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In this note we study the higher direct image functors Rif∗(−) and the higher coinverse image
functors Rif !(−) which will play a role in our study of Serre duality. The main theorem is the
proof that if F is quasi-coherent then so is Rif∗(F ), which we prove first for noetherian schemes
and then more generally for quasi-compact quasi-separated schemes. Most proofs are from either
Hartshorne’s book [1] or Kempf’s paper [2], with some elaborations.
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1 Definition

Definition 1. Let f : X −→ Y be a continuous map of topological spaces. Then we define the
higher direct image functors Rif∗ : Ab(X) −→ Ab(Y ) to be the right derived functors of the
direct image functor f∗ for i ≥ 0. Since f∗ is left exact there is a canonical natural equivalence
R0f∗ ∼= f∗. For any short exact sequence of sheaves of abelian groups on X

0 −→ F ′ −→ F −→ F ′′ −→ 0

there is a long exact sequence of sheaves of abelian groups on Y

0 // f∗(F ′) // f∗(F ) // f∗(F ′′) // R1f∗(F ′) // · · ·

· · · // Rif∗(F ′′) // Ri+1f∗(F ′) // Ri+1f∗(F ) // Ri+1f∗(F ′′) // · · ·

Remark 1. If the functor f∗ : Ab(X) −→ Ab(Y ) is exact, then for i > 0 the higher direct image
functor Rif∗ is zero. In particular this is the case if f is a closed embedding (SGR,Definition 17).

Remark 2. Let X be a topological space. In (COS,Section 1.3) we defined for every i ≥ 0 an
additive functor H i(−) : Ab(X) −→ Ab(X) which maps a sheaf of abelian groups F to the
presheaf of cohomology defined by Γ(U,H i(F )) = Hi(U,F ). Here Hi(U,−) denotes the ith
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right derived functor of Γ(U,−) : Ab(X) −→ Ab. By (COS,Lemma 12) the group Hi(U,F ) is
canonically isomorphic to the usual cohomology group Hi(U,F |U ) of the sheaf F |U .

Proposition 1. Let f : X −→ Y be a continuous map of spaces and F a sheaf of abelian groups
on X. For every i ≥ 0 there is a canonical isomorphism of sheaves of abelian groups on Y natural
in F

ν : af∗H i(F ) −→ Rif∗(F )

In other words, Rif∗(F ) is the sheafification of the presheaf

U 7→ Hi(f−1U,F )

Proof. For every i ≥ 0 we have the additive functor af∗H i(−) which is the composite of H i(−)
with the direct image for presheaves f∗ : Ab(X) −→ Ab(Y ) and the sheafification a : Ab(Y ) −→
Ab(Y ). Note that since exactness in Ab(X), Ab(Y ) is computed pointwise, the functor af∗ is
exact. Suppose we have a short exact sequence of sheaves of abelian groups on X

0 −→ F ′ −→ F −→ F ′′ −→ 0

As in (COS,Section 1.3) we obtain a canonical connecting morphism ωi : H i(F ′′) −→ H i+1(F ′)
for each i ≥ 0. The functors af∗H i(−) together with the morphisms af∗ωi define a cohomological
δ-functor between Ab(X) and Ab(Y ). As right derived functors the Hi(U,−) vanish on injectives
for i > 0, and therefore so do the functors af∗H i(−). The cohomological δ-functor is therefore
universal by (DF,Theorem 74).

On the other hand, the cohomological δ-functor of right derived functors {Rif∗}i≥0 between
A and B is always universal. For any sheaf of abelian groups F on X there is a canonical
isomorphism of sheaves of abelian groups natural in F

af∗H 0(F ) ∼= a(f∗F ) ∼= f∗F ∼= R0f∗(F )

since f∗F is already a sheaf. This natural equivalence af∗H 0(−) ∼= R0f∗ induces a canonical
isomorphism of cohomological δ-functors. In particular, for each i ≥ 0 we have a canonical natural
equivalence ηi : af∗H i(−) −→ Rif∗, as required.

Corollary 2. Let X be a topological space and F a sheaf of abelian groups on X. Then for i ≥ 0
there is a canonical isomorphism of sheaves of abelian groups aH i(F ) −→ Ri1∗(F ).

