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One feature which clearly distinguishes the theory of schemes from the older theory of varieties
is the possibility of having nilpotent elements in the structure sheaf of a scheme. In particular,
if Y is a closed subvariety of a variety X, defined by a sheaf of ideals I , then for any n ≥ 1 we
can consider the closed subscheme Yn defined by the nth power I n of the sheaf of ideals I . For
n ≥ 2, this is a scheme with nilpotent elements. It carries information about Y together with the
infinitesimal properties of the embedding of Y in X.
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1 Inverse Limits

Definition 1. A preorder is a nonempty small category in which every morphism set has at most
one element. This is equivalent to giving a set with a binary relation ≤ which is reflexive and
transitive and we freely identify the two, writing i ≤ j if Hom(i, j) 6= ∅. A directed set is a
preorder with the property that for every i, j there is k with i ≤ k and j ≤ k.

If I is a directed set, a direct system over I in a category A is a functor I −→ A. This consists
of the following data: an assignment of an object Ai of A to every object i ∈ I, and a morphism
πij : Ai −→ Aj to every relation i ≤ j with the property that πii = 1 for all i and πjkπij = πik
for all i ≤ j ≤ k. A direct limit of this direct system is a colimit of the functor, often denoted
lim←−i∈I Ai.

Definition 2. An inverse directed set is a preorder with the property that for every i, j there
is k with k ≤ i and k ≤ j (that is, its dual is a directed set). If I is an inverse directed set, a
inverse system over I in a category A is a functor I −→ A. This consists of the following data:
an assignment of an object Ai of A to every object i ∈ I, and a morphism πij : Ai −→ Aj to
every relation i ≤ j with the property that πii = 1 and πjkπij = πik for all i ≤ j ≤ k. An inverse
limit of this inverse system is a limit of the functor, often denoted lim←−i∈I Ai.

Definition 3. If I is an inverse directed set then a nonempty subset J ⊆ I is called final if for
every i ∈ I there is j ∈ J with j ≤ i. The set J with the induced order is also an inverse directed
set. Let A be a category, {Ai, πij}i∈I an inverse system over I and {Aj , πjk}j∈J the restricted
inverse system over J . If the morphisms ρj : A −→ Aj are a limit for the latter inverse system,
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then define ρi : A −→ Ai for arbitrary i ∈ I by choosing j ∈ J with j ≤ i and composing ρj with
πij : Ai −→ Aj . This doesn’t depend on the j ∈ J chosen, and the morphisms ρi : A −→ Ai are
easily checked to be a limit. In other words, lim←−j∈J Aj = lim←−i∈I Ai.

Let {Ai, πij}i∈I be an inverse system of sets and define

A = {(ai) ∈
∏
i∈I

Ai |πij(ai) = aj for all i ≤ j}

Observe that this set may be empty. The projections induce functions pi : A −→ Ai for each i ∈ I
and it is not hard to check that this is a limit for the inverse system, so A = lim←−i∈I Ai and we
call it the canonical inverse limit. If the Ai are abelian groups (resp. rings) and the πij are group
(resp. ring) morphisms, then A is a subgroup (resp. subring) of the product and the pi are an
inverse limit of abelian groups (resp. rings). If the Ai are modules over a ring R and the πij are
R-module morphisms then A is an R-submodule of the product and the pi are an inverse limit of
modules.

Definition 4. Let I be the inverse directed set consisting of the integers n ≥ 1 with a single
morphism m −→ n if and only if n ≤ m (so all arrows are directed towards 1). Throughout
this section, an inverse system of abelian groups (resp. rings, modules) is an inverse system
over I in Ab (resp. Rng, RMod). This is a collection of abelian groups An, n ≥ 1 together with
morphisms of abelian groups ϕm,n : Am −→ An for n ≤ m with the property that ϕn,tϕm,n = ϕm,t
for t ≤ n ≤ m (similarly for rings and modules). We will denote the inverse system by (An, ϕm,n)
or just (An) with the ϕ understood. The inverse limit of (An) is the canonical inverse limit defined
above

lim←−An = {(an) ∈
∏
n≥1

An |ϕm,n(am) = an for all m ≥ n}

= {(an) ∈
∏
n≥1

An |ϕn+1,n(an+1) = an for all n ≥ 1}

A morphism of inverse systems φ : (An) −→ (Bn) is a family of morphisms φn : An −→ Bn
such that ϕBm,nφm = φnϕ

A
m,n for all m ≥ n. This defines the functor category [I,Ab] (resp.

[I,Rng], [I,RMod]). Such a morphism of inverse systems induces a morphism of the direct limits
lim←−An −→ lim←−Bn defined by (an) 7→ (φn(an)). This defines a functor lim←−(−) : [I,Ab] −→ Ab
(similarly for rings, modules).

In the abelian categories [I,Ab], [I,RMod] a sequence

0 // (An)
φ // (Bn)

ψ // (Cn) // 0

is exact if and only if for every n ≥ 1 the following sequence is exact

0 // An
φn // Bn

ψn // Cn // 0

The functor lim←−(−) has a left adjoint, and therefore preserves monomorphisms and all limits. In
particular, the following sequence of direct limits is exact

0 −→ lim←−An
lim←−φ

// lim←−Bn
lim←−ψ

// lim←−Cn

to give a criterion for exactness of lim←− on the right, we make the following definition.

Definition 5. An inverse system (An, ϕm,n) satisfies the Mittag-Leffler condition (ML) if for each
n ≥ 1 there exists n0 ≥ n such that Imϕi,n = Imϕj,n whenever i, j ≥ n0. In that case for n ≥ 1
let A′

n ⊆ An denote the stable image Imϕm,n for large m. For m ≥ n let ϕ′m,n : A′
m −→ A′

n be
the induced morphism. It is clear that (A′

n, ϕ
′
m,n) is an inverse system with all ϕ′m,n surjective.

The canonical morphism of inverse systems (A′
n) −→ (An) induces an isomorphism of the inverse

limits lim←−A
′
n −→ lim←−An. In particular the image of the projection lim←−An −→ An is contained in

A′
n.
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Definition 6. Let X be a topological space and C the category of sheaves of abelian groups on X.
Then inverse limits exist in C. Let (Fn, ϕm,n) be an inverse system in C over the canonical inverse
directed set I defined above. That is, Fn is a sheaf of abelian groups and ϕm,n : Fm −→ Fn a
morphism of sheaves of abelian groups with ϕm,m = 1 and ϕn,tϕm,n = ϕm,t. Then F = lim←−Fn

is the pointwise inverse limit, Γ(U,F ) = lim←−Γ(U,Fn) with the induced restriction and pointwise
projections. If (X,OX) is a ringed space and (Fn, ϕm,n) an inverse system in Mod(X) then we
define the canonical inverse limit lim←−Fn in the same way.

Definition 7. Let X be a topological space. The category C of sheaves of rings on X is complete
and cocomplete. Limits are constructed pointwise, so if (On, ϕm,n) is an inverse system in C then
the pointwise direct limit Γ(U,O) = lim←−Γ(U,On) defines a sheaf of rings on X which is the direct
limit of the inverse system in C.

2 Completion

Throughout this note group means abelian group and ring means commutative ring. See (TR,Definition
1), (TR,Definition 3) for the definition of topological groups and rings.

Definition 8. Let A be a topological group. A Cauchy sequence in A is a sequence (an)n≥1 of
elements of A with the property that for every open neighborhood U of 0, there exists N ≥ 1
such that for all µ, ν ≥ N we have aµ − aν ∈ U . Two Cauchy sequences (an), (bn) are equivalent
if the sequence (an − bn) converges to zero (that is, for every open neighborhood U of 0 there is
N ≥ 1 such that for µ ≥ N , aµ − bµ ∈ U). Let Ac denote the set of equivalence classes of Cauchy
sequences under this relation, which is an abelian group with (an) + (bn) = (an + bn). Sending
a ∈ A to the constant sequence (a) defines a morphism of abelian groups φ : A −→ Ac. If U ⊆ A
is open then we say a Cauchy sequence (an)n≥1 is eventually in U if there exists N ≥ 1 such that
aµ ∈ U for all µ ≥ N .

Definition 9. Let X be a topological space. If x ∈ X then a fundamental system of neighborhoods
of x is a nonempty set S of open neighborhoods of x with the property that if U is open and
x ∈ U , then there is V ∈ S with V ⊆ U .

Definition 10. A linear topological group is a topological group A which admits a fundamental
system of neighborhoods of 0 consisting of subgroups (necessarily open). A linear topological ring
is a topological ring A which admits a fundamental system of neighborhoods of 0 consisting of
ideals (necessarily open).

