y and U ⊆ f−1S affine
open subsets. If ϕ : U −→ SpecOX(U) is the canonical isomorphism then there is a canonical
isomorphism of sheaves of modules

ϑX/Y,U/S : (ΩOX(U)/OY (S))˜ −→ ϕ∗(ΩX/Y |U )

In particular there is an isomorphism ΩX/Y (U) ∼= ΩOX(U)/OY (S) of OX(U)-modules.

Proof. Set k = OY (S), A = OX(U), B = A⊗kA and observe that we have a commutative diagram
with the right hand square a pullback

SpecA

∆

��

U
ϕks

∆

��

// X

g

��
Spec(A⊗k A) U ×S U

ψU

ks // WX/Y

Using (MRS,Proposition 111), (MRS,Proposition 108), the isomorphism θX/Y,U/S of Proposition
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7 and Lemma 8 we have an isomorphism of sheaves of modules

ϕ∗(ΩX/Y |U ) = ϕ∗g
∗(IX/Y /I

2
X/Y )|U

∼= ϕ∗(∆∗(JX/Y /J
2
X/Y )|U×SU )

∼= ∆∗(ψU )∗(JX/Y /J
2
X/Y )|U×SU

∼= ∆∗(ΩA/k)˜
∼= (ΩA/k ⊗B A)˜
∼= (ΩA/k)˜

as required.

Remark 2. With the notation of Proposition 9 let T ⊆ S and Q ⊆ U ∩ f−1T be affine open
subsets and put k′ = OY (T ), A′ = OX(Q). There is a canonical morphism of A′-modules ΩA/k⊗A
A′ −→ ΩA′/k′ defined by d(a) ⊗ c 7→ c · d(a|Q). Let τQ,U : SpecA −→ SpecA′ be the canonical
morphism and note that we have a canonical isomorphism (τQ,U )∗(ϕU )∗ΩX/Y |U ∼= (ϕQ)∗ΩX/Y |Q
(MRS,Proposition 108), (MRS,Proposition 110) which we claim makes the following diagram
commute

(τQ,U )∗(ΩA/k)˜
��

τ∗Q,U (ϑX/Y,U/S)
+3 (τQ,U )∗(ϕU )∗ΩX/Y |U

��

(ΩA/k ⊗A A′)˜
��

(ΩA′/k′)˜
ϑX/Y,Q/T

+3 (ϕQ)∗ΩX/Y |Q

one checks this by reducing to special sections and using Remark 1.
Suppose we are given an open subset L ⊆ U and let L′ = ϕU (L) be the corresponding open

subset of SpecA. Suppose we have a ∈ ΩA/k and s ∈ OX(U) with L′ ⊆ D(s). Then ˙a/s defines an
element of Γ(L′, (ΩA/k)˜) which we can identify with a section of Γ(L,ΩX/Y ) via the isomorphism
ϑX/Y,U/S . We have ˙a/s = [ψ−1D(s⊗1), a/̇(s⊗1)]⊗̇1 where we identify U×SU with Spec(A⊗kA)
as in Remark 1.

The identification of the previous paragraph commutes with restriction in the following sense:
if L ⊆ Q then a|Q ∈ ΩA′/k′ together with s|Q ∈ OX(Q) determine a section of (ΩA′/k′)˜ over
ϕQ(L) ⊆ SpecA′. The corresponding section a|Q/̇s|Q ∈ Γ(L,ΩX/Y ) (using ϑX/Y,Q/T ) is equal to
the section denoted ˙a/s in the previous paragraph.

Corollary 10. Let X be a scheme over a ring k. Then for x ∈ X there is a canonical isomorphism
of OX,x-modules (ΩX/k)x ∼= ΩOX,x/k.

Proof. Set Y = Speck, let U be an affine open neighborhood of x, set A = OX(U) and let
ϕ : U −→ SpecOX(U) be the canonical isomorphism. Let p = ϕ(x) and use ϑX/Y,U/Y together
with (MAT2,Corollary 15) to obtain an isomorphism of OX,x-modules

(ΩX/Y )x ∼= (ΩX/Y |U )x
∼= ϕ∗(ΩX/Y |U )p

∼= (ΩA/k)˜p

∼= (ΩA/k)p

∼= ΩAp/k

∼= ΩOX,x/k

If a, s ∈ OX(U) determines a section ˙a/s ∈ Γ(Q′, (ΩA/k)˜) for some open neighborhood Q′ = ϕ(Q)
of p then this map sends dA/k(a)/̇s to (Q, s−1) · dOX,x/k(U, a). It is straightforward to check that
this isomorphism is independent of the chosen affine open neighborhood U .
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Lemma 11. Let ϕ : A −→ B be a morphism of rings and Φ : SpecB −→ SpecA the induced
morphism of schemes. Then there is a canonical isomorphism (ΩB/A)˜ ∼= ΩSpecB/SpecA of sheaves
of modules on SpecB.

Proof. We can assume that the diagonal is the morphism of schemes ∆ : SpecB −→ Spec(B⊗AB)
corresponding to the product morphism ε : B ⊗A B −→ B. This is a closed immersion with ideal
sheaf I˜ where I is the kernel of ε. Therefore there is a canonical isomorphism of ΩΦ with the
associated sheaf of the B-module I/I2 ⊗B⊗AB B. So the result is a consequence of Lemma 8.

Proposition 12. Suppose we have a commutative diagram of schemes

X ′

q

��

p // X

f

��
Y ′

g
// Y

(6)

Then there are canonical morphisms of sheaves of modules

ν : p∗(ΩX/Y ) −→ ΩX′/Y ′

[M, ˙a/s] ⊗̇ ˙b/t 7→ b · uU/S,P/V (a)/̇φ(s)t

υ : ΩX/Y −→ p∗(ΩX′/Y ′)
˙a/s 7→ uU/S,P/V (a)/̇φ(s)

Moreover if (6) is a pullback then ν is an isomorphism.

Proof. Let S ⊆ Y, U ⊆ f−1S, V ⊆ g−1S and P ⊆ q−1V ∩ p−1U be affine open subsets. Then we
have a commutative diagram

SpecOX′(P )

��

z // SpecOX(U)

