Section 3.7 - The Serre Duality Theorem

Daniel Murfet

October 5, 2006

In this note we prove the Serre duality theorem for the cohomology of coherent sheaves on a
projective scheme. First we do the case of projective space itself. Then on an arbitrary projective
scheme X, we show that there is a coherent sheaf w$, which plays the role in duality theory
similar to the canonical sheaf of a nonsingular variety. In particular, if X is Cohen-Macaulay, it
gives a duality theorem just like the one on projective space. Finally, if X is a nonsingular variety
over an algebraically closed field we show that the dualising sheaf w$ agrees with the canonical
sheaf wx.

Theorem 1. Suppose X = P} for some field k and n > 1 and set w = wx,,. Then for any
coherent sheaf of modules F on X we have

(a) There is a canonical isomorphism of k-modules H™(X,w) = k.

(b) There is a canonical perfect pairing of finite dimensional vector spaces over k

7:Hom(%,w) x H*(X, ) — k

(c) Fori > 0 there is a canonical isomorphism of k-modules natural in F

n: Baxt'(F,w) — H" (X, 7)Y

Proof. (a) By (DIFF,Corollary 22) there is a canonical isomorphism of sheaves of modules w
O(—n—1). Composing H"(X,w) = H"(X, O(—n—1)) with the isomorphism H" (X, O(—n—1))
Ek of (COS,Theorem 40)(b) gives the required canonical isomorphism of k-modules.

(b) The k-modules Hom(.%,w) and H"(X,.#) are finitely generated by (COS,Corollary 44)
and (COS,Theorem 43), therefore both are free of finite rank. Given a morphism of sheaves of
modules ¢ : . — w there is a morphism of k-modules H"(X, ¢) : H"(X,.#) — H"(X,w), and
we define a k-bilinear pairing

1R

7" Hom(Z,w) x H"(X, ) — H"(X,w)
7(¢,a) = H"(X, ¢)(a)

composing with the canonical isomorphism H"™(X,w) = k of (a) we have another k-bilinear pairing
7: Hom(F,w) x H"(X,#) — k. This corresponds under the bijection of (TES,Lemma 23) to
a morphism of k-modules ¢ : Hom(#,w) — H"™(X,.Z#)Y. To show that 7 is perfect we have
to show that ¢ is an isomorphism. We begin with the case % = O(q) for some ¢ € Z. Using
(MPS,Corollary 17) we have a canonical isomorphism of k-modules

Hom(ﬁ7w) = HOTTL(O((]), O(—TL - 1)) = F(Xv O(_q -n- 1)) = HO(X7 O(_q -n- 1))
The perfect pairing of (COS,Theorem 40)(d) induces an isomorphism of k-modules

¢+ H'(X,0(~q —n—1)) — H"(X,0(q))"
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which fits into the following commutative diagram

Hom(%,w)

I

HO(Xa O(fq —-—n- 1)) 7> Hn(X’y)\/

Therefore ¢ is an isomorphism for # = O(q). Now assume that .% is a coproduct of a finite number
of O(g;). Using the fact that cohomology commutes with coproducts (COS,Theorem 26) we see
that ¢ : Hom(%,w) — H"™(X, %)Y is the product of the isomorphisms Hom(O(q;),w) —
H"(X,0(¢;))Y and is therefore also an isomorphism.

Now let .Z be an arbitrary coherent sheaf. By (H, II 5.18) we can write .%# as the cokernel of
a morphism of a morphism of coherent sheaves 87 — &5 with each &; being a finite direct sum
of sheaves O(g;). That is, we have an exact sequence

51 — 52 — y —0
Using (COS,Corollary 41) we have a commutative diagram with exact rows

0 —— Hom(%,w) — Hom(&,w) — Hom(&1,w)

l ﬂ ﬂ

0—— H”(X’gi)v - Hn(Xv £’2)v - Hn(Xa (g:l)\/

Therefore ¢ : Hom(F,w) — H™(X, %)Y is an isomorphism for any coherent .#, as required.
(¢) The abelian category Mod(X) is k-linear, so for every ¢ > 0 we have a contravariant addi-
tive functor Ext!(—,w) : Mod(X) — kMod (EXT,Section 4.1). The following sequences of
contravariant additive functors form contravariant cohomological §-functors between the abelian
categories €oh(X) and kMod (using (COS,Corollary 41)(3))

S : Ext’(—,w), Ext'(—,w),..., BExt"(—,w), Bxt" ™ (= w), ...
T:H"(X,-)V,H" Y (X,-)Y,...,H(X,-)",0,0,...