Lemma 1. Let A be a topological group, U an open subgroup and (an), (bn) equivalent Cauchy
sequences. If one of these sequences is eventually in U then so is the other.

Proof. Suppose that N ≥ 1 is such that aµ ∈ U for all µ ≥ N . We may also assume N is so large
that bµ − aµ ∈ U for all µ ≥ N . It is therefore clear that bµ ∈ U for all µ ≥ N , as required.

Definition 11. Let A be a topological group, φ : A −→ Ac the canonical morphism of abelian
groups. We say that A is separated if φ is injective (equivalent conditions: (a) the topology on A
is Hausdorff (b) if a Cauchy sequence has a limit, it is unique). We say that A is complete if φ is
surjective (equivalently, every Cauchy sequence in A converges).

Definition 12. Let A be an abelian group and suppose we have a sequence of subgroups

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · (1)

We say a nonempty subset U ⊆ A is open if and only if for every x ∈ U there is n ≥ 0 with
x+An ⊆ U . In particular U is a neighborhood of 0 if and only if it contains some An. This makes
A into a topological group. A sequence (an)n≥1 is Cauchy iff. for every n ≥ 0 there exists N ≥ 1
such that for all µ, ν ≥ N we have aµ − aν ∈ An. Two Cauchy sequences (an), (bn) are equivalent
iff. for every n ≥ 0 there is N ≥ 1 such that for µ ≥ N , aµ − bµ ∈ An.
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Lemma 2. Let A be a topological ring. Then the group Ac of Cauchy sequences becomes a ring
with product (an)(bn) = (anbn). The canonical map A −→ Ac is a morphism of rings.

Proof. Let (an), (bn) be Cauchy sequences. The first task is to show that (anbn) is Cauchy. Let an
open neighborhood U of 0 be given. Let P be an open neighborhood of 0 with P +P +P +P ⊆ U .
Let V ⊆ P be an open neighborhood of 0 with V ·V ⊆ P and find N ≥ 1 such that for all µ, ν ≥ N
we have aµ−aν ∈ V, bµ−bν ∈ V . Let W be an open neighborhood of 0 with aNW ⊆ V, bNW ⊆ V .
Let M ≥ N be such that for all µ, ν ≥M we have aµ − aν ∈W, bµ − bν ∈W . Then for µ, ν ≥M
we have

aµbµ − aνbν = aµbµ − aµbν + aµbν − aνbν
= aµ(bµ − bν) + bν(aµ − aν)
= (aµ − aN )(bµ − bν) + (bν − bN )(aµ − aν) + aN (bµ − bν) + bN (aµ − aν)

each summand belongs to P , and therefore aµbµ−aνbν ∈ U as required. Using similar arguments
one checks that this product is well-defined on equivalence classes of of Cauchy sequences. It is
then not difficult to check that this definition makes Ac into a ring.

Definition 13. Let A,B be topological groups. A morphism of topological groups φ : A −→ B
is a continuous morphism of abelian groups. We denote by AbTop the category of topological
groups. If (an)n≥1 is a Cauchy sequence in A then (φ(an))n≥1 is a Cauchy sequence in B, and
this defines a morphism of abelian groups φc : Ac −→ Bc fitting into the following commutative
diagram

A

��

φ // B

��
Ac

φc
// Bc

This defines a functor AbTop −→ Ab. A morphism of topological rings φ : A −→ B is a
continuous morphism of rings. We denote by RngTop the category of topological rings. In this
case φc : Ac −→ Bc is a morphism of rings, so we have a functor RngTop −→ Rng.

Definition 14. Let A be a topological group. If U ⊆ A is an open subgroup then U is a
topological group and the inclusion U −→ A is a morphism of topological groups. We have an
induced morphism of groups U c −→ Ac which is clearly injective. The image of this morphism is
the set of all Cauchy sequences in A that are eventually in U .

Now suppose that A is a linear topological group, and let {Uλ}λ∈Λ be the set of all open
subgroups of A. By assumption this is a fundamental system of neighborhoods of 0. Then the set
{U cλ}λ∈Λ of subgroups of Ac satisfies the conditions of (TR,Proposition 2) so Ac becomes a linear
topological group in a canonical way. The morphism of abelian groups A −→ Ac is continuous,
and if φ : A −→ B is a continuous morphism of linear topological groups then φc : Ac −→ Bc

is also continuous. If LAbTop denotes the category of linear topological groups then we have a
functor (−)c : LAbTop −→ LAbTop.

Definition 15. Let A be a linear topological ring. If a ⊆ A is an open ideal then the subgroup ac

of the ring Ac is an ideal. The set {aλ}λ of all open ideals of A is a final subset of the set of all open
subgroups. Therefore the topology on Ac given in Definition 14 agrees with the topology induced
by the ideals {acλ}λ, and as a consequence Ac is a linear topological ring. The ring morphism
A −→ Ac is continuous.

If φ : A −→ B is a continuous morphism of linear topological rings then φc : Ac −→ Bc is
also continuous. Therefore if LRngTop denotes the category of linear topological rings we have
a functor (−)c : LRngTop −→ LRngTop.

Remark 1. Let A be a linear topological group, i : A −→ Ac the canonical morphism of lin-
ear topological groups. If (an)n≥1 is a Cauchy sequence in A then (i(an))n≥1 is a Cauchy se-
quence in Ac. We claim that it converges to (an)n≥1 (that is, the sequence of Cauchy sequences
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i(a1), i(a2), . . . converges to the Cauchy sequence (an)n≥1). If V is an open neighborhood of
(an)n≥1 then by definition there is an open subgroup U ⊆ A with (an)n≥1 +U c ⊆ V . So it suffices
to show that there exists N ≥ 1 with i(aµ) − (an)n≥1 ∈ U c for all µ ≥ N . Of course this is the
sequence

i(aµ)− (an)n≥1 = (aµ − a1, aµ − a2, . . . , aµ − aµ−1, 0, aµ − aµ+1, . . .)

so we need only make N so large that aµ− aν ∈ U for all µ, ν ≥ N . This shows that the sequence
(i(an))n≥1 converges to (an)n≥1, as claimed.

Lemma 3. Let A be a linear topological group. The linear topological group Ac is separated.

Proof. First we show that Ac is separated, or what is the same, the morphism of abelian groups
Ac −→ (Ac)c is injective. Let (an)n≥1 be a Cauchy sequence in A mapping to zero in (Ac)c. This
implies that for every open subgroup U ⊆ A we have (an)n≥1 ∈ U c. Therefore we can find N ≥ 1
such that aµ ∈ U for all µ ≥ N , which means that (an)n≥1 = 0 in Ac, as required.

Lemma 4. Let φ : A −→ B be a morphism of linear topological groups. Then φc is the unique
morphism of linear topological groups making the following diagram commute

A

i

��

φ // B

j

��
Ac

φc
// Bc

(2)

Proof. Let ψ : Ac −→ Bc be another continuous morphism of abelian groups making the diagram
commute. Let (an)n≥1 be a Cauchy sequence in A. Then in the topological group Ac, the element
(an)n≥1 is the limit of the Cauchy sequence (i(an))n≥1. Therefore ψ((an)n≥1) is a limit of the
Cauchy sequence (ψ(i(an)))n≥1 = (jφ(an))n≥1. But we already know φc((an)n≥1) is a limit for
this Cauchy sequence, and since Ac is separated we conclude that ψ((an)n≥1) = φc((an)n≥1), as
required.

Remark 2. If φ : A −→ B is a morphism of linear topological rings then the morphism of linear
topological rings φc : Ac −→ Bc is the unique morphism of linear topological rings making (2)
commute.

Lemma 5. Let A be a linear topological group. The morphism of linear topological groups i : A −→
Ac is an isomorphism of linear topological groups if and only if A is separated and complete.

Proof. That is, if i : A −→ Ac is an isomorphism of abelian groups, it is also a homeomorphism.
It suffices to show that if U is an open subgroup of A, then i(U) is an open subgroup of Ac.
Suppose we could show that the topological group U were separated and complete. Then the
morphism U −→ U c would be bijective and it would follow that i(U) = U c is open. Since U is
trivially separated, it suffices to show that a Cauchy sequence (un)n≥1 in A with un ∈ U for all
n ≥ 1 must converge to an element of U . Suppose to the contrary that un −→ x, where x /∈ U .
Then the open set x + U must be disjoint from U , so it is impossible for (un)n≥1 to converge to
x. Therefore x ∈ U and the proof is complete.