��

P
r //

ϕ
ai KKKKKKKKKK

KKKKKKKKKK

  A
AA

AA
AA

A

��

U

ψ
5=tttttttttt

tttttttttt

~~~~
~~

~~
~~

��

X ′ p //

q

��

X

f

��
Y ′

g
// Y

V

>>}}}}}}}}

h
//

u} ssssssssss

ssssssssss S

!)KKKKKKKKKK

KKKKKKKKKK

``@@@@@@@@

SpecOY ′(V )
i

// SpecOY (S)

The outside diagram of commutative rings induces the following morphisms (MAT2,Definition 7)

uU/S,P/V : ΩOX(U)/OY (S) −→ ΩOX′ (P )/OY ′ (V )

vU/S,P/V : ΩOX(U)/OY (S) ⊗OX(U) OX′(P ) −→ ΩOX′ (P )/OY ′ (V )
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We have a canonical morphism of sheaves of modules

ϕ∗p
∗ΩX/Y |P ∼= ϕ∗r

∗ΩX/Y |U
∼= z∗ψ∗ΩX/Y |U
∼= z∗(ΩOX(U)/OY (S))˜
∼= (ΩOX(U)/OY (S) ⊗OX(U) OX′(P ))˜
−→ (ΩOX′ (P )/OY ′ (V ))˜
∼= ϕ∗ΩX′/Y ′ |P

Using (MRS,Proposition 111), (MRS,Proposition 108), Proposition 9, the morphism (vU/S,P/V )˜
and then Proposition 9 once more. So finally we have a morphism of sheaves of modules

νU,V,S,P : p∗(ΩX/Y )|P −→ ΩX′/Y ′ |P
[M, ˙a/s] ⊗̇ ˙b/t 7→ b · uU/S,P/V (a)/̇φ(s)t

(7)

Where φ : OX(U) −→ OX′(P ) is the ring morphism induced by z. We claim that the morphisms
νU,V,S,P glue together, as S ranges over all affine open subsets of Y and U, V, P over all affine
open subsets of f−1S, g−1S and p−1U ∩ q−1V respectively. In the usual way (see for example the
proof of (TRPC,Proposition 10)) this follows from Remark 2 and the explicit form of (7). Since
the affine sets P form an open cover of X ′ there is a unique morphism of sheaves of modules
ν : p∗ΩX/Y −→ ΩX′/Y ′ with ν|P = νU,V,S,P for all U, V, S, P . It follows from (MAT2,Proposition
11) that if (6) is a pullback then ν is an isomorphism. By adjointness there is a morphism of
sheaves of modules υ : ΩX/Y −→ p∗ΩX′/Y ′ corresponding to ν.

Remark 3. Let m : X −→ Y and n : Y −→ Z be morphisms of schemes. Using the special case
of Proposition 12 where p is the identity, we have a morphism of sheaves of modules on X

υ : ΩX/Z −→ ΩX/Y
˙a/s 7→ uU/S,U/V (a)/̇s

Using the special case where g is the identity, we have a morphism of sheaves of modules on X

ν : m∗ΩY/Z −→ ΩX/Z

[M, ˙a/s] ⊗̇ ˙b/t 7→ b · uV/S,U/S(a)/̇φ(s)t

where φ : OY (V ) −→ OX(U) is the canonical ring morphism.

Lemma 13. Let X be a scheme over a ring k. If U ⊆ X is an open subset then there is a
canonical isomorphism of sheaves of modules on U

λ : ΩU/k −→ (ΩX/k)|U
˙a/s 7→ ˙a/s

Proof. Let j : U −→ X be the inclusion. The desired morphism is the composite of ν : j∗ΩX/k −→
ΩU/k with the canonical isomorphism j∗ΩX/k ∼= (ΩX/k)|U . It follows from Corollary 10 that this
is an isomorphism on stalks, and therefore an isomorphism.

Proposition 14. Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. Then there is an
exact sequence of sheaves of modules on X

f∗ΩY/Z
ν // ΩX/Z

υ // ΩX/Y −→ 0 (8)

Proof. To show that this sequence is exact, it suffices to show that for affine open S ⊆ Z, V ⊆ g−1S
and U ⊆ f−1V the following sequence is exact (MRS,Lemma 38)

f∗ΩY/Z |U −→ ΩX/Z |U −→ ΩX/Y |U −→ 0 (9)
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Let ϕ : U −→ SpecOX(U) be the canonical isomorphism. Then exactness of (9) follows from
(MAT2,Theorem 13) and commutativity of the following diagram

ϕ∗(f∗ΩY/Z |U )

��

// ϕ∗(ΩX/Z |U ) //

��

ϕ∗(ΩX/Y |U )

��

// 0

(ΩOY (V )/OZ(S) ⊗OY (V ) OX(U))˜ // (ΩOX(U)/OZ(S))˜ // (ΩOX(U)/OY (V ))˜ // 0

(10)

This shows that (8) is exact, as required.

Remark 4. Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. Commutativity of (10)
implies that if f is an isomorphism then ν : f∗ΩY/Z −→ ΩX/Z is an isomorphism. Similarly if g
is an isomorphism then υ : ΩX/Z −→ ΩX/Y is an isomorphism.

Definition 3. Let α : S −→ S ′ be a morphism of sheaves of rings on a topological space X,
which is an epimorphism of S -modules. Let J denote the kernel of α and let F be a OS-
module. Then for x ∈ X we have an epimorphism of rings αx : Sx −→ S ′

x with kernel Jx and
an isomorphism Sx-modules (F/J F )x ∼= Fx/JxFx (MRS,Lemma 45). Therefore (F/J F )x
becomes a S ′

x-module in a canonical way, and therefore F/J F is canonically a S ′-module. In
particular for n ≥ 1 the S -module J n/J n+1 is canonically a S ′-module.

Definition 4. Let f : Y −→ X be a morphism of ringed spaces with the property that the
corresponding morphism of sheaves of rings θ : f−1OX −→ OY is an epimorphism of f−1OX -
modules. Let Jf denote the kernel of θ, so that we have an exact sequences of f−1OX -modules

0 −→ Jf −→ f−1OX −→ OY −→ 0

and therefore a canonical isomorphism f−1OX/Jf
∼= OY of sheaves of rings. The f−1OX -module

Jf/J 2
f is then canonically a OY -module. The ring isomorphism (f−1OX)y ∼= OX,f(y) identifies

Jf,y with the kernel of the ring morphism OX,f(y) −→ OY,y for y ∈ Y .

Proposition 15. Let f : Y −→ X be an emmersion of schemes with ideal sheaf K . Then there
is a canonical isomorphism of sheaves of modules on Y

η : Jf/J
2
f −→ f∗K

[V, s] +̇ J 2
f (U) 7→ [V, s] ⊗̇ 1

Proof. By assumption f gives a homeomorphism of Y with a locally closed subset of X so for
y ∈ Y the ideal Kf(y) is the kernel of the surjective ring morphism OX,f(y) −→ OY,y. The
induced morphism f−1OX −→ OY is an epimorphism, so we have the sheaf of modules Jf/J 2

f

of Definition 4. There is an isomorphism of OY,y-modules (MRS,Proposition 20)

ηy : (Jf/J
2
f )y ∼= Jf,f(y)/J

2
f,f(y)

∼= Kf(y)/K
2
f(y)

∼= Kf(y) ⊗OX,f(y) OX,f(y)/Kf(y)

∼= Kf(y) ⊗OX,f(y) OY,y
∼= (f∗K )y

Let U be an open neighborhood of y, V an open subset containing f(U) and s ∈ K (V ). Then
[V, s] ∈ Jf (U) ⊆ (f−1OX)(U) and ηy is defined by

germy([V, s] +̇ J 2
f (U)) 7→ germy([V, s] ⊗̇ 1)

It is not hard to check that germyηU (s) = ηy(germys) gives a well-defined isomorphism of sheaves
of modules Jf/J 2

f −→ f∗K .
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Corollary 16. Let f : X −→ S be a morphism of schemes with diagonal ∆ : X −→ X ×S X.
Then there is a canonical isomorphism of sheaves of modules on X

ξ : J∆/J
2
∆ −→ ΩX/S

Proof. The diagonal ∆ is an emmersion so by Proposition 15 there is a canonical isomorphism
J∆/J 2

∆ −→ ∆∗(I ) where I is the ideal sheaf of ∆. It is not hard to see that if g : X −→WX/S

is the canonical closed immersion then the ideal sheaf of g is IX/S = I |WX/S
. Let ξ be the

composite of ∆∗(I ) ∼= g∗(IX/S) with the epimorphism g∗(IX/S) −→ g∗(IX/S/I
2
X/S) = ΩX/S .

To show that ξ is an isomorphism, it suffices to show that this latter morphism is an isomorphism.
By passing to stalks, this follows from from (MRS,Proposition 20) and the fact that if A is a ring,
M an A-module, a an ideal and N = M/aM , then N/aN = N .

Remark 5. This shows that the definition of ΩX/S adopted in Definition 2 agrees with the one