We claim that both d-functors are universal. It suffices to show that S, T are effaceable for i > 1.
Given a coherent sheaf of modules .7, it follows from (H, II 5.18) and its proof that we can write
F as a quotient of a sheaf & = @;Vzl O(—q) with ¢ > 0. Then for i > 0

Ext'(&,w) = P Eat'(O( ~PH (X wiq)=2=@PH(X,0(G-n-1)=0

using (COS,Proposition 59), (MPS,Lemma 14), (COS,Proposition 54) and the calculations of
(COS,Theorem 40). Similarly for 0 < ¢ < n we have

H (X, 6) =2 P H"(X,0(—q)) =

by (COS,Theorem 26) and (COS,Theorem 40). Therefore S*, T* are effaceable for i > 1, and
therefore by (DF,Theorem 74) both S, T are universal.

The isomorphism ¢ : Hom(%,w) — H"(X, %)Y of k-modules defined in (b) is natural
in the coherent sheaf %, so there is a canonical natural equivalence of contravariant functors
Coh(X) — kMod

n°: Bxt®(—,w) — Hom(—,w) — H™(X,—)V

This induces a canonical isomorphism of cohomological §-functors n : S — T'. That is, for each
i > 0 and coherent sheaf % we have a canonical isomorphism of k-modules 1’ : Ext'(F,w) —
H""(X,.Z)V natural in .Z, as required. O
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Remark 1. Let X be a nonempty noetherian scheme of finite dimension n over a field k. Then
for 0 < i < mnlet T : Mod(X) — kMod be the contravariant additive functor H" (X, —)V.
For i > n we set T® = 0. Given a short exact sequence of sheaves of modules on X

0—F —F —F"—0

we have the connecting morphisms of k-modules §’ : H/ (X, #") — H/T1(X, Z') for j > 0. For
0<i<mnwesetw = (""" and for i > n we set w’ = 0. Then using (COS,Theorem 30) we
have an exact sequence of k-modules

0— H"'(X,")Y — H" (X, F)" — H"(X, 7)) — .- — H(X, 7))V — 0

So the functors {T};>¢ form a contravariant cohomological §-functor between 9od(X) and
kMod. We usually refer to this §-functor by the sequence H"(X,—)Y,..., H%(X,-)",0,0,...
with the connecting morphisms implicit.

To generalise Theorem 1 to other schemes, we take properties (a) and (b) as our guide, and
make the following definitions.

Definition 1. Let X be a proper scheme of finite dimension n over a field k. A dualising
sheaf for X over k is a coherent sheaf w$ on X, together with a trace morphism of k-modules
t: H"(X,w$) — k, such that for all coherent sheaves .# on X, the natural k-bilinear pairing

T:Hom(F,w%) x HY(X, ) — H"(X,w%)
T(¢,a) = H"(X,¢)(a)

followed by t corresponds under the bijection of (TES,Lemma 23) to an isomorphism of k-modules
Hom(F,w%) — H"(X, 7)Y
which is certainly natural in 7.

Proposition 2. With the notation of Definition 1, if a dualising sheaf exists it is unique. That
is, if (w,t), (W', ') are dualising sheaves then there is a unique isomorphism of sheaves of modules
p:w— W such thatt =t o H"(X, ).

Proof. Since ' is dualising, we get an isomorphism Hom(w,w’) & H*(X,w)". Let ¢ : w — o'
correspond to t € H"(X,w)V. That is, t = t' o H"(X, ¢). Similarly, let ¢ : w' — w correspond
to t’ € H"(X,w')V. Then t o H"(X,v¢¢) = t and therefore 1) = 1. Similarly we see that
1y = 1 so that ¢ is an isomorphism of sheaves of modules, which is clearly unique with the stated
property. L]

The question of existence of dualising sheaves is more difficult. In fact they exist for any X
proper over k, but we will prove the existence here only for projective schemes. First we need
some preliminary results.

Lemma 3. Set P =P} for some field k and let i : X — P be a nonempty closed subscheme of
codimension r. Then éaxtég(i*(’)x7wp) =0 foral0<i<r.