Definition 16. Let A be a ring and a ⊆ A an ideal. Then we have a sequence of ideals

A ⊇ a ⊇ a2 ⊇ · · · ⊇ an ⊇ · · ·

With the topology of Definition 12, A is a linear topological ring (TR,Proposition 4) and φ : A −→
Ac is a morphism of linear topological rings. Let M be an A-module and consider the sequence
of subgroups

M ⊇ aM ⊇ a2M ⊇ · · · ⊇ anM ⊇ · · ·
if we give M the topology of Definition 12 then M is a topological left A-module. The completion
M c becomes a Ac-module via (an) · (mn) = (an ·mn). This defines an additive functor

(−)c : AMod −→ AcMod
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where for a morphism of A-modules f : M −→ N the morphism of Ac-modules fc : M c −→ N c is
defined by (an) 7→ (f(an)). This functor preserves finite products (equivalently, finite coproducts)
and epimorphisms.

Let A be a topological abelian group whose topology is defined by a sequence of subgroups
(1). Then for integers m,n ≥ 1 with m ≥ n there is a canonical epimorphism of abelian groups
ϕm,n : A/Am −→ A/An. It is clear that (A/An, ϕm,n) is an inverse system.

Fix m ≥ 1 and a Cauchy sequence α = (an) in A. The residues a1+Am, a2+Am, · · · eventually
stabilise to some element σm(α) ∈ A/Am, and this gives a well-defined morphism of abelian groups
σm : Ac −→ A/Am. This induces an isomorphism of abelian groups

θ : Ac −→ lim←−A/An
α 7→ (σn(α))

In particular if A is a ring and a ⊆ A an ideal, with An = an for n ≥ 1 then form ≥ n the morphism
A/am −→ A/an is a morphism of rings, so lim←−A/a

n acquires a canonical ring structure. It is not
hard to check that we have an isomorphism of rings

θ : Ac −→ lim←−A/a
n

α 7→ (σn(α))

The ring morphisms A −→ A/an induce a morphism of rings A −→ lim←−A/a
n defined by a 7→

(a+ an) fitting into the following commutative diagram

A //

##GGGGGGGGG Ac

θ
��

lim←−A/a
n

If M is an A-module with An = anM then lim←−M/anM becomes a lim←−A/a
n-module via (rn+an) ·

(xn + anM) = (rn · xn + anM). If f : M −→ N is a morphism of A-modules then (xn + anM) 7→
(f(xn)+anM) defines a morphism of lim←−A/a

n-modules lim←−M/anM −→ lim←−N/a
nN . In this case

we have an isomorphism of abelian groups compatible with the ring isomorphism Ac ∼= lim←−A/a
n

θ : M c −→ lim←−M/anM

α 7→ (σn(α))

Moreover this isomorphism is natural in M , in the sense that if f : M −→ N is a morphism of
A-modules then the following diagram commutes

M c

fc

��

+3 lim←−M/anM

��
N c +3 lim←−N/a

nN

Definition 17. Let A be a ring, a ⊆ A an ideal. Then we denote the ring lim←−A/a
n by Â and

call it the a-adic completion of A. So there is a canonical ring morphism A −→ Â. If M is an
A-module then the Â-module lim←−M/anM is called the a-adic completion of M and is denoted M̂ .
Completion defines an additive functor

(̂−) : AMod −→ ÂMod

There is a canonical morphism of A-modules M −→ M̂ defined by m 7→ (m+anM). This induces
a morphism of Â-modules M ⊗A Â −→ M̂ natural in M .
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Theorem 6. Let A be a noetherian ring and a an ideal of A. Then with all completions a-adic,
we have

(a) Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an exact sequence of finitely generated A-modules.
Then the sequence 0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0 of Â-modules is exact.

(b) If M is finitely generated then M ⊗A Â −→ M̂ is an isomorphism.

(c) Â is a flat noetherian A-algebra.

(d) If b is an ideal of A then b̂ −→ Â is a monomorphism with image bÂ. A sequence (an) ∈
lim←−A/a

n belongs to bÂ if and only if an ∈ (b + an)/an for n ≥ 1. If there is no chance of
confusion we denote this ideal simply by b̂.

(e) For any ideal b and n ≥ 1 we have b̂n = b̂n and the canonical ring morphism A/an −→ Â/ân

is an isomorphism.

(f) Let b be an ideal with b ⊇ an for some n ≥ 1. Then the isomorphism A/an ∼= Â/ân identifies
the ideals b/an and b̂/ân. Therefore we have a canonical ring isomorphism A/b ∼= Â/b̂ for
any ideal b open in the a-adic topology.

(g) The ideal â is contained in the Jacobson radical of Â. In particular if x ∈ â then 1− x is a
unit. An element y ∈ Â is a unit if and only if the image in Â/â is a unit.

(h) The ring isomorphism Â ∼= Ac is an isomorphism of linear topological rings, where we give
Â the â-adic topology. Therefore Â is separated and complete.

Proof. (a) A & M Chapter 10, Proposition 10.12. (b) A & M Chapter 10, Proposition 10.13. (c) A
& M Chapter 10, Proposition 10.14 and Theorem 10.26. (d) Since b is finitely generated, it follows
from (b), (c) that b̂ −→ Â is a monomorphism with image equal to the image of b ⊗A Â −→ Â,
which is bÂ. It is clear that if a sequence (an) belongs to the ideal bÂ then it must have the stated
form. The converse is not trivial! It is a consequence of the Artin-Rees Lemma (A & M Theorem
10.11 to be precise) that the filtrations anb and an ∩ b of the ideal b have bounded difference.
That is, there exists an integer k ≥ 0 such that an+k ∩ b ⊆ anb for all n ≥ 1.

Given a sequence (bn + an) of Â with bn ∈ b for n ≥ 1 we can replace bn by bn+k for n ≥ 1
without changing the sequence (since bn+k − bn ∈ an by definition). The effect of this is to
reduce to the case where bm − bn ∈ an+k for all m ≥ n. Therefore by construction of k, we have
bm− bn ∈ anb for m ≥ n, which shows that (bn + anb) is a well-defined element of the completion
b̂ = lim←−n b/anb. The image of this element under b̂ −→ Â is our original sequence, so the proof
is complete. (e) These claims follow from A & M Chapter 10, Proposition 10.15. (f) It is clear
that the isomorphism A/an ∼= Â/ân maps the ideal b/an into the ideal b̂/ân. Conversely, let
(bm + am) be a sequence in b̂ with bm ∈ b for m ≥ 1. Using the same trick as in (d) we can
assume that bm − bt ∈ at+n for m ≥ t. Set b = bn and observe that since bm − b = bm − bn ∈ an

(for m ≥ n this is trivial, and for n > m we have bm − bn = −(bn − bm) ∈ am+n ⊆ an) we have
(bm) − (b) = (bm − b) ∈ ân. This shows that every element of the ideal b̂/ân is in the image of
b/an, as required. The other claim now follows easily.

(g) Follows immediately from A & M Proposition 10.15.
(h) Using (d) we see that Ac ∼= Â identifies the ideals bc and b̂ for any open ideal b of A. So

it is clear that Ac ∼= Â is an isomorphism of linear topological rings. We have shown in our A &
M notes that Ac is separated and complete, so the same can be said of Â.

3 Adic Rings

Definition 18. Let A be a topological ring. An element x ∈ A is topologically nilpotent if 0 is a
limit of the sequence (xn)n≥1.
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Definition 19. If A is a linear topological ring and a ⊆ A an ideal, then we say a is an ideal of
definition if a is open and if for each open neighborhood V of 0, there is an integer n > 0 such
that an ⊆ V . We say that a linear topological ring A is preadmissible if there exists an ideal of
definition in A. We say that A is admissible if is preadmissible and if it is separated and complete.

It is clear that if a is an ideal of definition in a linear topological ring A, and b any open ideal
of A, then a ∩ b is also an ideal of definition. The ideals of definition in a preadmissible ring A
form a fundamental system of neighborhoods of 0.

Lemma 7. Let A be a linear topological ring. Then

(i) An element x ∈ A is topologically nilpotent if and only if for each open ideal b of A the
image of x in A/b is nilpotent. The set I of topological nilpotents in A is an ideal.

(ii) Suppose A is preadmissible and that a is an ideal of definition of A. An element x ∈ A is
topologically nilpotent if and only if the image in A/a is nilpotent. The ideal I is the inverse
image of the nilradical of A/a and is an open ideal.

Proof. (i) Immediate from the definitions. To prove (ii) it suffices to remark that for each open
neighborhood V of 0 in A, there exists n > 0 with an ⊆ V . If x ∈ A is such that xm ∈ a, then
xmq ∈ V for q ≥ n, therefore x is topologically nilpotent.