given in EGA IV4(16.3.1). In other words, the three sheaves of modules J∆/J 2

∆,ΩX/S ,∆
∗(I )

are all isomorphic, where I is the ideal sheaf of the diagonal ∆.

Definition 5. Let X be a ringed space and F an OX -module. The presheaf coproduct OX ⊕F
becomes a presheaf of OX -algebras with the product on OX(U)⊕F (U) defined by (a, x)(b, y) =
(ab, ay + bx). Sheafifying gives the sheaf coproduct OX ⊕F a canonical OX -algebra structure,
which we denote by DOX

(F ). There is a canonical morphism of sheaves of OX -algebras ε :
DOX

(F ) −→ OX with ˙(a, x) 7→ a, and a canonical morphism of OX -modules ρ : DOX
(F ) −→ F

with ˙(a, x) 7→ x. Note that the presheaf coproduct OX ⊕F is a sheaf (since finite coproducts are
finite products, which are computed pointwise) so every element of Γ(U,DOX

(F )) is of the form
˙(a, x).

Definition 6. Let f : X −→ S be a morphism of ringed spaces. For an OX -module F a S-
derivation of OX to F is a morphism of sheaves of abelian groups D : OX −→ F which satisfies
the following conditions

(a) For open V ⊆ X and a, b ∈ OX(V ) we have D(ab) = aD(b) + bD(a).

(b) For open U ⊆ S, V ⊆ f−1U and t ∈ OX(V ), s ∈ OS(U) we have D((s|V )t) = (s|V )D(t).

It is equivalent to say that for x ∈ X the morphism of abelian groups Dx : OX,x −→ Fx is an
OS,f(x)-derivation. The set of all S-derivations of OX to F form a OX(X)-module DerS(OX ,F ).

Proposition 17. Let f : X −→ S be a morphism of ringed spaces and F a OX-module. Then
there is a bijection between DerS(OX ,F ) and morphisms of OS-algebras ϕ : OX −→ DOX

(F )
with εϕ = 1.

Proof. If S ,T are OX -algebras and ϕ : S −→ T is a morphism of sheaves of rings on X, then we
say ϕ is a morphism of OS-algebras if f∗ϕ is a morphism of OS-algebras. Given D ∈ DerS(OX ,F )
we define

1 +D : OX −→ DOX
(F )

(1 +D)U (a) = ˙(a,DU (a))

It is straightforward to check that this is a morphism of OS-algebras with εϕ = 1.
Now suppose we are given a morphism ϕ : OX −→ DOX

(F ) of OS-algebras with εϕ = 1. The
morphism of sheaves of abelian groups D = ρϕ : OX −→ F is easily checked to be a S-derivation
of OX to F . This defines the required bijection.

Definition 7. Let f : X −→ S be a morphism of schemes and ∆ : X −→ X ×S X the diagonal
with projections p1, p2 : X×SX −→ X. Then we define the following S-derivation of OX to ΩX/S

d : OX −→ ΩX/S

dU (s) = [U ×S U, (p2)
#
U (s)|U×SU − (p1)

#
U (s)|U×SU +̇ I 2

X/S(U ×S U)] ⊗̇ 1

10
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We write dX/S for d and call it the canonical derivation. Suppose that V ⊆ S and U ⊆ f−1S
are affine open subsets, and set A = OX(U), k = OS(V ). It is straightforward to check that the
following diagram commutes

A

dA/k

��

+3 Γ(U,OX)

dU

��
ΩA/k +3 Γ(U,ΩX/S)

where the bottom isomorphism is defined in Proposition 7.

Remark 6. In the special case where S = Speck is affine for a ring k, it is not hard to check that
the following diagram commutes for x ∈ X

OX,x

(dX/k)x ((PPPPPPPPPPPPP

dOX,x/k
// ΩOX,x/k

��
(ΩX/k)x

where the vertical isomorphism is the one defined in Corollary 10.

Remark 7. Let f : X −→ Y be a morphism of schemes and j : Z −→ X a closed immersion
with ideal sheaf K . It is not hard to check that the following defines a morphism of sheaves of
modules on X

δ̂ : K −→ j∗j
∗ΩX/Y

δ̂U (s) 7→ [U, dU (s)] ⊗̇ 1

where d = dX/Y : OX −→ ΩX/Y is the canonical derivation. By adjointness this corresponds to a
morphism of sheaves of modules δ : j∗K −→ j∗ΩX/Y defined by [U, s] ⊗̇ b 7→ [U, dU (s)] ⊗̇ b.

Proposition 18. Let f : X −→ Y be a morphism of schemes and j : Z −→ X a closed immersion
with ideal sheaf K . Then there is an exact sequence of sheaves of modules on Z

j∗K
δ // j∗ΩX/Y

ν // ΩZ/Y // 0 (11)

Proof. By using the canonical isomorphism j∗K ∼= Jj/J 2
j of Proposition 15 we can put the

statement of the result into the form that it takes in EGA IV4(16.4.21). Here ν is as defined in
Remark 3. To show that the sequence is exact, it suffices to show that for affine open S ⊆ Z, V ⊆
g−1S and U = j−1V the following sequence is exact (since j is a closed immersion, U is affine)

(j∗K )|U −→ (j∗ΩX/Y )|U −→ ΩZ/Y |U −→ 0 (12)

Set A = OX(V ), B = OZ(U), k = OY (S) and observe that a = K (U) is the kernel of the surjective
ring morphism A −→ B. Let ϕ : U −→ SpecB be the canonical isomorphism. Then exactness of
(12) follows from (MAT2,Theorem 17) and commutativity of the following diagram

ϕ∗(j∗K |U ) //

��

ϕ∗(j∗ΩX/Y |U ) //

��

ϕ∗(ΩZ/Y |U ) //

��

0

(a/a2)˜ // (ΩA/k ⊗A B)˜ // (ΩB/k)˜ // 0

This shows that (11) is exact, as required.

Definition 8. If Y is a scheme then AnY denotes a pullback AnZ×ZY where AnZ = Spec(Z[x1, . . . , xn]).
There is a canonical ring morphism Z[x1, . . . , xn] −→ Γ(AnY ) and we denote the image of xi once
again by xi. In particular if A is a ring then Spec(A[x1, . . . , xn]) together with the canonical
morphisms to AnZ and Spec(A) is such a pullback, and in this case the global section xi is just

˙xi/1, so AnSpecA = AnA.
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Lemma 19. If Y is any scheme and X = AnY then ΩX/Y is free OX-module of rank n, with basis
{dX/Y (x1), . . . , dX/Y (xn)}.

Proof. Let f : X −→ Y be the structural morphism, and ui : OX −→ ΩX/Y the morphism of OX -
modules corresponding to the global section dX/Y (xi). We are claiming that the ui are a coproduct.
By (MRS,Proposition 40) it suffices to show that the morphisms ui|U : OX |U −→ ΩX/Y |U are a
coproduct for every affine open V ⊆ Y , where U = f−1V . Since U = V ×Z AnZ it is affine, so
we can reduce to the case where Y = SpecA and X = Spec(A[x1, . . . , xn]). This follows from
(MAT2,Lemma 9).

Next we will give an exact sequence relating the sheaf of differentials on a projective space
to sheaves we already know. This is a fundamental result, upon which we will base all future
calculations involving differentials on projective varieties.

Theorem 20. Let A be a ring, Y = SpecA and let X = PnA. Then there is an exact sequence of
sheaves of modules on X

0 −→ ΩX/Y −→ OX(−1)n+1 −→ OX −→ 0

Proof. We write (−)n+1 to indicate a coproduct of n + 1 copies. Let S = A[x0, . . . , xn] and let
E be the graded S-module S(−1)n+1 with basis e0, . . . , en in degree 1. By (GRM,Lemma 19)
there is a morphism of graded S-modules α : E −→ S sending ei to xi, which is clearly a quasi-
epimorphism. Let M be the kernel of α. Using (MPS,Corollary 19) we have an exact sequence of
sheaves of modules on X

0 −→ M̃ −→ OX(−1)n+1 −→ OX −→ 0

We will now show that M̃ ∼= ΩX/Y . Let Ui = D+(xi) be the canonical affine open subsets