Proof. A closed immersion is finite, so X is noetherian and i,Ox coherent. Therefore the sheaf
Ft = &t (i.Ox,wp) is coherent for i > 0 (COS,Proposition 64). If r = 0 then the statement
is vacuous, so assume r > 1 and 0 < i < r. After twisting by a suitably large integer ¢, the
sheaf .#* will be generated by global sections (H, II 5.17). Thus to show .#? is zero, it will be
sufficient to show that I'(P,.%#%(q)) = 0 for all sufficiently large ¢. But by (COS,Proposition 59)
and (COS,Proposition 66) we have for all sufficiently large ¢

[(P, #'(q) & Batip(i,Ox,wp(q)) = Bath((i.0x)(~a),wr)
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By the projection formula (MRS, Lemma 80) there is a canonical isomorphism of sheaves of modules
(1:0x)(—q) =2 i.i*O(—q) and so finally an isomorphism for all sufficiently large ¢

I(P,.7'(q)) = Extp(i.i*O(—q),wp)

On the other hand, by Theorem 1 this last Ext group is dual to H" (P, i,i*O(—q)), which is
isomorphic as an abelian group to H" (X, i*O(—q)) (COS,Lemma 27). Since dimX =n —1r <
n — i we have H"(X,i*O(—q)) = 0 by (COS,Theorem 30). Therefore I'(P,.Z%(q)) = 0 for
sufficiently large g, as required. O

Remark 2. Let A be an abelian category, and suppose we have a positive cochain complex of
injective objects

I:0—I°—I"—I*—I1—...
with differentials d’ : I — I‘*t!. We say I is exact up to the rth place for » > 0 if the complex is
exact at I* for every 0 < i < r. Suppose that this is the case (if » = 0 the condition says nothing,
so assume r > 1 henceforth). Set K = I° and for i > 1 set K* = I'm(d') so that we have short
exact sequences

0— K’ —T1' —K'—0

0—K'—I? > K?>—0

0—K ' —1"—Cc—0

where I" — C' is the canonical cokernel of d"~!. Since I° is injective the first sequence splits,
which implies that K is injective. In this way we show that K!,..., K"~ are all injective. Choose
a splitting v : I — K"~ of the last sequence, which makes I” into a biproduct K"~! & C. Let
p:C — I"ttand j: I""! — K"~ ! be the canonical morphisms. Then d"~! = j $0,d" = 0D u
where we consider I"~! as the biproduct "' @ 0 and I"t! as 0 @ I"T'. We therefore have

Ker(d") = K" ' @ Ker(u)

By definition Im(d"~') = K"~! so there is a canonical isomorphism 7 : H"(I) — Ker(u). One
can check this is the unique morphism making the following diagram commute

Ker(d") ——1I"

A

H' (I) —= Ker(p) —> C

In particular 7 is independent of the choice of splitting ~y, so it is a canonical isomorphism. In
the same way, one shows that for any object B there is a unique isomorphism of abelian groups
7' H"(Hom(B,I)) & Hom(B, Kerp) making the following diagram commute

KerHom(B,d") —— Hom(B,I")

— |

H"(Hom(B,I)) === Hom(B, Kerp) —— Hom(B,C)

If A is R-linear for some ring R, then 7" will be an isomorphism of R-modules. It is clear that 7/
is natural in B.

Remark 3. With the notation of Lemma 3 it follows from (HDIS,Proposition 15) that RPi' (wp) =
0 for 0 < p < r (in particular, i'(wp) = 0 provided r > 0). It turns out that the first nonzero
sheaf R"i'(wp) is the dualising sheaf we are looking for.
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Lemma 4. With the notation of Lemma 3, let w$ = R'i'(wp). Then for any sheaf of modules
F on X there is a canonical isomorphism of k-modules natural in F

X : Homx(F,w%) — Extp(isF,wp)

Proof. By (HDIS,Corollary 19) the sheaf of modules w% is coherent. Suppose we have an injective
resolution of wp in Moo (P)

I:0—wp— I — I — ..

Then by definition Ext%(i..%,wp) is the ith cohomology group of the cochain complex of k-
modules Homp(i..%#,.%). But by adjointness the cochain complex Homp(i,.%,.#) is canonically
isomorphic to Homx (%,i'.#) (as a cochain complex of k-modules), so we have a canonical iso-
morphism of k-modules natural in .% for ¢ > 0

Eat'o(i.7,wp) = H (Homx (Z,i' 7))

Since 7' has an exact left adjoint it preserves injectives, so J = i'.#" is an injective object of
Moo(X) for ¢ > 0. It follows from Lemma 3 that the following sequence is exact up to the rth
place

0— %Omp(i*o_x, fo) — %omp(i*ox,fl) —_—

From (MRS,Proposition 96) and exactness of i ! we infer that H*(_#) = 0 for 0 < i < r. That s,
the complex ¢ is exact up to the rth place. Using the notation of Remark 2 we have a canonical
isomorphism of k-modules natural in %

Extp(i.F,wp) = H (Homx(F, 7))
>~ Homx (F, Kerp)
= Homx (7, H'(_f))

= Homx (% ,w%)
as required. 0

Proposition 5. Let X be a nonempty projective scheme over a field k. Then X has a dualising
sheaf.