Proposition 8. Let A be a preadmissible ring, a an ideal of definition for A. Then

(i) For an open ideal b of A to be an ideal of definition, it is necessary and sufficient that there
exist n > 0 with bn ⊆ a.

(ii) For x ∈ A to be contained in an ideal of definition, it is necessary and sufficient that x be
topologically nilpotent.

Proof. (i) If bn ⊆ a, then for an open neighborhood V of 0, there exists m such that am ⊆ V ,
therefore bmn ⊆ V . (ii) The condition is clearly necessary. To see it is sufficient, assume that x
is topologically nilpotent. Set b = a +Ax. It is clear that b is an open ideal, and if n ≥ 1 is such
that xn ∈ a then bn ⊆ a and therefore by (a), b is an ideal of definition.

Corollary 9. If A is a preadmissible ring and p an open prime ideal, then p contains every ideal
of definition of A.

Corollary 10. Let A be a preadmissible ring. Then the following properties of an ideal of defini-
tion a are equivalent:

(a) a contains every other ideal of definition (we say it is the largest ideal of definition);

(b) a is not properly contained in any other ideal of definition;

(c) The ring A/a is reduced.

For there to exist an ideal of definition a with these properties, it is necessary and sufficient that
the nilradical of A/b be nilpotent for some ideal of definition b. In that case a is equal to the ideal
I of topological nilpotents of A and is therefore unique.

Proof. It is clear that (a) ⇒ (b). (b) ⇒ (c) If a is maximal among all ideals of definition then
from the proof of Proposition 8 we deduce that a must contain every topological nilpotent of A
and therefore by Lemma 7 the ring A/a must be reduced. (c)⇒ (a) If A/a is reduced then I ⊆ a.
But by Proposition 8 every ideal of definition is contained in I. This implies (a) and also shows
that a = I.

We have already shown that if an ideal of definition a with these equivalent properties exists,
then A/a has nilpotent nilradical and a = I. Now suppose that b is an ideal of definition such that
A/b has nilpotent nilradical. This implies that for some n ≥ 1, In ⊆ b. Therefore by Proposition
8(i) the open ideal I is an ideal of definition. It clearly has the required property.
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Corollary 11. A noetherian preadmissible ring admits a largest ideal of definition.

Corollary 12. If A is a preadmissible ring and a an ideal of definition such that the powers an

(n > 0) form a fundamental system of open neighborhoods of 0, then so do the powers bn for any
other ideal of definition b.

Proof. Suppose that a is an ideal of definition. The set {an |n ≥ 1} is a fundamental system of
open neighborhoods of 0 if and only if an is open for n ≥ 1. If this is the case, then an arbitrary
ideal b is open if and only if an ⊆ b for some n ≥ 1. In particular, the product of open ideals is
open. So it is clear that if b is another ideal of definition, the powers bn must form a fundamental
system of open neighborhoods of 0.

Definition 20. We say a preadmissible ring A is preadic if there exists an ideal of definition a in
A such that all the powers an (n > 0) are open (equivalently, the set {an |n ≥ 1} is a fundamental
system of neighborhoods of 0). We say a ring is adic if it is a preadic ring which is separated and
complete.

Remark 3. Let A be a preadic ring. It follows from Corollary 12 that for any ideal of definition a
the powers an are open and therefore {an |n ≥ 1} is a fundamental system of open neighborhoods
of 0. In other words, the topology on A is the one arising from the following subgroup sequence
(see Definition 12)

A ⊇ a ⊇ a2 ⊇ · · · ⊇ an ⊇ · · ·

We therefore say that A is a-preadic (or a-adic if A is adic) and we say that the topology on A
is the a-preadic (resp. a-adic) topology. Since the ideal of defintion a is arbitrary, the preadic
topology does not depend on the choice of ideal of definition.

Let b be an arbitrary ideal. Then b is open if and only if an ⊆ b for some n ≥ 1, and b is an
ideal of definition if and only if there exists integers m,n ≥ 1 with b ⊇ an ⊇ bm. If b, c are open
ideals in A then the ideals bc, b + c and b ∩ c are also open.

The set {aλ}λ∈Λ of ideals of definition in A is a fundamental system of neighborhoods of 0.
Given any ideal of definition a, the powers an are open and are therefore themselves ideals of
definition by Proposition 8(i). It is easy to see that the set {an |n ≥ 1} is a final subset of the
inverse directed set {aλ}λ∈Λ.

Example 1. Given a ring A and an ideal a ⊆ A we make A into a topological ring as in Definition
16. Then it is clear that A is a preadic ring with ideal of definition a.

3.1 Complete Rings of Fractions

Lemma 13. Let A be a ring, {bµ}µ∈Λ a nonempty set of ideals in A. Suppose that for every pair
of indices µ, λ there exists τ with bτ ⊆ bµ ∩ bλ. Then there is a unique topology on A making A
into a topological ring in such a way that {bµ} is a fundamental system of neighborhoods of 0.

Proof. Follows immediately from (TR,Proposition 4).

Let A be a preadmissible ring, (aλ)λ∈Λ the fundamental system of open neighborhoods of 0
consisting of all ideals of definition of A. Let uλ : A −→ Aλ = A/aλ be the canonical ring
morphism, and for aµ ⊆ aλ let uλµ : Aµ −→ Aλ be the canonical ring morphism. Set Sλ = uλ(S)
and observe that uλµ(Sµ) = Sλ. The uλµ induce ring morphisms S−1

µ Aµ −→ S−1
λ Aλ, and these

form an inverse system of rings. We denote by A{S−1} the inverse limit of this inverse system.
The morphisms A −→ Aλ −→ S−1

λ Aλ induce a ring morphism ` : A −→ A{S−1}.
Let b be an ideal of A. For µ ∈ Λ we have the ideal b′µ = (b+aµ)/aµ of Aµ. If aµ ⊆ aλ it is clear

that uλµ(b′µ) = b′λ. Let bµ denote the ideal b′µ(S
−1
µ Aµ). The ring morphism S−1

µ Aµ −→ S−1
λ Aλ

maps the ideal bµ onto the ideal bλ. Therefore these ideals form an inverse system, and we denote
by b{S−1} the ideal of A{S−1} given by the inverse limit lim←− bµ. If b ⊆ c then b{S−1} ⊆ c{S−1}
and it is clear that `(b) ⊆ b{S−1}.
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In particular we have the ideals aλ{S−1}. The set {aλ{S−1}}λ∈Λ satisfies the conditions of
Lemma 13 and therefore A{S−1} is canonically a topological ring with {aλ{S−1}}λ∈Λ a funda-
mental system of neighborhoods of 0. The ring morphism ` : A −→ A{S−1} is continuous, and if
b is an open ideal of A then b{S−1} is an open ideal of A{S−1}.

Definition 21. Let A be a preadmissible ring, S ⊆ A a multiplicatively closed subset. We have
defined a topological ring A{S−1} together with a continuous morphism of rings A −→ A{S−1}.
We call A{S−1} the complete localisation of A with respect to S. If f ∈ A and S = {1, f, f2, . . .}
then we denote A{S−1} by A{f}. In this case if b is an ideal of A we write b{f} for b{S−1}.

Continuing the above discussion, we also have the ideals S−1aλ = aλ(S−1A) of the ring S−1A,
and this family of ideals also satisfies the conditions of Lemma 13. Therefore S−1A becomes a
topological ring with {S−1aλ}λ∈Λ a fundamental system of neighborhoods of 0.

Proposition 14. Let A be a preadmissible ring, S and (aλ)λ∈Λ as above. Then there is a canonical
isomomorphism of rings A{S−1} −→ lim←−λ S

−1A/S−1aλ.

Proof. This follows from the following simple calculation

A{S−1} = lim←−
λ

S−1
λ Aλ = lim←−

λ

S−1
λ (A/aλ) ∼= lim←−

λ

S−1A/S−1aλ

where S−1
λ (A/aλ) −→ S−1A/S−1aλ is the canonical isomorphism (x + aλ)/(s + aλ) 7→ x/s +

aλ. Observe that for an ideal b of A this isomorphism identifies b{S−1} with the inverse limit
lim←−λ S

−1(b + aλ)/S−1aλ.

Proposition 15. Let A be a preadic ring, S ⊆ A a multiplicatively closed subset and a an ideal
of definition. Then there is a canonical isomorphism of rings A{S−1} −→ Ŝ−1A, where the
latter ring is the S−1a-adic completion. If A is noetherian then for any ideal b this isomorphism
identifies the ideals b{S−1} and Ŝ−1b and is an isomorphism of linear topological rings.