Corollary 3. Let f : X −→ Y be a continuous map of spaces and V ⊆ Y an open subset with
induced map g : f−1V −→ V . If F is a sheaf of abelian groups on X then for i ≥ 0 there is a
canonical isomorphism of sheaves of abelian groups natural in F

α : Rif∗(F )|V −→ Rig∗(F |f−1V )

Proof. Both sides are universal cohomological δ-functors between Ab(X) and Ab(V ) in the variable
F (DF,Definition 24), (COS,Lemma 4), (DF,Theorem 74). The canonical natural isomorphism

R0f∗(F )|V ∼= f∗(F )|V = g∗(F |f−1V ) ∼= R0g∗(F |f−1V )

induces a canonical isomorphism of the two δ-functors. In particular, for each i ≥ 0 we have a
canonical natural equivalence ηi : Rif∗(−)|V −→ Rig∗((−)|f−1V ), as required.

Lemma 4. Let f : X −→ Y be a continuous map of spaces and g : Y −→ Z a closed embedding.
If F is a sheaf of abelian groups on X then for i ≥ 0 there is a canonical isomorphism of sheaves
of abelian groups on Z natural in F

γ : g∗Rif∗(F ) −→ Ri(gf)∗(F )

Proof. The functor g∗ : Ab(Y ) −→ Ab(Z) is exact (SGR,Definition 17), so the result follows from
(DF,Proposition 63).
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Remark 3. In particular we can apply Lemma 4 in the case where g is a homeomorphism, to see
that taking higher direct image functors commutes with isomorphisms.

Corollary 5. Let f : X −→ Y be a continuous map of spaces and F a flasque sheaf of abelian
groups on X. Then Rif∗(F ) = 0 for all i > 0.

Proof. By Proposition 1 it suffices to show that H i(F ) = 0 for i > 0. But since Γ(U,H i(F )) ∼=
Hi(U,F |U ) (COS,Lemma 12) this follows from (COS,Proposition 5) and the fact that restrictions
of flasque sheaves are flasque.

2 Module Structure

Throughout this section let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and fix as-
signments of injective resolutions I,J to the objects of Mod(X),Ab(X) respectively, with respect
to which all derived functors are calculated.

For clarity we denote the direct image functor for sheaves of modules by fM∗ : Mod(X) −→
Mod(Y ). This is a left exact functor, and we denote its right adjoints by RifM∗ (−) : Mod(X) −→
Mod(Y ) for i ≥ 0. Let U : Mod(X) −→ Ab(X) and u : Mod(Y ) −→ Ab(Y ) be the forgetful
functors. Then the following diagram commutes

Mod(X)

U

��

fM
∗ //Mod(Y )

u

��
Ab(X)

f∗

// Ab(Y )

Since U, u are exact and U sends injective objects into right f∗(−)-acyclic objects by Corollary 5
and (COS,Lemma 3), we are in a position to apply (DF,Proposition 77) and (DF,Remark 2) to
obtain a canonical natural equivalence for i ≥ 0

µi : u ◦RifM∗ (−) −→ Rif∗(−) ◦ U

Moreover given a short exact sequence of sheaves of modules 0 −→ F ′ −→ F −→ F ′′ −→ 0 the
following diagram of abelian groups commutes for i ≥ 0

RifM∗ (F ′′) //

��

Ri+1fM∗ (F ′)

��
Rif∗(F ′′) // Ri+1f∗(F ′)

(1)

If I, I ′ are two assignments of injective resolutions to the objects of Mod(X) then for any sheaf
of modules F on X the composite RiIf

M
∗ (F ) ∼= Rif∗(F ) ∼= RiI′f

M
∗ (F ) is just the evaluation of

the canonical natural equivalence RiIf
M
∗ (−) ∼= RiI′f

M
∗ (−). This means that the module structure

on Rif∗(F ) is independent of the choice of resolutions on Mod(X).

Definition 2. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and fix an assignment
of injective resolutions J to the objects of Ab(X). Then for any sheaf of OX -modules F and
i ≥ 0 the sheaf of abelian groups Rif∗(F ) has a canonical OY -module structure. For i = 0
this is the structure induced by R0f∗(F ) ∼= f∗F . If φ : F −→ G is a morphism of sheaves of
OX -modules then Rif∗(F ) −→ Rif∗(G ) is a morphism of OY -modules, so we have an additive
functor Rif∗(−) : Mod(X) −→ Mod(Y ). For a short exact sequence of sheaves of modules

0 −→ F ′ −→ F −→ F ′′ −→ 0

the connecting morphism δi : Rif∗(F ′′) −→ Ri+1f∗(F ′) is a morphism of OY -modules for i ≥ 0.
So we have a long exact sequence of OY -modules

0 −→ f∗(F ′) −→ f∗(F ) −→ f∗(F ′′) −→ R1f∗(F ′) −→ · · ·
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That is, the additive functors {Rif∗(−)}i≥0 form a universal cohomological δ-functor between
Mod(X) and Mod(Y ) (universal by Corollary 5 and (DF,Theorem 74)).