and let ϕ : Spec(S(xi)) −→ Ui be the canonical isomorphism. It is straightforward to check
that α(xi) : E(xi) −→ S(xi) is surjective and that E(xi) is a free S(xi)-module on the basis
{e0/xi, . . . , ei/xi, . . . , en/xi}. We claim that M(xi) is free on the basis {(xiej − xjei)/x2

i | j 6= i}.
In other words, K = Kerα(xi) is free on the basis {ej/xi − (xj/xi)ei/xi | j 6= i}. Let t ∈ K be
given and write

t =
s0
xmi

e0
xi

+ · · ·+ sn
xmi

en
xi

where each sk ∈ Sm and m ≥ 1. Since α(xi)(t) = 0 it follows that s0x0 + · · · + snxn = 0 in S.
Therefore

s0
xmi

(
e0
xi
− x0

xi

ei
xi

)
+ · · ·+ sn

xmi

(
en
xi
− xn
xi

ei
xi

)
= t− (s0x0 + · · ·+ snxn)ei

xm+2
i

= t

So the elements ej/xi − (xj/xi)ei/xi for j 6= i at least generate K as an S(xi)-module. It is easy
to check that they are also linearly independent, and therefore a basis.

There is a canonical isomorphism of A-algebras S(xi)
∼= A[x0/xi, . . . , xn/xi], so ΩS(xi)/A

is
free on the basis {d(xj/xi) | j 6= i} (MAT2,Lemma 9). Therefore we have an isomorphism of
S(xi)-modules

qi : ΩS(xi)/A
−→M(xi)

d(xj/xi) 7→ (xiej − xjei)/x2
i

Composing ϕ∗(q̃i) with the isomorphism ϕ∗((ΩS(xi)/A
)˜) ∼= ΩX/Y |Ui

of (DIFF,Proposition 9) and
the canonical isomorphism ϕ∗(M(xi)˜) ∼= (M˜)|Ui

we have an isomorphism of sheaves of modules
on Ui

Qi : (ΩX/Y )|Ui −→ M̃ |Ui

d(xj/xi)/̇(a/xni ) 7→ xni (xiej − xjei)/̇x2
i a
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To check compatibility of these isomorphisms, it suffices to check they agree on sections z ∈
Γ(W,ΩX/Y ) of the following form: letW ⊆ Ui∩Uj be an affine open subset and z = dOX(Ui)( ˙xk/xi)
where ˙xk/xi ∈ OX(Ui) (using ϑX/Y,Ui/Y ). By Remark 2 this is equal to dOX(W )( ˙xk/xi) (using
ϑX/Y,W/Y ). But in OX(W ) we have ˙xk/xi = ˙xk/xj · ˙xj/xi and therefore

dOX(W )( ˙xk/xi) = ˙xk/xj · dOX(W )( ˙xj/xi) + ˙xj/xi · dOX(W )( ˙xk/xj)

= −xjxk/̇x2
i · dOX(W )( ˙xi/xj) + ˙xj/xi · dOX(W )( ˙xk/xj)

It follows that z = −xjxk/̇x2
i · dOX(Uj)( ˙xi/xj) + ˙xj/xi · dOX(Uj)( ˙xk/xj) (using ϑX/Y,Uj/Y ). Using

these representations it is easy to check that (Qi)W and (Qj)W both give (xiek − xkei)/̇x2
i on

z. This shows that the Qi glue, so there is a unique isomorphism µ : ΩX/Y −→ M ˜ of sheaves
of modules with µ|Ui

= Qi. Composing µ with M ˜ −→ OX(−1)n+1 gives the desired exact
sequence.

Corollary 21. Let A be a ring, Y = SpecA and X = PnA. If X is nonempty, then ΩX/Y is a
locally free sheaf of rank n.

Proof. The open sets Ui = D+(xi) cover X, and by the proof of Theorem 20 we have for each
i a canonical isomorphism of sheaves of modules ΩX/Y |Ui

∼= ϕ∗(M(xi) ˜ ) where M(xi) is a free
S(xi)-module of rank n. Therefore ΩX/Y is a locally free sheaf of rank n.

Definition 9. Let A be a ring, Y = SpecA and let X = PnA for some n ≥ 1. Then the sheaf
modules ωX/Y =

∧n ΩX/Y is invertible (SSA,Corollary 28). We call ωX/Y the canonical sheaf
and just write ωX if there is no chance of confusion.

Corollary 22. Let A be a ring, Y = SpecA and let X = PnA. There is a canonical isomorphism
of sheaves of modules ωX ∼= OX(−n− 1).

Proof. If X is empty this is trivial, so assume otherwise. By Theorem 20 we have a canonical
exact sequence of sheaves of modules

0 −→ ΩX/Y −→ OX(−1)n+1 −→ OX −→ 0

By Corollary 21 the sheaf ΩX/Y is locally free of rank n, so this is a short exact sequence of
locally free sheaves of finite rank. Taking highest exterior powers (SSA,Proposition 31) and using
(SSA,Corollary 35),(AAMPS,Lemma 12) we have a canonical isomorphism

ωX/Y =
n∧

ΩX/Y ∼=
n∧

ΩX/Y ⊗OX ∼=
n+1∧

OX(−1)n+1 ∼= OX(−1)⊗(n+1) ∼= OX(−n− 1)

as required.

3 Nonsingular Varieties

Our principal application of the sheaf of differentials is to nonsingular varieties. Recall that a
variety X over a field k is an integral separated scheme of finite type over k. We say that X is a
nonsingular variety if all the local rings of X are regular. Throughout this section k denotes an
algebraically closed field. The connection between nonsingularity and differentials is given by the
following result.

Theorem 23. Let X be a variety of dimension n over k. Then ΩX/k is a locally free sheaf of
rank n if and only if X is nonsingular.

Proof. We know from (H,Ex3.20) that n = dimX is an integer 0 ≤ n < ∞ and that for any
closed point P ∈ X the local ring B = OX,x has dimension n, field of representatives k, and is a
localisation of a finitely generated k-domain. So it follows from Theorem 4 that B is a regular local
ring if and only if ΩB/k is a free B-module of rank n. By Corollary 10 we have an isomorphism of
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B-modules (ΩX/k)x ∼= ΩB/k. So it follows from (VS,Lemma 29) that X is nonsingular if and only
if (ΩX/k)x is free of rank n for every closed point x ∈ X. But (MRS,Corollary 90), (MOS,Lemma
34) and (VS,Proposition 14) imply that ΩX/k is locally free of rank n if and only if (ΩX/k)x is a
free OX,x-module of rank n for every closed point x, which completes the proof (recall that since
X is of finite type over k, ΩX/k is coherent).

The next result gives a new proof of (H,I.5.3).

Corollary 24. If X is a variety over k, then there is an open dense subset U of X which is
nonsingular.

Proof. If n = dimX then we know from (H,Ex3.20) that the function field K of X has transcen-
dence degree n over k, and it is a finitely generated extension field, which is separably generated
by (H,I.4.8A). Therefore by (MAT2,Corollary 20), ΩK/k is free of rank n. But if ξ is the generic
point of X then by Corollary 10 there is an isomorphism of K-modules ΩK/k ∼= (ΩX/k)ξ. There-
fore combining (MRS,Corollary 90), (MOS,Lemma 34) we see that ΩX/k is free of rank n on some
nonempty open set U ⊆ X. Theorem 23 and Lemma 13 now imply that U is a nonsingular variety
over k.

Remark 8. Let X be an integral scheme and L a locally free sheaf of modules. Since every
nonempty open set contains the generic point, the free OX,x-modules Lx have the same rank for
every x ∈ X, so L is locally free of some rank n ∈ {0, 1, 2, . . . ,∞}.

Proposition 25. Let X be a noetherian scheme and F a coherent sheaf of modules on X. If Fx

can be generated by r elements as an OX,x-module then there is an open neighborhood U of x such
that F |U is generated by r elements of F (U).

Proof. In particular the statement for r = 0 reads that if Fx = 0 then F |U = 0 on some open
neighborhood U of x. The case r = 0 follows directly from (MRS,Corollary 90), (MOS,Lemma 34)
so assume r ≥ 1. Suppose that Fx is generated by germs (V, x1), . . . , (V, xr). We can reduce easily