Proof. Let (aλ)λ∈Λ be as above. The set {an |n ≥ 1} is final in the inverse directed set (aλ)λ∈Λ,
so we have a canonical isomorphism of rings (be aware of the subtle difficulty when changing from
lim←−λ to lim←−n that arises since we may have an ⊆ am for m > n)

A{S−1} ∼= lim←−
λ

S−1A/S−1aλ ∼= lim←−
n

S−1A/(S−1a)n = Ŝ−1A

Now suppose that A is noetherian and let b be an ideal of A. We already know that the first
isomorphism identifies b{S−1} with the ideal lim←−λ S

−1(b + aλ)/S−1aλ. The second isomorphism
clearly identifies this latter ideal with lim←−n S

−1(b + an)/S−1an, which is the ideal consisting of all

sequences (an) with an ∈ S−1(b+ an)/S−1an, which by Theorem 6(d) is precisely the ideal Ŝ−1b.
It is now not hard to check that the isomorphism A{S−1} ∼= Ŝ−1A is a homeomorphism, where
we give Ŝ−1A the Ŝ−1a-adic topology.

Remark 4. Let A be a preadic ring. Let S be the multiplicatively closed set S = {1} and write
A{1} for A{S−1}. Let a be an ideal of definition of A. Then Proposition 15 defines a canonical
isomorphism of rings A{1} −→ Â, where the completion is a-adic.

Corollary 16. Let A be a preadic ring, S ⊆ A a multiplicatively closed subset. If A is noetherian
then A{S−1} is a flat noetherian A-algebra.

Proof. Choose an ideal of definition a for A and let Ŝ−1A denote the S−1a-adic completion. By
Theorem 6(c), Ŝ−1A is a flat noetherian A-algebra. Since the morphism A −→ S−1A is flat, by
transitivity of flatness we see that Ŝ−1A is flat over A. The result now follows from Proposition
15.

Proposition 17. Let A be a noetherian preadic ring, S ⊆ A a multiplicatively closed subset. Then
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(i) If b is an ideal then b{S−1} = b ·A{S−1}.

(ii) If b, c are ideals then we have

b{S−1} · c{S−1} = (bc){S−1}
b{S−1}+ c{S−1} = (b + c){S−1}

bn{S−1} = (b{S−1})n for n ≥ 1

(iii) If b is an open ideal then there is a canonical isomorphism of rings A{S−1}/b{S−1} ∼=
S−1(A/b). If c ⊇ b is another ideal then this isomorphism identifies the ideals c{S−1}/b{S−1}
and S−1(c/b).

Proof. (i) Choose an ideal of definition a. By Proposition 15 we have a commutative diagram

A{S−1} +3
Ŝ−1A

A

OO

// S−1A

OO
(3)

By Theorem 6 we have Ŝ−1b = S−1b · Ŝ−1A, and it is not hard to see this is the ideal generated
by the image of b under A −→ S−1A −→ Ŝ−1A. Since the top isomorphism identifies b{S−1} and
Ŝ−1b it follows that b{S−1} is the smallest ideal containing the image of b. That is, b{S−1} =
b · A{S−1}. The statements of (ii) follow directly from this fact and elementary properties of
expanding ideals.

(iii) Choose an ideal of definition a for A. Then b is open in the a-adic topology on A.
By Proposition 15 there is a ring isomorphism A{S−1} ∼= Ŝ−1A identifying b{S−1} and Ŝ−1b
(completions are S−1a-adic). Clearly the ideal S−1b of S−1A is open under the S−1a-adic topology,
so using Theorem 6(f) we have a ring isomorphism

A{S−1}/b{S−1} ∼= Ŝ−1A/Ŝ−1b ∼= S−1A/S−1b ∼= S−1(A/b)

as required. It is not hard to check that this isomorphism identifies the ideals c{S−1}/b{S−1}
and S−1(c/b) for any ideal c containing b.

Remark 5. Let A be a noetherian preadic ring, S ⊆ A a multiplicatively closed subset. Then
from (3) we have a canonical morphism of rings ψ : S−1A −→ A{S−1}. The proof of Proposition
17 shows that if b is an open ideal of A then ψ maps S−1b into b{S−1} and the induced ring
morphism S−1A/S−1b −→ A{S−1}/b{S−1} is an isomorphism. In particular, if A is discrete
(that is, has the discrete topology) then b = 0 is open and ψ itself is an isomorphism.

Corollary 18. Let A be a noetherian preadic ring and S ⊆ A a multiplicatively closed subset.
Then A{S−1} is a noetherian adic ring.

Proof. We know from Corollary 16 that A{S−1} is noetherian. By definition A{S−1} is a linear
topological ring. If a is an ideal of definition of A then by definition a{S−1} is open. If {aλ}
is the set of ideals of definition of A then {aλ{S−1}} is a fundamental system of neighborhoods
of 0 in A{S−1}. Therefore if V is an open neighborhood of 0, we have aλ{S−1} ⊆ V for some
λ. But there is n ≥ 1 with an ⊆ aλ, and therefore (a{S−1})n = an{S−1} ⊆ V . This shows
that a{S−1} is an ideal of definition and since (a{S−1})n = an{S−1} all the powers are open, so
A{S−1} is preadic. It only remains to show that A{S−1} is separated and complete. This follows
immediately from Proposition 15.

Proposition 19. Let A be a noetherian preadic ring and S ⊆ A a multiplicatively closed subset.
Then

(i) Every open ideal of A{S−1} is of the form b{S−1} for an open ideal b of A.

11



(ii) If b is an open ideal of A then b{S−1} = A{S−1} if and only if b ∩ S 6= ∅.

(iii) The map p 7→ p{S−1} defines a bijection between the open prime ideals of A{S−1} and the
open prime ideals of A not meeting S.

(iv) If p is an open prime ideal not meeting S then the quotient field of A{S−1}/p{S−1} is
A-isomorphic to the quotient field of A/p.

Proof. (i) If h is an open ideal of A{S−1} then h ⊇ a{S−1} for some ideal of definition a of
A. Then under the isomorphism A{S−1}/a{S−1} ∼= S−1(A/a) of Proposition 17 the ideal h is
identified with an ideal of S−1(A/a). It is elementary that every such ideal is of the form S−1(b/a)
for an ideal b of A containing a. Then b is an open ideal and h = b{S−1} by Proposition 17(iii),
as required.

Let L,L′ denote the partially ordered sets of open ideals of A,A{S−1} respectively. We have
shown that b 7→ b{S−1} defines a surjective map α : L −→ L′. If ` : A −→ A{S−1} is the
canonical continuous morphism of rings, then h 7→ `−1h defines a map β : L′ −→ L. Since α is
surjective, using Proposition 17(i) it is not hard to see that (`−1h){S−1} = h. That is, αβ = 1.

(ii) If b is open then it follows from Proposition 17(iii) that b{S−1} is improper if and only if
S−1(A/b) = 0, which is if and only if b ∩ S 6= ∅.

(iii) If p is an open prime ideal of A then A{S−1}/p{S−1} ∼= S−1(A/p) so it is clear that
provided p ∩ S = ∅, p{S−1} is an open prime ideal of A{S−1}. We claim that if b, q are open
ideals of A with q prime and q ∩ S = ∅ then b ⊆ q if and only if b{S−1} ⊆ q{S−1}. One
implication is trivial. For the other, let a be an ideal of definition contained in the open set
b ∩ q. Using the isomorphism A{S−1}/a{S−1} ∼= S−1(A/a) of Proposition 17(iii) we see that
S−1(b/a) ⊆ S−1(q/a) and it follows that b ⊆ q, as required. In particular, the map α is injective
on the set of open prime ideals not meeting S. If h is an open prime ideal of A{S−1} then
p = `−1h is an open prime ideal of A and we already know that h = p{S−1} (by (ii) this implies
that p ∩ S = ∅), which shows that the map p 7→ p{S−1} defines a bijection between the set of
open prime ideals of A not meeting S and the set of open prime ideals of A{S−1}.

(iv) We know that there is an isomorphism of A-algebras A{S−1}/p{S−1} ∼= S−1(A/p) so the
claim is easily checked.

Proposition 20. Let A be a noetherian preadic ring, p an open prime ideal of A and set S = A\p.
Then A{S−1} is a local noetherian ring with residue field canonically isomorphic to the quotient
field of A/p.

Proof. Since p is an open prime ideal we have A{S−1}/p{S−1} ∼= S−1(A/p), which is the quotient
field of A/p. This shows that p{S−1} is maximal. Any other open maximal ideal of A{S−1} is
of the form q{S−1} for an open prime ideal q of A with q ∩ S = ∅ (using Proposition 19(iii)).
Therefore q ⊆ p and consequently q{S−1} = p{S−1}. So to complete the proof it suffices to show
that every maximal ideal of A{S−1} is open.