Remark 4. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces. Let F be a sheaf
of modules on X and fix an assignments of injective resolutions J to the objects of Ab(X). To
calculate the OY -module structure on the sheaf of abelian groups Rif∗(F ) you proceed as follows
(using (DF,Remark 2)). Choose any injective resolution of F in Mod(X)

0 −→ F −→ I 0 −→ I 1 −→ I 2 −→ · · ·

and observe that this is a flasque resolution in Ab(X). Suppose that the chosen injective resolution
for F in Ab(X) is

0 −→ F −→ J 0 −→ J 1 −→ J 2 −→ · · ·

Then we can lift the identity to a morphism of cochain complexes I −→ J in Ab(X) (DF,Theorem
19). Applying the functor f∗ : Ab(X) −→ Ab(Y ) and taking cohomology at i we obtain an isomor-
phism of sheaves of abelian groups RifM∗ (F ) ∼= Rif∗(F ), which induces the OY -module structure
on Rif∗(F ).

Corollary 6. Let f : X −→ Y be a morphism of ringed spaces and V ⊆ Y an open subset with
induced map g : f−1V −→ V . If F is a sheaf of modules on X then for i ≥ 0 there is a canonical
isomorphism of sheaves of modules natural in F

α : Rif∗(F )|V −→ Rig∗(F |f−1V )

Proof. Both sides are universal cohomological δ-functors between Mod(X) and Mod(V ) in the
variable F (DF,Definition 24) (universal by Corollary 5 and (DF,Theorem 74)). The canonical
natural isomorphism

R0f∗(F )|V ∼= f∗(F )|V = g∗(F |f−1V ) ∼= R0g∗(F |f−1V )

induces a canonical isomorphism of the two δ-functors. In particular, for each i ≥ 0 we have a
canonical natural equivalence ηi : Rif∗(−)|V −→ Rig∗((−)|f−1V ), as required.

Lemma 7. Let f : X −→ Y be a morphism of ringed spaces and g : Y −→ Z a closed embedding
of ringed spaces. If F is a sheaf of modules on X then for i ≥ 0 there is a canonical isomorphism
of sheaves of modules on Z natural in F

γ : g∗Rif∗(F ) −→ Ri(gf)∗(F )

Proof. Let γ be the canonical isomorphism of sheaves of abelian groups defined in Lemma 4. We
show that γ is a morphism of sheaves of modules. Choose an injective resolution I for F as
an object of Mod(X), and suppose that J is the chosen injective resolution of F as an object
of Ab(X). As in Remark 4 we lift the identity to a morphism of cochain complexes I −→ J
of sheaves of abelian groups, apply f∗ and take cohomology to obtain the canonical isomorphism
of sheaves of abelian groups m : Hi(f∗I ) −→ Hi(f∗J ) which gives the latter sheaf its module
structure (since the former is the cohomology of a complex of sheaves of modules).

In the same way that we induce the isomorphism γ we obtain an isomorphism of sheaves of
modules γ′ : g∗Hi(f∗I ) −→ Hi(g∗f∗I ) which fits into the following commutative diagram

g∗H
i(f∗I )

γ′

��

g∗m +3 g∗Hi(f∗J )

γ

��
Hi(g∗f∗I ) +3 Hi(g∗f∗J )

where the bottom isomorphism gives Hi((gf)∗J ) its module structure. This shows that γ is a
morphism of sheaves of modules, and completes the proof.
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Proposition 8. Let f : X −→ Y be a morphism of ringed spaces and F a sheaf of modules on
X. For every i ≥ 0 there is a canonical isomorphism of sheaves of modules on Y natural in F

ν : af∗H i(F ) −→ Rif∗(F )

In other words, Rif∗(F ) is the sheafification of the presheaf

U 7→ Hi(f−1U,F )

Proof. We described in (COS,Section 1.3) how the presheaf of abelian groups H i(F ) becomes a
presheaf of OX -modules in a canonical way, and we have just described the module structure on
Rif∗(F ). The proof is the same as Proposition 1, mutatis mutandis.