to the case where V = X, so the xi are global sections of F . Let ui : OX −→ F be the morphism
of sheaves of modules corresponding to xi and let f : OrX −→ F be the induced morphism out
of the coproduct. Set G = Imf and let i : G −→ F be the inclusion. To complete the proof, it
suffices to show that G |U = F |U for some open neighborhood U of x. But G is coherent and by
assumption ix : Gx −→ Fx is an isomorphism. It follows from (MRS,Corollary 91) that i|U is an
isomorphism for some open neighborhood U of x, which is exactly what we wanted to show.

Corollary 26 (Nakayama). Let X be a noetherian scheme, j : Z −→ X a closed immersion
and K a coherent sheaf of modules on X. If j∗K is a locally free sheaf of finite rank r ≥ 0 then
for every z ∈ Z there is an open neighborhood j(z) ∈ U ⊆ X such that K |U is generated by r
global sections.

Proof. By Proposition 25 it is enough to show that Kj(z) can be generated by r elements as an
OX,j(z)-module for every z ∈ Z. Let I be the ideal sheaf of j, and observe that by definition
for z ∈ Z, Ij(z) is a proper ideal of OX,j(z). By assumption (j∗K )z ∼= Kj(z) ⊗OX,j(z) OZ,z ∼=
Kj(z)/Ij(z)Kj(z) is a free OZ,z-module of rank r ≥ 0. It follows from Nakayama’s Lemma that
Kj(z) can be generated by r elements, as required.

It is worth writing down the case r = 0 of the previous result separately.

Lemma 27. Let X be a noetherian scheme, j : Z −→ X a closed immersion and K a coherent
sheaf of modules on X. If j∗K = 0, then there is an open subset U containing Z with K |U = 0.

In this section only, we say that a k-algebra B is wholesome if it is a regular local ring
isomorphic as a k-algebra to the localisation of a finitely generated k-algebra at a maximal ideal.
Observe that if B is wholesome then the residue field of B is a finite extension field of k, and is
therefore equal to k. In other words, k is a field of representatives for B.
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Proposition 28. Let A be a wholesome k-algebra, a ⊆ A an ideal such that B = A/a is also
wholesome. Then the sequence of (MAT2,Theorem 17) is exact on the left also

0 // a/a2 δ // ΩA/k ⊗A B ν // ΩB/k // 0

Proof. Since a regular local ring is a domain (MAT,Theorem 108), a must be prime. It suffices
to show that δ is injective (MAT2,Theorem 17). Set n = dimA, q = dimB, r = ht.a and observe
that since A is Cohen-Macaulay (MAT,Theorem 108) we have n = r + q (MAT,Theorem 90). If
r = 0 then a = 0 and the result is trivial, so assume r ≥ 1. If q = 0 then a is maximal and δ
is an isomorphism by Proposition 1, so we can assume q ≥ 1. Then by (MAT,Theorem 108) (5)
there is a regular system of parameters x1, . . . , xn for A such that a = (x1, . . . , xr). In that case
xr+1 + a, . . . , xn + a is a regular system of parameters for B.

By Corollary 5 the set {dA/k(xi) ⊗ 1 | 1 ≤ i ≤ n} is a B-basis for ΩA/k ⊗A B and similarly
the set {dB/k(xj + a) | r + 1 ≤ j ≤ n} is a B-basis for ΩB/k. So it is clear that Kerν is the free
submodule generated by the set {dA/k(xi)⊗ 1 | 1 ≤ i ≤ r}. By construction a/a2 is generated as
a B-module by the residues of x1, . . . , xr, and since δ(xi + a2) = dA/k(xi) ⊗ 1 is not hard to see
that δ must be injective.

Theorem 29. Let X be a nonsingular variety over k and let j : Y −→ X be an integral closed
subscheme with ideal sheaf K . Then Y is nonsingular if and only if

(1) ΩY/k is locally free, and

(2) The sequence (11) is exact on the left also

0 −→ j∗K −→ j∗ΩX/k −→ ΩY/k −→ 0

Furthermore, in this case, K is locally generated by r = codim(Y,X) elements, and j∗K is a
locally free sheaf of rank r on Y .

Proof. By an integral closed subscheme we mean a closed immersion j : Y −→ X with Y an
integral scheme. There is a bijection between integral closed subschemes of X and irreducible
closed subsets of X. First suppose that (1) and (2) hold. Then for every y ∈ Y we have an exact
sequence of modules over the local noetherian domain OY,y

0 −→ (j∗K )y −→ ΩOX,j(y)/k ⊗OX,j(y) OY,y −→ ΩOY,y/k −→ 0 (13)

By hypothesis X is nonsingular, so Theorem 23 implies that ΩOX,x/k is a free module of rank
n = dimX for every x ∈ X. In particular ΩOY,y/k in the above sequence must be finitely
generated, and therefore by (1) a free module of finite rank q ≤ n. Therefore by Remark 8, ΩY/k
is locally free of finite rank q. It follows from (MAT,Proposition 24) that (j∗K )y must be free of
rank n− q, and so j∗K is locally free of rank n− q (MOS,Proposition 35).

The argument of Corollary 8 applies here to show that q = dimY , which shows that Y is
nonsingular. We showed in (H,Ex.3.20) that r = codim(Y,X) = dimX−dimY = n− q so j∗K is
indeed a locally free sheaf of rank r. Combining Corollary 26 with the fact that K |X\Y = OX |X\Y
we see that every point x ∈ X has an open neighborhood U with K |U generated by r global
sections (observe that r = 0 iff. Y = X, which is iff. K = 0).

Conversely, assume that Y is nonsingular of dimension q = dimY = n− r. Then by Theorem
23, ΩY/k is a locally free sheaf of rank q, so (1) is immediate. By Proposition 18 we have an exact
sequence

j∗K
δ // j∗ΩX/k // ΩY/k // 0

To show that δ is a monomorphism it suffices by (VS,Proposition 17) to show that δz is injective
for every closed point z ∈ Y . Since X,Y are both nonsingular varieties over k the local rings
OX,j(z),OZ,z are wholesome, so injectivity of δz follows from Lemma 10 and Proposition 28. This
establishes (2) and completes the proof.
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Definition 10. Let X be a variety over k. A closed subvariety of X is a closed immersion
Y −→ X of k-schemes where Y is also a variety over k. If Z −→ X is a closed immersion with Z
any integral scheme then Z is closed subvariety of X.

Definition 11. Let f : Y −→ X be a morphism of schemes with ideal sheaf K . The sheaf of
modules f∗K is called the conormal sheaf of Y in X. Its dual NY/X = HomOY

(f∗K ,OY )
is called the normal sheaf of Y in X. If X is a nonsingular variety over k and f : Y −→ X a
nonsingular closed subvariety then by Theorem 29 both f∗K and NY/X are locally free sheaves
of rank r = codim(Y,X) (MRS,Lemma 82).

4 Rational Maps

Throughout this section k denotes an arbitrary field by default. We make some preliminary
comments

• Let X be a projective variety over k. Then X is proper over k, so by (H,Ex4.5) every
valuation ring R of K(X)/k dominates the local ring OX,x for a unique point x ∈ X, called
the center of R. It may be possible for two distinct valuation rings R,S to have the same
center.

• Let X be a nonsingular variety over k. Given a point x ∈ X we say that x has codimension