Let a be an ideal of definition of A. We show that every maximal ideal of A{S−1} contains
a{S−1}. By Proposition 15 it suffices to show that every maximal ideal of Ŝ−1A contains Ŝ−1a,
which follows from Theorem 6(g).

Proposition 21. Let A be a noetherian preadic ring with ideal of definition a. If B is a separated,
complete linear topological ring and u : A −→ B a morphism of linear topological rings, then there
is a unique morphism of linear topological rings ϕ : Â −→ B making the following diagram
commute

A

��

u // B

Â

ϕ

??��������

Proof. Let Â be the a-adic completion of A, which is a linear topological ring with the â-adic
topology. It follows from Theorem 6(h) that we have an isomorphism of linear topological rings
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Ac ∼= Â. By hypothesis and Lemma 5 the morphism B −→ Bc is an isomorphism of linear
topological rings.

Given a morphism of topological rings u : A −→ B the factorisation ϕ : Â −→ B is the
composite of Â ∼= Ac with uc : Ac −→ Bc and the isomorphism Bc ∼= B. This is a morphism
of linear topological rings making the diagram commute, and uniqueness follows from Lemma 4.
Explicitly, the image of an element (an + an) ∈ lim←−nA/a

n under ϕ is the unique limit of the
Cauchy sequence (u(an))n≥1 in B.

Proposition 22. Let A be a noetherian preadic ring, S ⊆ A a multiplicatively closed subset.
If B is a separated, complete linear topological ring and u : A −→ B a morphism of linear
topological rings sending S to units, then there is a unique morphism of linear topological rings
ϕ : A{S−1} −→ B making the following diagram commute

A

��

u // B

A{S−1}
ϕ

;;wwwwwwwww

Proof. Let a be an ideal of definition of A. Then A{S−1}, S−1A are noetherian preadic topological
rings with ideals of definition S−1a, a{S−1} respectively (using Corollary 18 for A{S−1}). Let
u : A −→ B be a morphism of linear topological rings sending S to units. Then the induced
morphism of rings u′ : S−1A −→ B is easily checked to be continuous. By Proposition 21 we
have an induced morphism of linear topological rings Ŝ−1A −→ B (completion is S−1a-adic).
Composing this with the isomorphism of linear topological rings A{S−1} ∼= Ŝ−1A of Proposition
15 we have our factorisation ϕ : A{S−1} −→ B. Uniqueness follows from uniqueness of the
factorisation in Proposition 15.

Remark 6. Let A be a noetherian preadic ring, S ⊆ T multiplicatively closed subsets of A.
Then A −→ A{T−1} is a morphism of linear topological rings sending S to units, so there is a
unique morphism of linear topological rings i : A{S−1} −→ A{T−1} which is also a morphism
of A-algebras. Now A{S−1} is a noetherian adic ring, and we let T0 denote the image of T in
A{S−1}. The morphism i sends T0 to units, so there is a unique morphism of linear topological
rings A{S−1}{T−1

0 } −→ A{T−1} making the following diagram commute

A{S−1} i //

��

A{T−1}

A{S−1}{T−1
0 }

77ppppppppppp

Using the uniqueness properties of these morphisms, it is easy to check that this is an isomorphism
of linear topological rings.

Corollary 23. Let A be a noetherian preadic ring, S ⊆ T multiplicatively closed subsets of A.
Then the canonical ring morphism A{S−1} −→ A{T−1} is flat.

Proof. This follows immediately from Remark 6 and Corollary 16, since A{S−1} is a noetherian
adic ring.

3.2 Local Completion

Definition 22. Let A be a preadmissible ring. For f ∈ A we denote by D(f) the set of all open
prime ideals of A not containing f .

Lemma 24. Let A be a noetherian preadic ring. If f, g ∈ A then D(g) ⊆ D(f) if and only if the
ring morphism A −→ A{g} sends f to a unit.
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Proof. Let a be an ideal of definition of A. Using Theorem 6(g) and Proposition 15 we see that
an element of A{g} is a unit iff. its image in A{g}/a{g} ∼= Ag/ag is a unit. Therefore f maps to a
unit in A{g} if and only if (f)+ ag = Ag. This is clearly equivalent to the condition D(g) ⊆ D(f),
as required.

Definition 23. Let A be a noetherian preadic ring. If f, g ∈ A with D(g) ⊆ D(f) then f
maps to a unit under the morphism of linear topological rings A −→ A{g}. Combining Corollary
18 and Proposition 22 we have a canonical morphism of linear topological rings A{f} → A{g},
which is also a morphism of A-algebras. Using the uniqueness condition of Proposition 22 it is
straightforward to check that this ring morphism is the one induced between the inverse limits
lim←−λ(A/aλ)f −→ lim←−λ(A/aλ)g by the canonical ring morphisms (A/aλ)f −→ (A/aλ)g, where
{aλ}λ is the inverse directed set of all ideals of definition.

Let S be a multiplicatively closed subset of A. Then the elements f ∈ A become a directed
set with the relation f ≤ g iff. D(g) ⊆ D(f). The rings A{f} and the induced ring morphisms
A{f} −→ A{g} for f ≤ g are a direct system of rings. We denote the direct limit lim−→f∈S A{f} by
A{S}. There is a canonical morphism of rings A −→ A{S} given by the composite A −→ A{f} −→
A{S}, which does not depend on the chosen f ∈ S. For each f ∈ S we have by Remark 6 a canonical
morphism of linear topological A-algebras A{f} −→ A{S−1}. These morphisms are compatible
with the direct system, so there is an induced morphism of A-algebras A{S} −→ A{S−1}.

To prove the main result of this section, we need one technical lemma.

Remark 7. Let I be a directed set, {Aµ, ϕµλ} a direct system of rings and {Mµ, θµλ} a direct
system of abelian groups over I. Suppose that Mλ is an Aλ-module for every λ in such a way
that θµλ(r · m) = ϕµλ(r) · θµλ(m) for r ∈ Aµ,m ∈ Mµ and µ ≤ λ. Then M = lim−→λ

Mλ is a
A = lim−→λ

Aλ-module via (λ, r) · (λ,m) = (λ, r ·m).
Suppose that {Nµ, ζµλ} is another direct system of modules in the above sense, with direct limit

N = lim−→λ
Nλ. Then the modules Mµ⊗Aµ Nµ together with the morphisms θµλ⊗ ζµλ give another

direct system of modules. The canonical morphism of abelian groups Mµ ⊗Aµ
Nµ −→ M ⊗A N

is compatible with the ring morphism Aµ −→ A. These morphisms form a cocone for the direct
system, and this is the universal cocone (among all cocones into an A-module whose morphisms
are compatible with Aµ −→ A). To see this, suppose we are given an A-module G and morphisms
of abelian groups βµ : Mµ ⊗Aµ Nµ −→ G compatible with the ring morphisms Aµ −→ A and
the morphisms of the direct system. It is straightforward to check that there is a well-defined
morphism A-modules

M ⊗A N −→ G

(µ,m)⊗ (λ, n) 7→ βτ (θµτ (m)⊗ ζλτ (n))

where µ, λ ≤ τ . This is clearly the unique factorisation of the morphisms βµ through M ⊗A N .
As a particular case we can take G = lim−→λ

(Mλ ⊗Aλ
Nλ). Then we get a morphism of A-modules

ρ : (lim−→
λ

Mλ)⊗A (lim−→
λ

Nλ) −→ lim−→
λ

(Mλ ⊗Aλ
Nλ)

(µ,m)⊗ (λ, n) 7→ (τ, θµτ (m)⊗ ζλτ (n))

using the uniqueness property of this morphism, it is not difficult to see that ρ is an isomorphism
of A-modules.

Lemma 25. Let {Aµ, ϕµλ} and {Mµ, θµλ} be as in Remark 7. If Mλ is a flat Aλ for module
every λ ∈ I, then M is a flat A-module.

Proof. By (TOR,Proposition 15) it suffices to show for a finitely generated ideal a of A that the
canonical morphism of A-modules a ⊗A M −→ M is injective. If a is a finitely generated ideal,
then it is easy to see that a = aκA for some index κ and finitely generated ideal aκ of Aκ. For
µ ≥ κ we set aµ = aκAµ and otherwise we set aµ = 0. With the induced morphisms, this is a
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direct system of modules. The A-module lim−→λ
aλ is canonically A-isomorphic to a. Using Remark

7 and flatness of the individual Mλ we have an isomorphism of A-modules

a⊗AM ∼= (lim−→
λ

aλ)⊗A (lim−→
λ

Mλ) ∼= lim−→
λ

(aλ ⊗Aλ
Mλ) ∼= lim−→

λ

(aλMλ) ∼= aM

it follows that the multiplication a⊗AM −→M is injective, as required.