Proof. A projective scheme over a field is proper and has finite dimension (since it embeds in P}
for some finite n) so it makes sense to talk about dualising sheaves on X. Let i : X — P} be
a closed immersion of k-schemes for some n > 1 and let 0 < r < n be the codimension of X in
P = P}. We claim that the coherent sheaf w$ of Lemma 4 is a dualising sheaf for X. For any
coherent sheaf of modules .# on X we have by Lemma 4, Theorem 1 and (COS,Corollary 28) an
isomorphism of k-modules natural in .#

Homx(F,w%) = Exth(i.%,wp)
=~ H" " (Pi F)
~ H"(X, 7)"
where m = n — r is the dimension of X. In particular, taking .# = w$ the element 1 €

Homx (w%,w%) corresponds to a morphism of k-modules ¢ : H™(X,w$ ) — k, which we take as
our trace map. It is now clear that the pair (w%,t) is a dualising sheaf for X. O
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Definition 2. We say a nonempty noetherian topological space X is equidimensional if all the
irreducible components of X have the same dimension, which must be equal to the dimension of
X.

If X is an integral noetherian scheme of finite type over a field, then for every closed point
P € X we have &imOx p = dimX. If we do not require X to be integral, this condition charac-
terises the equidimensional schemes (of which X is the simplest type, with only one irreducible
component).

Lemma 6. Let X be a noetherian scheme of finite dimension n which is of finite type over a field
k. Then X is equidimensional if and only if for any closed point P € X we have dimOx p = n.

Proof. Suppose that X is equidimensional and let P € X be a closed point. Let Z be the
irreducible closed set {P}. Since the codimension of Z in X is finite, we can find some irreducible
component Y of X with P € Y and codim(Z,Y) = codim(Z, X). Putting the reduced scheme
structure on Y (which is therefore an integral scheme of finite type over k) we have dimOx p =
dimQOy p = n, where the first equality follows from (FPOS,Lemma 1) and the second from (H,
Ex.3.20) and the equidimension assumption.

For the converse, let X = Y; U---UY, be the irreducible components of X. It suffices to
show that dimY; = n. We claim that there exists a closed point P € Y7 with codim({P},Y7) =
codim({P}, X). Suppose otherwise, and let {P} = Zy C --- C Z,, be a chain of closed irreducible
subsets of X of length m = codim({P}, X). The set Z,, must be contained in some Yj, j > 1,
and therefore P € Yj. It follows that every closed point of ¥ belongs to the union Yo U---UY,
and therefore Y7 C Y} for some j > 1 (VS,Proposition 14), which is a contradiction. This shows
that we can find a closed point P € Y; with the required property, in which case

n = dimOx p = codim({P}, X) = codim({P}, Y1) = dimOy, p = dimY;

since Y is an integral scheme of finite type over a field. This shows that X is equidimensional and
completes the proof. O

Theorem 7. Let X be a projective scheme of finite dimension n over a field k. Let wg be a
dualising sheaf on X, and let O(1) be a very ample invertible sheaf on X. Then

(a) For any coherent sheaf of modules F on X and i > 0 there is a canonical morphism of
k-modules natural in F

0" : BExt'(F,w%) — H" (X, F)Y

(b) The following conditions are equivalent

(i) X is Cohen-Macaulay and equidimensional.

(ii) For any locally finitely free sheaf of modules F on X, we have H' (X, #(—q)) = 0 for
0 <i < n and all sufficiently large q.

(i) The morphisms 0 of (a) are isomorphisms for alli > 0 and F coherent on X.