1 if dimOX,x = 1 (equivalently, the irreducible closed subset Y = {x} has codimension 1 in
X). If x is such a point then OX,x is a discrete valuation ring with quotient field K(X), so
OX,x is a discrete valuation ring of K(X)/k.

• If X is a nonsingular projective variety over k then x 7→ OX,x defines an injective map from
the set of points of codimension 1 to CK(X)/k, the set of all discrete valuations of K(X)/k
(this is surjective if X is a curve (DIV,Proposition 16)).

Proposition 30. Let X,Y be varieties over k with generic points ξ, η and assume X nonsingular
and Y projective. If ρ : K(Y ) −→ K(X) is a morphism of k-algebras and x ∈ X a point of
codimension 1 then there is an open neighborhood U of x and a morphism of k-schemes f : U −→ Y
with f(ξ) = η which induces ρ on the function fields.

Proof. Identify K(Y ) with a subring of K(X). Let x ∈ X be a point of codimension 1 with
corresponding discrete valuation ring OX,x ⊆ K(X). Then OX,x ∩ K(Y ) is a valuation ring of
K(Y )/k which dominates OY,y for a unique y ∈ Y (SPM,Remark 3),(SPM,Proposition 16). So
associated to every point x ∈ X of codimension 1 in X is a canonical point y ∈ Y .

Now assume that such a point x ∈ X and its associated point y ∈ Y are fixed. Let V ∼= SpecA
(A = OY (V )) be an affine open neighborhood of y, so that A is a finitely generated k-domain.
Choose generators g1, . . . , gn for A over k. Write ρ(V, gi) = (Ui, fi) where Ui is the domain of
definition of ρ(V, gi) (see comments preceding (DIV,Definition 2)). By construction OY (V ) ⊆
OY,y as subrings of K(Y ), so ρ(V, gi) ∈ OX,x and therefore x ∈ U = U1 ∩ · · · ∩ Un. Clearly
ρ(OY (V )) ⊆ OX(U) so there is a well-defined morphism of k-algebras A −→ OX(U) sending gi to
fi|U . This induces a morphism of k-schemes f : U −→ SpecA ∼= V −→ Y with f(x) = y, f(ξ) = η
which induces ρ on the function fields.

Lemma 31. Let X,Y be varieties over k and let f, g : X −→ Y be morphisms of k-schemes. If
f, g agree on a nonempty open subset of X then they are equal.

Proof. This is a special case of (SPM,Proposition 10).

Definition 12. Let X,Y be varieties over k. A rational morphism over k ϕ : X −→ Y is an
equivalence class of pairs (U,ϕU ) where U is a nonempty open subset of X and ϕU : U −→ Y
is a morphism of k-schemes. The equivalence relation says that (U,ϕU ) ∼ (V, ϕV ) if ϕU and ϕV
restrict to give the same morphism U ∩ V −→ Y (equivalently by Lemma 31 they agree on some
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nonempty open subset of U ∩V ). If there is no chance of confusion we will say that ϕ is a rational
morphism from X to Y .

A morphism of k-schemes X −→ Y is dominant if it sends the generic point of X to the generic
point of Y (equivalently, the image is dense in Y ). A rational morphism ϕ is dominant if for some
(hence every) representative (U,ϕU ) the morphism ϕU is dominant.

Remark 9. Let ϕ : X −→ Y be a rational morphism of varieties over k and let {(Ui, ϕi)}i∈I
be the set of elements of the equivalence class ϕ. Set U =

⋃
i∈I Ui. By gluing the ϕi it is easy

to see that there is a unique morphism of k-schemes ϕ : U −→ Y with ϕ|Ui = ϕi for every
i ∈ I. Therefore (U,ϕ) is a representative for the rational morphism, and we call U the domain of
definition of the rational morphism. In other words, every rational morphism can be represented
uniquely by a morphism of k-schemes on its domain of definition.

Lemma 32. Let f, g : X −→ Y be dominant morphisms of varieties over k. If f, g induce the
same morphism of k-algebras K(Y ) −→ K(X) then they are equal.

Proof. Suppose that f, g induce the same morphism of k-algebras K(Y ) −→ K(X) and identify
K(Y ) with a subfield of K(X). Given x ∈ X, let R be a valuation ring of K(X) dominating OX,x
(H,6.1A). Since the morphisms OY,f(x) −→ OX,x,OY,g(x) −→ OX,x are local, OX,x dominates
the subrings OY,f(x),OY,g(x) of K(X). By transitivity R also dominates these subrings, so by
(SPM,Proposition 16) we have f(x) = g(x) for every x ∈ X. Given x ∈ X set y = f(x) = g(x)
and observe that the morphisms OY,y −→ OX,x induced by f, g both fit into a commutative
diagram

K(Y ) // K(X)

OY,y

OO

// OX,x

OO

This shows that f, g agree on points and have the same local morphisms at every point, so it is
clear that f = g as required.

Theorem 33. Let X,Y be varieties over an algebraically closed field k with Y quasi-projective.
Then there is a canonical bijection between dominant rational morphisms X −→ Y and morphisms
of k-algebras K(Y ) −→ K(X).

Proof. If ϕ : X −→ Y is a dominant rational morphism, then it induces a well-defined morphism of
k-algebras K(Y ) −→ K(X). We claim that this correspondence is a bijection between dominant
rational morphisms X −→ Y and morphisms of k-algebras K(Y ) −→ K(X). It is injective by
Lemma 32, so it only remains to show that every morphism of k-algebras is induced by some
rational morphism.

By Corollary 24 we can find an open dense subset U ⊆ X which is nonsingular and an open
immersion of k-schemes i : Y −→ Z where Z is a projective variety over k. Given a morphism of
k-algebras ρ : K(Y ) −→ K(X) there is an induced morphism of k-algebras ρ′ : K(Z) ∼= K(Y ) −→
K(X) ∼= K(U). Set n = dimX,m = dimY and let ξ, η, η′ be the generic points of X,Y, Z
respectively (clearly i(η) = η′). We divide into cases

Case m = 0, n = 0. By (VS,Corollary 12), X,Y are closed points and the structural morphisms
X −→ Speck, Y −→ Speck are isomorphisms. So there is precisely one dominant rational
morphism X −→ Y (the unique isomorphism of k-schemes) and precisely one morphism of
k-algebras K(Y ) −→ K(X) (which is an isomorphism), so the result is true in this case.

Case m = 0, n > 0. It follows from (VS,Corollary 12) that ξ is a closed point of X but η is
not a closed point of Y , so there can exist no dominant rational morphisms X −→ Y
(VS,Corollary 23). Since n = tr.deg.K(Y )/k we have K(Y ) 6= k and so there can exist no
k-algebra morphism K(Y ) −→ k, which proves the result in this case.
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With these cases out of the way, we can assume m > 0. As we observed in comments following
(DIV,Definition 2), the nonsingular variety U must admit a prime divisor (since it can’t be a
closed point) and therefore a point x ∈ U of codimension 1. By Proposition 30 there is an open
neighborhood x ∈ W ⊆ U and a morphism of k-schemes f : W −→ Z with f(ξ) = η′ which
induces ρ′ on the function fields. If we set W ′ = f−1Y then f |W ′ factors uniquely through i, with
factorisation f ′ : W ′ −→ Y . Then f ′ is a dominant morphism of k-schemes which induces ρ on