Proposition 26. Let A be a noetherian preadic ring, p an open prime ideal of A and set S = A\p.
Then A{S} is a local noetherian ring and the ring morphism A{S} −→ A{S−1} is a faithfully flat
local morphism. The residue field of A{S} is canonically isomorphic to the quotient field of A/p.

Proof. First we show that A{S} is a local ring. For each f ∈ S we have the open prime ideal p{f}
of A{f} and m = lim−→f∈S p{f} is a proper ideal of A{S}. We show that m is the unique maximal
ideal by showing that every x /∈ m is a unit.

Let a be an ideal of definition of A contained in p, so that a{f} is a proper ideal of definition
of A{f} for every f ∈ S. If x /∈ m then x is the image of z /∈ p{f} for some f ∈ S. Under the
ring isomorphism A{f}/a{f} ∼= Af/af of Proposition 17(iii) the residue of z is identified with an
element a/fn + af where a /∈ p and n ≥ 1. Set g = af . Clearly g ∈ S and D(g) ⊆ D(f). The
following diagram commutes (see the explicit construction in the proof of Proposition 21)

Af

��

// A{f}

��
Ag // A{g}

Since a/fn maps to a unit in Ag it follows that under the induced morphism A{f}/a{f} −→
A{g}/a{g} the residue of z maps to a unit. Using Theorem 6(g) and Proposition 15 we see that
an element of A{g} is a unit iff. its image in A{g}/a{g} is a unit. Therefore the image of z under
A{f} −→ A{g} is a unit, and it follows immediately that x is a unit in A{S} as required. This
shows that A{S} is a local ring.

Next we show that the canonical ring morphism A{S} −→ A{S−1} is a local morphism of
local rings. This amounts to showing that for f ∈ S the morphism of A-algebras A{f} −→
A{S−1} sends p{f} into p{S−1}. This is trivial since both ideals are the expansion of p ⊆ A,
so A{S} −→ A{S−1} is local. By Corollary 23 the ring morphism A{f} −→ A{S−1} is flat
for every f ∈ S. Taking direct limits and using Lemma 25 we see that the ring morphism
A{S} −→ A{S−1} is flat. By (MAT,Corollary 35) it is faithfully flat and so by (MAT,Proposition
37) and Corollary 16, A{S} is noetherian. We have an injective morphism of the residue fields
A{S}/m −→ A{S−1}/p{S−1}. This latter ring is isomorphic to S−1A/S−1p, so any element of
A{S−1}/p{S−1} corresponds to a residue of the form a/f + S−1p for some f ∈ S. It is therefore
clear that A{S}/m −→ A{S−1}/p{S−1} is an isomorphism of rings. Composing with the canonical
isomorphism A{S−1}/p{S−1} ∼= S−1(A/p) we have the desired canonical isomorphism of the
residue field of A{S} with the quotient field of A/p.

4 Formal Schemes

4.1 Affine Formal Schemes

Remark 8. Let A be a ring. If a ⊆ A is an ideal then V (a) = Supp(A/a). The equivalence
relation a ∼ b iff. V (a) = V (b) on the ideals of A is such that each equivalence class contains
a unique radical ideal. That is, V (a) = V (b) iff. a, b have the same radical. If A is noetherian
every ideal contains a power of its radical, so if V (a) = V (b) there are n,m ≥ 1 with an ⊆ b and
bm ⊆ a.

Let A be a preadmissible ring. If a is an ideal of definition of A then V (a) is the set of all open
prime ideals of A. Therefore all ideals of definition have the same radical, equal to the intersection
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of all open prime ideals. We denote the subspace of SpecA consisting of all open prime ideals by
X. Let {aλ}λ∈Λ be the fundamental system of neighborhoods of 0 consisting of all the ideals of
definition. For each λ let Oλ denote the sheaf of rings on X induced by the structure sheaf of
Spec(A/aλ). For aµ ⊆ aλ the canonical morphism A/aµ −→ A/aλ induces a morphism of sheaves
of rings uλµ : Oµ −→ Oλ and {Oλ}λ∈Λ is an inverse system of sheaves of rings. Let OX denote
the inverse limit sheaf of rings, so for an open subset U ⊆ X we have Γ(U,OX) = lim←−λ Γ(U,Oλ).

Definition 24. Let A be a preadmissible ring. The affine formal scheme of A, denoted Spf(A),
is the closed subspace X of Spec(A) consisting of all open prime ideals of A, together with the
sheaf of rings OX. Therefore Spf(A) = (X,OX) is a ringed space. If f ∈ A then we let D(f)
denote the set of all open prime ideals of A not containing f . That is, D(f) = X ∩D(f).

Remark 9. Let A be a preadmissible ring with ideal of definition a. Then

• If b is an open ideal, then V (b) ⊆ X.

• If b is any ideal, then b + a is an open ideal, and V (b) ∩ X = V (b) ∩ V (a) = V (b + a).

• Therefore the subspace topology on X is equal to the following topology: the closed subsets
of X are of the form V (b) for open ideals b of A.

Definition 25. Let A,B be preadmissible rings, φ : A −→ B a continuous morphism of rings.
Then the induced map of spaces Φ : Spf(B) −→ Spf(A) defined by p 7→ φ−1p is continuous.
Let {aλ}λ and {bα}α be the ideals of definition of A,B respectively. Given α, let λ be such that
aλ ⊆ φ−1bα. Then we have an induced morphism of schemes i : Spec(B/bα) −→ Spec(A/aλ)
making the following diagram of topological spaces commute

Spf(B) Φ // Spf(A)

Spec(B/bα)

gα

KS

i
// Spec(A/aλ)

fλ

KS

Pushing forward along fλ the morphism of sheaves of rings i# gives a morphism of sheaves of rings
OA,λ −→ Φ∗OB,α on Spf(A) (where OB,α = (gα)∗OSpec(B/bα) and OA,λ = (fλ)∗OSpec(A/aλ)). It
is not difficult to see that the morphism of sheaves of rings

OSpf(A) −→ Φ∗OB,α = lim←−
λ

OA,λ −→ OA,λ −→ Φ∗OB,α

does not depend on the chosen ideal of definition aλ contained in φ−1bα. Therefore we have a
canonical morphism of sheaves of rings Φ# : OSpf(A) −→ lim←−α Φ∗OB,α = Φ∗OSpf(B). We denote
by Spf(φ) the morphism of ringed spaces (Φ,Φ#) : Spf(B) −→ Spf(A). Clearly Spf(1) = 1 and
Spf(φψ) = Spf(ψ) ◦ Spf(φ).

Lemma 27. Let A be a preadmissible ring, f ∈ A. Then D(f) = ∅ if and only if f is topologically
nilpotent.

Proof. Let a be an ideal of definition. By Lemma 7(ii) the ideal I of all topological nilpotents is
equal to the intersection of all open prime ideals of A. So it is clear that D(f) = ∅ if and only if
f ∈ I.

Proposition 28. Let A be a noetherian preadic ring. For f ∈ A the canonical morphism of ringed
spaces Spf(A{f}) −→ Spf(A) is an open immersion with image D(f).

Proof. In Definition 25 we associated to the continuous ring morphism φ : A −→ A{f} a morphism
of ringed spaces Φ : Spf(A{f}) −→ Spf(A). We claim that this map induces a homeomorphism
of Spf(A{f}) with the open subset D(f) of Spf(A) and that the induced morphism of ringed
spaces (Spf(A{f}),OSpf(A{f})) −→ (D(f),OSpf(A)|D(f)) is an isomorphism.
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It follows from Proposition 19 that Φ induces a bijection Φ′ : Spf(A{f}) −→ D(f) (with
inverse p 7→ p{f}). Using Remark 9, Proposition 19(i) and the proof of Proposition 19(iii) we see
that this map is a homeomorphism. It remains to show that the morphism Φ#|U : OSpf(A)|U −→
Φ∗OSpf(A{f})|U of sheaves of rings on U = D(f) is an isomorphism.