Proof. (a) Since k is a field the functor (—)V is exact (MRS,Lemma 73), and we have two con-
travariant cohomological d-functors {Ext!(—, w%)}iso0, {H" (X, —)" }i>0 between €oh(X) and
kMod (the latter d-functor was defined in Remark 1). To show that the first §-functor is uni-
versal, it suffices to show that Ext'(—,w$) is effaceable for i > 0. But if . is coherent, we can
write . as a quotient of a direct sum & = @Z]\Ll O(—q) for all sufficiently large ¢ > 0. Then using
(COS,Proposition 59) and (COS,Proposition 54) we have an isomorphism

N N
Eati(8,w%) = D Bat'(0(~q).w%) = @) H'(X,wk (0)
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By (COS,Theorem 43) if we take ¢ large enough, we have H*(X,w%(q)) = 0 for all i > 0 and
therefore Ext'(&£,w$ ) = 0, as required. Therefore { Ext’(—,w%)}i>0 is universal, and the natural
equivalence

0° : Ext®(—,w%) = Hom(—,w%) = H"(X,—)Y
defined by the dualising sheaf induces a canonical morphism of cohomological J-functors 6. In
particular for every i > 0 we have a canonical natural transformation 6° : Ext'(—,w$) —
H""(X,—)Y, as required.

(b) Let j : X — P be a closed immersion of k-schemes with P = PY for some N > 1. We
may also assume that j*O(1) = O(1). (i) = (i) For any locally finitely free sheaf of modules .#
on X, and any closed point € X in the support of %, we have using (MAT,Lemma 70), Lemma
6 and the hypothesis (7)

depthoy ,Fy = depthoy ,Ox o = dimOx , =n

Set A = Op j(»), which is a regular local ring of dimension N since ]P’fcv is nonsingular. Since we
have a surjective local morphism of local rings A — Ox, it is clear that deptha(j..%);wm) =
deptho , Fo = n (MAT,Lemma 69) and therefore proj.dima((j«%);()) = N—n (MAT,Corollary
132). Using the definition of projective dimension, (COS,Proposition 63) and (VS,Corollary 18)
we see that for [ > N — n the functor éaxtip(j*ﬁ ,—) is zero on quasi-coherent sheaves.

Now assume that 0 < i < n. Using Theorem 1 we find that H*(P, (j..#)(—q)) is dual to
Extg_i(j*ﬁ,wp(q)). For sufficiently large ¢, this Ext is isomorphic to I'( P, é’ztg_i(j*ﬂ, wp(q)))
by (COS,Proposition 66). But this is zero for N —i > N — n, as we’ve just seen. In other words,
HY(P, (j+Z)(—q)) = 0 for i < n and all sufficiently large q.

By the projection formula (MRS,Lemma 80) and (MRS,Proposition 95) we have an isomor-
phism (j..#)(—q) = j.(#(—q)) and therefore H (X,.Z(—q)) = H'(P, (j..%#)(—q)) = 0 for i <n
and all sufficiently large ¢ (COS,Corollary 28), which is what we wanted to show.

(i) = (i) Fix some i > N —n. We claim that &rt%(j.Ox,wp) = 0. To show this, it suffices
by (H, II 5.17) and (COS,Lemma 65) to show that T'(P, &xt%(j.0x,wp(q))) = 0 for some g > 0.
But for all sufficiently large ¢ we have an isomorphism of abelian groups (COS,Proposition 66)

F(P7 gxti:)(j*OX, WP(q))) = Ext%(j*owiP(Q))
= HY7'(P, j.0(-q))"
=~ HY7H(X,0(—q))" =0

using (ii) with .# = Ox and duality for P. Given 2 € X we set A = Op ). Applying
(COS,Proposition 63) to the equation &xth(j.Ox,wp) = 0 we deduce that Ext (Ox ., A) =0
for i > N —n and also proj.dimaOx , < N —n (MAT,Corollary 129). If z is a closed point then
A is a regular local ring of dimension N, so using (MAT,Corollary 132), (MAT,Lemma 69) we
deduce

depthoy ,Ox o = depthyOx . > n (1)

But always deptho, ,Ox,z < dimOx , < n, so we must have equality. This shows that for every
closed point 2 € X the noetherian local ring O x,z is Cohen-Macaulay of dimension n. In particular
X is Cohen-Macaulay (DIFF,Lemma 43) and also equidimensional by Lemma 6.

(i) = (i4i) To show that the §% are isomorphisms, it will be enough to show that the §-functor
{H" (X, —)"}i>0 is also universal, for which it suffices to show that H"~¢(X, —)" is effaceable
for ¢ > 0. So given a coherent sheaf %, write it as a quotient of & = @f\il O(—q), with ¢ so large
that H"=%(X,0(—q)) = 0 for i > 0 by (ii). Then H"~*(X, &)Y = 0, as required.