the function fields, which shows that every morphism of k-algebras is induced by some dominant
rational morphism and completes the proof.

Lemma 34. Let X,Y be varieties over a field k with X nonsingular and Y projective. If ϕ :
X −→ Y is a dominant rational morphism with domain of definition V ⊂ X and Z = X \V , then
codim(Z,X) ≥ 2.

Proof. Let ϕ : X −→ Y be a dominant rational morphism with proper domain of definition
V ⊂ X. Since V is nonempty we can exclude the case codim(Z,X) = 0 (FPOS,Proposition 2)(v),
(H,Ex1.10d). It is now enough to show that codim(Z,X) 6= 1, and so by (FPOS,Proposition 2)(iv)
it suffices to show that if z ∈ Z then dimOX,z 6= 1. That is, we have to show that V contains every
point of X of codimension one. But this follows immediately from Proposition 30 and Lemma
32.

Definition 13. Let ϕ : X −→ Y, ψ : Y −→ Z be dominant rational morphisms of varieties
over k, represented by pairs (U,ϕU ) and (V, ψV ) respectively. Let ϕ′U be the induced morphism
ϕ−1
U V −→ V . Then (ϕ−1

U V, ψV κ) is a dominant rational morphism X −→ Z. This defines the
category of varieties over k and dominant rational morphisms. If a dominant rational morphism
ϕ : X −→ Y is an isomorphism in this category, we call it a birational equivalence and say that
X,Y are birationally equivalent (or just birational).

Definition 14. A variety X over k is rational if it is birationally equivalent to Pnk for some n ≥ 1.
This property is stable under isomorphism of varieties over k.

Proposition 35. Let ϕ : X −→ Y be a dominant rational morphism of varieties over k repre-
sented by a morphism of k-schemes ϕU : U −→ Y . Then ϕ is a birational equivalence in the sense
of Definition 13 if and only ϕU is a birational morphism in the sense of (BU,Definition 3).

Proof. Suppose that there is a dominant rational morphism ψ : Y −→ X represented by (V, ψV )
with ϕψ = 1 and ψϕ = 1 as rational morphisms. In particular for x ∈ ϕ−1

U V we have ψV ϕU (x) = x
and for y ∈ ψ−1

V U we have ϕUψV (x) = x. Let W be the nonempty open subset ψ−1
V (ϕ−1

U V ) of
ψ−1
V U ⊆ V and W ′ the nonempty open subset ϕ−1

U (ψ−1
V U) of ϕ−1

U V ⊆ U . It is not difficult to
check that ϕ−1

U W = W ′ and ψ−1
V W ′ = W and therefore the morphism of k-schemes ϕ−1

U W −→W
induced by ϕU is an isomorphism, which shows that ϕU is birational in the sense of (BU,Definition
3).

Conversely, suppose that there exists a nonempty open subset W ⊆ Y with the induced
morphism σ : ϕ−1

U W −→ W an isomorphism of schemes. Set W ′ = ϕ−1
U W and let τ : W −→ W ′

be the inverse, τ ′ the composite of τ with the inclusion W ′ −→ X. Then it is not hard to see that
(W, τ ′), (W ′, ϕU |W ′) are mutually inverse dominant rational morphisms. Since (W ′, ϕU |W ′) =
(U,ϕU ), this shows that ϕ is a birational equivalence in the sense of Definition 13.

Corollary 36. Let X,Y be quasi-projective varieties over an algebraically closed field k. Then
the following conditions are equivalent

(i) X,Y are birationally equivalent.

(ii) There are nonempty open subsets U ⊆ X,V ⊆ Y with U ∼= V as varieties over k.

(iii) There is an isomorphism of k-algebras K(Y ) ∼= K(X).

Proof. (i) ⇔ (ii) follows from Proposition 35 (in fact we only need X,Y to be varieties over an
arbitrary field k) while (i) ⇔ (iii) follows from Theorem 33.
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Corollary 37. Let X,Y be varieties over an algebraically closed field k (in the classical sense).
Then X,Y are birational if and only if t(X), t(Y ) are birational.

Remark 10. Let X be a quasi-projective variety of dimension r ≥ 1 over an algebraically closed
field k. Then X is rational if and only if X is birationally equivalent to Pr.

5 Applications

Throughout this section k denotes an algebraically closed field.

Definition 15. Let X be a nonsingular variety over k. We call TX/k = HomOX
(ΩX/k,OX) the

tangent sheaf of X over k and just write TX if there is no chance of confusion. If n = dimX
then TX/k is a locally free sheaf of rank n by Theorem 23 and (MRS,Lemma 82). We call
ωX/k =

∧n ΩX/k the canonical sheaf and just write ωX if there is no chance of confusion. This is
an invertible sheaf (SSA,Corollary 28). If X is projective then we define the geometric genus of
X to be pg = rankkΓ(X,ωX/k), which is a finite nonnegative integer (H,5.19).

Lemma 38. Let X be a nonsingular variety over k and U ⊆ X a nonempty open subset. Then
there is a canonical isomorphism of sheaves of modules on U

ζ : ωU/k −→ ωX/k|U
˙a1/s1 ∧̇ · · · ∧̇ ˙a1/s1 7→ ˙a1/s1 ∧̇ · · · ∧̇ ˙a1/s1

Proof. If X has dimension n then so does U , by (H,Ex.3.20). Using (SSA,Proposition 22) and
Lemma 13 we have an isomorphism of sheaves of modules

ωX/k|U = (
n∧

ΩX/k)|U ∼=
n∧

(ΩX/k|U ) ∼=
n∧

ΩU/k = ωU/k

as required.

Remark 11. Let f : X −→ Y be a morphism of nonsingular varieties over k. Suppose that
X,Y are both of the same dimension n. The composite f∗(

∧n ΩY/k) ∼=
∧n(f∗ΩY/k) −→

∧n ΩX/k
defines a canonical morphism of sheaves of modules on X (SSA,Proposition 29)

ωf/k : f∗ωY/k −→ ωX/k

[Q, ˙a1/s1 ∧̇ · · · ∧̇ ˙an/sn] ⊗̇ 1 7→ u(a1)/̇φ(s1) ∧̇ · · · ∧̇ u(an)/̇φ(sn)

where V ⊆ Y,U ⊆ f−1V are affine, ai ∈ ΩOY (V )/k, si ∈ OY (V ), φ : OY (V ) −→ OX(U) the canon-
ical morphism of k-algebras, u : ΩOY (V )/k −→ ΩOX(U)/k the induced morphism of k-modules. If
f is an isomorphism then by Remark 4 both ωf/k and the adjoint partner ω̂f/k : ωY/k −→ f∗ωX/k
are isomorphisms of sheaves of modules. Therefore isomorphic nonsingular projective varieties
over k have the same geometric genus.

Remark 12. Let f : X −→ Y be a morphism of nonsingular varieties over k. Suppose that
X,Y have the same dimension n. If W ⊆ Y is a nonempty open subset with induced morphism
g : f−1W −→W then we claim that the following diagram commutes

(f∗ωY/k)|f−1W

ωf/k|f−1W //

��

ωX/k|f−1W

��
g∗(ωW/k) ωg/k

// ωf−1W/k

ωY/k|W

��

bωf/k|W // (f∗ωX/k)|W

��
ωW/k bωg/k

// g∗(ωf−1W/k)

(14)

one checks this by reducing to special sections.
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Theorem 39. Let X,Y be two birationally equivalent nonsingular projective varieties over k.
Then pg(X) = pg(Y ).

Proof. Let ϕ : X −→ Y be a birational equivalence represented by a dominant morphism of k-
schemes f : V −→ Y on its domain of definition V . By Proposition 35 there is a nonempty open
subsetW ⊆ Y such that the induced morphism f−1W −→W is an isomorphism of k-schemes. It is
therefore clear that X,Y have the same dimension n so there is a canonical morphism of sheaves of