Let a be an ideal of definition of A. Then a{f} is an ideal of definition of A{f} by the proof of
Corollary 18. Therefore the powers {an |n ≥ 1} and {an{f} |n ≥ 1} form final subsets of the funda-
mental systems of ideals of definition in A,A{f} respectively. Let OA,an denote the pushforward
along the homeomorphism Spec(A/an) −→ Spf(A) of the structure sheaf, and define OA{f},a

n
{f}

similarly. We reduce to showing that the canonical morphism OA,an −→ Φ∗OA{f},a
n
{f}

restricts
to an isomorphism on U . That is, we have to show that for n ≥ 1 the ring morphism A/an −→
A{f}/a

n
{f} induces an open immersion Spec(A{f}/a

n
{f}) −→ Spec(A/an). This is immediate, since

by Proposition 17(iii) we have A{f}/a
n
{f}
∼= (A/an)f . Therefore Spf(A{f}) −→ Spf(A) is an open

immersion and the proof is complete.

Proposition 29. Let A be a noetherian preadic ring with affine formal scheme X = Spf(A).
For f ∈ A there is a canonical isomorphism of rings Γ(D(f),OX) ∼= A{f}. For D(g) ⊆ D(f) the
following diagram commutes

Γ(D(f),OX) +3

��

A{f}

��
Γ(D(g),OX) +3 A{g}

(4)

Proof. Let {aλ}λ∈Λ be the inverse directed set of all ideals of definition of A. For λ ∈ Λ let
fλ : Spec(A/aλ) −→ X = V (aλ) be the canonical homeomorphism. Then Oλ = (fλ)∗OSpec(A/aλ)

and for f ∈ A this homeomorphism identifies D(f + aλ) with D(f) ⊆ X. Therefore for f ∈ A we
have a canonical isomorphism of rings

Γ(D(f),OX) = lim←−
λ

Γ(D(f),Oλ) = lim←−
λ

Γ(D(f + aλ),OSpec(A/aλ)) ∼= lim←−
λ

(A/aλ)f = A{f}

Commutativity of (4) is easily checked. In particular for any ideal of definition a there is a
canonical isomorphism of rings Γ(X,OX) ∼= A{1} ∼= Â, where the completion is a-adic.

Corollary 30. Let A be a noetherian preadic ring. Then the affine formal scheme X = Spf(A)
is a locally ringed space. For an open prime ideal p ∈ X the local ring OX,p is noetherian with
residue field canonically isomorphic to Ap/pAp.

Proof. Let p be an open prime ideal of A and denote by S the multiplicatively closed set of all
f ∈ A with f /∈ p (that is, p ∈ D(f)). This is a directed set under the relation f ≤ g iff.
D(g) ⊆ D(f). The open sets D(f) of X are a cofinal subset of the set of all open neighborhoods
of p, so by Proposition 29 there is a canonical isomorphism of rings

OX,p = lim−→
p∈U

Γ(U,OX) ∼= lim−→
f∈S

Γ(D(f),OX) ∼= lim−→
f∈S

A{f} = A{S}

It now follows from Proposition 26 thatOX,p is a local noetherian ring with residue field canonically
isomorphic to Ap/pAp.

4.2 General Formal Schemes

Lemma 31. Let X be a noetherian scheme, J ,K coherent sheaves of ideals with Supp(OX/J ) =
Supp(OX/K ). Then there integers m,n ≥ 1 with J n ⊆ K ,K m ⊆J .

Proof. Using (MOS,Proposition 11), (MOS,Corollary 12) and (MOS,Proposition 13) one reduces
to the case where X = SpecA is affine, and J = ã,K = b̃. Then Supp(OX/ã) = V (a) so by
assumption a, b must have the same radical. Since A is noetherian there exists m,n ≥ 1 with
an ⊆ b and bm ⊆ a. Applying −̃ gives the desired result.
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Definition 26. Let X be a noetherian scheme, Y ⊆ X a closed subset. Let ΦY,X denote the set
of all coherent sheaves of ideals J on X with Supp(OX/J ) = Y . In particular this set contains
the following coherent sheaf of ideals

JY (U) = {f ∈ OX(U) | f vanishes on Y ∩ U}

Therefore ΦY,X is nonempty and we partially order this set by inclusion. By Lemma 31 for any
pair J ,K ∈ ΦY,X we have J n ⊆ K ,K m ⊆J for some m,n ≥ 1.

Lemma 32. Let Y be a closed subset of a noetherian scheme X. Then ΦY,X is an inverse directed
set and if J ∈ ΦY,X then the set of powers J n is final in ΦY,X .

Proof. If J ,K ∈ Φ then the intersection J ∩K is coherent and Supp(OX/J ∩K ) = Y by
(SI,Definition 3). This shows that Φ is an inverse directed set. Given J ∈ Φ the powers J n for
n ≥ 1 are coherent sheaves of ideals (MOS,Corollary 12), and it is clear that Supp(OX/J n) = Y .
Lemma 31 shows that the set {J n |n ≥ 1} is final in Φ.

Lemma 33. Let I be an inverse directed set, {Ri, πij} an inverse system of rings and {Mi, ρij}
an inverse system of abelian groups. Suppose that for each i ∈ I there is an Ri-module structure
on Mi with the property that for i ≤ j, m ∈Mi, r ∈ Ri we have ρij(r ·m) = πij(r) · ρij(m). Then
there is a canonical lim←−Ri-module structure on lim←−Mi.

Proof. It is not difficult to check that (ri) · (mi) = (ri ·mi) defines a lim←−Ri-module structure on
lim←−Mi with the property that the morphism of abelian groups lim←−Mi −→Mj maps the action of
lim←−Ri to the action of Rj .

We begin by defining the completion of a scheme along a closed subscheme. For technical
reasons we will limit our discussion to noetherian schemes.

Definition 27. Let X be a noetherian scheme and Y ⊆ X a closed subset with inclusion j : Y −→
X. Let F be a sheaf of modules on X. Associated to every coherent sheaf of ideals J ∈ ΦY,X is
a sheaf of modules F/J F , and for J ,K ∈ ΦY,X with J ⊆ K there is a morphism of sheaves
of modules

F/J F → F/K F

a +̇ Γ(U,J F ) 7→ a +̇ Γ(U,K F )

This defines an inverse system in Mod(X) over the inverse directed set ΦY,X . The inverse limit in
Mod(X) is computed pointwise, so Γ(U, lim←−Φ

(F/J F )) = lim←−Φ
Γ(U,F/J F ). We call the sheaf

of abelian groups j−1(lim←−Φ
(F/J F )) on Y the completion of F along Y and denote it by F/Y .

• For F = OX the inverse system is an inverse system of sheaves of rings OX/J , so the
inverse limit lim←−Φ

(OX/J ) is a sheaf of rings. Therefore OX/Y is a sheaf of rings. The
morphisms OX −→ OX/J induce a morphism of sheaves of rings OX −→ lim←−Φ

(OX/J ).

• Observe that for J ∈ ΦY,X the sheaf of abelian groups F/J F has a canonical structure
as a sheaf of OX/J -modules with (r +̇ Γ(U,J )) · (a +̇ Γ(U,J F )) = ra +̇ Γ(U,J F ).

• Using Lemma 32 we make lim←−Φ
(F/J F ) into a sheaf of lim←−Φ

(OX/J )-modules with (rJ ) ·
(mJ ) = (rJ ·mJ ). Therefore F/Y becomes a OX/Y -module in a canonical way.

• If φ : F −→ G is a morphism of OX -modules then for J ∈ ΦY,X there is a morphism of
OX -modules F/J G −→ G /J G . This defines a morphism between the inverse systems,
and there is an induced morphism of OX -modules lim←−Φ

(F/J F ) −→ lim←−Φ
(G /J G ). This

is also a morphism of lim←−Φ
(OX/J )-modules, so we have an additive functor

lim←−
Φ

((−)/J ) : Mod(OX) −→Mod(lim←−
Φ

(OX/J ))
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Composing with the canonical additive functor Mod(lim←−Φ
(OX/J )) −→ Mod(OX/Y ) we

have an additive functor

(−)/Y : Mod(OX) −→Mod(OX/Y )

• Applying j−1 to the morphism of sheaves of ringsOX −→ lim←−Φ
(OX/J ) we have a morphism

of sheaves of rings j−1OX −→ OX/Y . By adjointness there is a morphism of sheaves of rings
OX −→ j∗OX/Y and therefore a morphism of ringed spaces (Y,OX/Y ) −→ (X,OX).

We denote the ringed space (Y,OX/Y ) by (X̂,O bX) and call it the formal completion of X along
Y . If F is a sheaf of modules on X then we denote the sheaf of modules F/Y on X̂ by F̂ and call
it the completion of F along Y . There is a canonical morphism iX : X̂ −→ X of ringed spaces
and completion defines an additive functor Mod(X) −→Mod(X̂).
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