(iii) = (i) If 0% is an isomorphism, then for any .Z locally finitely free on X and 0 < i < n we
have H (X, Z(—q)) & Ext" " (F(—q),w%)". But this Ext is isomorphic to H" (X, .Z " ®@w%(q))
by (COS,Proposition 54) and (COS,Proposition 59), so it is zero for all sufficiently large ¢ by
(COS,Theorem 43). O

Remark 4. In particular if X is nonsingular projective variety over a field k, or more generally a
projective local complete intersection, then X is Cohen-Macaulay (DIFF Proposition 44), so the
0" are isomorphisms.


file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#theorem_5.2"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.8"
file:"VarietiesAsSchemes.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.9"
file:"RingedSpaceModules.pdf"
file:"RingedSpaceModules.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#corollary_kempf3"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#lemma_sextcommutestwist"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.9"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.8"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Matsumura.pdf"
file:"Section2.8-Differentials.pdf"
file:"Section2.8-Differentials.pdf#lemma_cmatclosedpoints"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.3"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#prop_6.7"
file:"Section3.2-CohomologyOfSheaves.pdf"
file:"Section3.2-CohomologyOfSheaves.pdf#theorem_5.2"
file:"Section2.8-Differentials.pdf"
file:"Section2.8-Differentials.pdf#prop_8.23"

Corollary 8. Let X be a projective Cohen-Macaulay scheme of equidimension n over a field k,
and W% a dualising sheaf on X. Then for any locally finitely free sheaf F on X and 0 <i<mn
there is a canonical isomorphism of k-modules natural in F

H'(X,7)— H'" (X, 7' @wg)"
Proof. We have the following isomorphism of k-modules, natural in %, for any 0 < i <n
HY (X, Z)V =2 Ext" (F,w%)
~ Eat" " (Ox, F" @w)
~ "X, FY @wy)
where we have used Theorem 7, (COS,Proposition 59) and (COS,Proposition 54). Taking duals,

we have the required isomorphism (by (COS,Theorem 43) the k-module H*(X,.%) is finitely
generated, so we can apply (TES,Example 2)). O

Corollary 9. Let X be a projective Cohen-Macaulay scheme of equidimension n over a field k,
and w% a dualising sheaf on X. Then for any locally finitely free sheaves F,& on X and0 <i<mn
there is a canonical isomorphism of k-modules natural in both variables

Ext'(&,F) — Bat" (F,6 @w%)"
Proof. We have the following isomorphism of k-modules, natural in both variables
Ext'(&,F) = Ext'(Ox, 8" @ F)

~ H(X,6" @ F)

>~ "X, (Y @ F) @wk)Y

>~ "X, 80 FY @uwk)Y

~ Eat" (Ox, F' @& @ wk)”

~ Eat" Y(F,E @wg)Y
as required. O

Corollary 10. Let X be an integral normal projective scheme of dimension > 2 over a field k.
Then for any locally finitely free sheaf # on X we have HY(X, . (—q)) = 0 for all sufficiently
large q.

Proof. If x € X is a closed point then dimOx , = dimX > 2. If U = SpecA is an affine open
neighborhood of x, then z corresponds to a maximal ideal of height > 2 in A. It follows that
deptho ,F. > 2 for every closed point x in the support of .7 (DIFF,Theorem 42). So the result
follows by the same method as in the proof of (i) = (i¢) in Theorem 7(b). O

Corollary 11. If X is a nonsingular projective variety over an algebraically closed field k, then
any dualising sheaf W is isomorphic as a sheaf of modules to the canonical sheaf wx .

Corollary 12. Let X be a nonsingular projective curve over an algebraically closed field k. Then
pg(X) = ranky H' (X, Ox).

Proof. Let w$ be a dualising sheaf on X. Then by Theorem 7 and Corollary 11 we have an
isomorphism of k-modules

N(X,wx) 2T(X,0%) 2 Ext’(Ox,wk) = HY(X,0x)Y
from which it follows that py(X) = rankyH'(X,Ox), as required. O

Remark 5. Let X be as in Corollary 12. We now completely understand the cohomology groups
H*(X,0x) for i > 0. These groups are zero for ¢ > 1 and using (VS,Corollary 28) we have

ranky HY(X,0x) =1
rankH' (X, Ox) = py(X)
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