modules ωY −→ f∗ωV . In fact commutativity of (14) implies that the following diagram commutes

Γ(W,ωY ) //

��

Γ(f−1W,ωV )

��
Γ(W,ωW ) +3 Γ(f−1W,ωf−1W )

Therefore Γ(W,ωY ) −→ Γ(f−1W,ωV ) is an isomorphism. From commutativity of the following
diagram and (PM,Lemma 20)(iv) we conclude that there is an injective morphism of k-modules
Γ(Y, ωY ) −→ Γ(V, ωV ) and therefore rankkΓ(Y, ωY ) ≤ rankkΓ(V, ωV )

Γ(Y, ωY )

��

// Γ(V, ωV )

��
Γ(W,ωY ) +3 Γ(f−1W,ωV )

We claim that the canonical morphism of k-modules Γ(X,ωX) −→ Γ(V, ωX) ∼= Γ(V, ωV ) is a
bijection. It is injective by (PM,Lemma 20)(iv), so it suffices to show that it is surjective. If
V = X this is trivial, so assume V is proper. Then by Lemma 34 we have codim(Z,X) ≥ 2 where
Z = X \ V . To show that Γ(X,ωX) −→ Γ(V, ωX) is surjective it suffices to show that every point
x ∈ X has an affine open neighborhood U for which the restriction map Γ(U, ωX) −→ Γ(U∩V, ωX)
is surjective.

Given a point x ∈ X let U be an affine open neighborhood of x small enough that ωX |U ∼=
OX |U . We have to show that the restriction map Γ(U,OX) −→ Γ(U ∩ V,OX) is surjective. So
we have reduced to the following algebra problem: A is a regular noetherian domain, V a proper
nonempty open subset of X = SpecA whose complement Z has codimension ≥ 2 in X and we
want to show that Γ(X,OX) −→ Γ(V,OX) is a bijection. Since codim(Z,X) ≥ 2, every prime
p ⊆ A of height 1 must belong V , and therefore Γ(V,OX) ⊆

⋂
ht.p=1OX,p as subrings of K(X).

By (MAT,Theorem 108), A is normal so we have A =
⋂
ht.p=1Ap in the quotient field K of A

(MAT,Theorem 112). Identifying K with K(X) and A with Γ(X,OX) we see that Γ(X,OX) =
Γ(V,OX) as subrings of K(X), which implies that the restriction map Γ(X,OX) −→ Γ(V,OX) is
bijective, as required.

Returning to the original problem, we have established that there is a canonical isomorphism
of k-modules Γ(X,ωX) −→ Γ(V, ωV ), and therefore

pg(X) = rankkΓ(X,ωX) = rankkΓ(V, ωV ) ≥ rankkΓ(Y, ωY ) = pg(Y )

We obtain the reverse inclusion by symmetry, and thus conclude that pg(X) = pg(Y ).

Example 1. LetX = Pnk , which is a nonsingular variety of dimension n over k. By Corollary 22 we
have ωX/k ∼= OX(−n−1). Since OX(`) has no global sections for ` < 0 (AAMPS,Proposition 15),
we find that pg(Pnk ) = 0 for any n ≥ 1. We conclude from Theorem 39 that if X is a nonsingular
projective rational variety over k, then pg(X) = 0. This fact will allow us to demonstrate the
existence of nonrational varieties in all dimensions.

Proposition 40. Let f : Y −→ X be a nonsingular closed subvariety of codimension r ≥ 1 in a
nonsingular variety X over k. Then there is a canonical isomorphism of sheaves of modules

ωY ∼= f∗ωX ⊗
r∧

NY/X
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Proof. Let K be the ideal sheaf of f . By Theorem 29 we have an exact sequence

0 −→ f∗K −→ f∗ΩX/k −→ ΩY/k −→ 0

Set n = dimX, q = dimY so that r = n− q. Taking highest exterior powers (SSA,Proposition 31)
and using (SSA,Proposition 29) we have a canonical isomorphism of sheaves of modules

f∗ωX ∼=
n∧

(f∗ΩX/k) ∼=
r∧

(f∗K )⊗
q∧

ΩY/k =
r∧

(f∗K )⊗ ωY

Tensoring both sides with the dual of
∧r(f∗K ) and using the canonical isomorphism

r∧
(f∗K )∨ ∼=

( r∧
(f∗K )

)∨
of (SSA,Proposition 32) we have a canonical isomorphism

f∗ωX ⊗
r∧

NY/X = f∗ωX ⊗
r∧

(f∗K )∨ ∼= f∗ωX ⊗
( r∧

(f∗K )
)∨

∼=
( r∧

(f∗K )
)∨ ⊗ r∧

(f∗K )⊗ ωY ∼= ωY

as required.
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6 Some Local Algebra

See (MAT,Definition 15) and (MAT,Definition 16) for the definition of a Cohen-Macaulay ring.

Theorem 41. Let (A,m) be a noetherian local ring. Then

(a) If A is regular, then it is Cohen-Macaulay.

(b) If A is Cohen-Macaulay, then any localisation of A at a prime ideal is Cohen-Macaulay.

(c) If A is Cohen-Macaulay, then a set of elements x1, . . . , xr ∈ m is an A-regular sequence if
and only if dim(A/(x1, . . . , xr)) = dimA− r.

(d) If A is Cohen-Macaulay, and x1, . . . , xr ∈ m is an A-regular sequence, then A/(x1, . . . , xr)
is Cohen-Macaulay.

Proof. (a) (MAT,Theorem 108). (b) (MAT,Corollary 87). (c) follows by combining (MAT,Theorem
90) (i), (iii). (d) (MAT,Corollary 86).

Theorem 42 (Serre). A nonzero noetherian ring A is normal if and only if it satisfies the
following two conditions for every prime ideal p ⊆ A

(1) If ht.p ≤ 1 then Ap is regular (hence a field or a discrete valuation ring).

(2) If ht.p ≥ 2 then depth(Ap) ≥ 2.

Proof. This is the content of (MAT,Theorem 116).

Definition 16. A scheme X is Cohen-Macaulay if all of its local rings are Cohen-Macaulay. This
property is stable under isomorphism. A nonsingular scheme is Cohen-Macaulay.

Lemma 43. Let X be a scheme locally of finite type over a field. Then X is Cohen-Macaulay if
and only if OX,z is Cohen-Macaulay for every closed point z ∈ X.

Proof. This follows from (VS,Corollary 16) and (MAT,Corollary 87).

Definition 17. Let X be a nonsingular variety over a field k. If Y is a closed subvariety of X
then we say that Y is a local complete intersection in X if the ideal sheaf J of Y −→ X can be
locally generated by r = codim(Y,X) elements.

Example 2. If k is algebraically closed and Y nonsingular, then it is a local complete intersection
in X by Theorem 29.

Proposition 44. Let Y be a local complete intersection subscheme of a nonsingular variety X
over a field k. Then

(a) Y is Cohen-Macaulay.

(b) Y is normal if and only if it is regular in codimension 1.

Proof. (a) Set n = dimX,m = dimY and r = codim(Y,X) = n −m. If r = 0 this is trivial, so
assume r > 0. Let J be the ideal sheaf of the closed immersion j : Y −→ X. For each closed
point y ∈ Y there is a ring isomorphism OY,y ∼= OX,j(y)/Jj(y). Since y is a closed point, we have
(MAT,Theorem 90)

ht.Jj(y) = dimOX,j(y) − dim(OX,j(y)/Jj(y)) = n−m = r

By assumption Jj(y) can be generated by elements x1, . . . , xr, and by (MAT,Theorem 90) this
must be a regular sequence. It follows from Theorem 41(d) that OY,y is Cohen-Macaulay. There-
fore by Lemma 43 the scheme Y is Cohen-Macaulay

(b) We already know that normal implies regular in codimension 1. Suppose that Y is regular
in codimension 1 and let y ∈ Y be given. Find an affine open neighborhood U ∼= SpecA of y, so
A is a Cohen-Macaulay domain with Ap regular for every prime ideal p of height 1. We have to
show that A is normal, which follows from Theorem 42.

22

file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"VarietiesAsSchemes.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"

	Kähler Differentials
	Sheaves of Differentials
	Nonsingular Varieties
	Rational Maps
	Applications
	Some Local Algebra