Recall from (CON,Definition 4) that a scheme X is semi-separated if it has a nonempty affine
open cover with affine pairwise intersections, called a semi-separating cover. A semi-separated
scheme is quasi-compact if and only if it has a finite semi-separating cover. If X is semi-separated
with semi-separating cover U then for any V ∈ U the inclusion V −→ X is affine. A similar
observation applies to the elements of a semi-separating affine basis.

Proposition 9. Let f : X −→ Y be a morphism of semi-separated schemes with X quasi-compact,
and let U be a finite semi-separating cover of X. If F is a quasi-coherent sheaf on X, then

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · ·

is an f∗-acyclic resolution of F by quasi-coherent sheaves, and for p ≥ 0 there is a canonical
isomorphism of sheaves of abelian groups natural in F

Hp(f∗C (U,F )) −→ Rpf∗(F )

Proof. In (COS,Theorem 35) we showed that this resolution was quasi-coherent and Γ(X,−)-
acyclic, and we seek to upgrade this acyclicity. That is, we want to show that C p(U,F ) is right
f∗-acyclic for p ≥ 0. By Proposition 8 it would suffice to show that for i > 0 and V ⊆ Y affine
belonging to a semi-separating affine basis of Y

Hi(f−1V,C p(U,F )|f−1V ) = 0

The inclusion V −→ Y is affine, and therefore by pullback so is the inclusion f−1V −→ X. For
indices i0 < · · · < ip of the cover U we write

ui0,...,ip : Ui0 ∩ · · · ∩ Uip −→ X, vi0,...,ip : Ui0 ∩ · · · ∩ Uip ∩ f−1V −→ f−1V

for the inclusions. Observe that both of these morphisms are affine by our assumptions, and the
open set Ui0 ∩ · · · ∩ Uip ∩ f−1V is affine because the morphism f−1V −→ X is affine. We have a
canonical isomorphism of sheaves of modules

C p(U,F )|f−1V
∼=

⊕
i0<···<ip

ui0,...,ip∗(F |Ui0∩···∩Uip
)|f−1V

∼=
⊕

i0<···<ip

vi0,...,ip∗(F |Ui0∩···∩Ui0∩f−1V )

But for each sequence i0 < · · · < ip we have by (COS,Corollary 28)

Hi(f−1V, vi0,...,ip∗(F |Ui0∩···∩Ui0∩f−1V )) ∼= Hi(Ui0 ∩ · · · ∩ Uip ∩ f−1V,F |Ui0∩···∩Ui0∩f−1V ) = 0

since the higher cohomology of quasi-coherent sheaves on affine schemes vanishes. This calculation
is enough to show that Hi(f−1V,C p(U,F )|f−1V ) = 0 as required.

From (DTC2,Remark 14) we deduce a canonical isomorphism of sheaves of abelian groups
Hp(f∗C (U,F )) −→ Rpf∗(F ), which is natural with respect to morphisms of sheaves of abelian
groups.
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3 Direct Image and Quasi-coherence

The following result and its corollary are central. We give two proofs: the first one given in this
section only works in the case where X is noetherian, but has the advantage of being short. In
Section 5 we will give a proof more generally for concentrated schemes, but this will require us to
develop a little bit more technical machinery.

Proposition 10. Let f : X −→ Y be a morphism of schemes where X is noetherian and Y =
SpecA is affine. Then for any quasi-coherent sheaf of modules F on X and i ≥ 0 there is a
canonical isomorphism of sheaves of modules on Y natural in F

β : Rif∗(F ) −→ Hi(X,F )˜
Proof. We give Rif∗(F ) the canonical OY -module structure of Definition 2. We know from
(COS,Definition 5) that the abelian group Hi(X,F ) has a canonical Γ(X,OX)-module structure,
and therefore also an A-module structure. Since X is noetherian the sheaf f∗F is quasi-coherent,
and we therefore have a canonical isomorphism of sheaves of modules f∗F ∼= Γ(X,F )˜. Therefore
for i = 0 we have a canonical isomorphism natural in F

µ0 : R0f∗(F ) ∼= f∗(F ) ∼= Γ(X,F )˜ ∼= H0(X,F )˜
Since −̃ : AMod −→ Mod(Y ) is exact, we have two cohomological δ-functors {Rif∗(−)}i≥0 and
{Hi(X,−)˜}i≥0 between Qco(X) and Mod(Y ). By (COS,Corollary 22) any quasi-coherent sheaf
F on X can be embedded in a flasque, quasi-coherent sheaf. Hence both δ-functors are effaceable
for i > 0, and therefore universal (DF,Theorem 74). Therefore µ0 gives rise to a canonical
isomorphism µ of δ-functors. In particular, for each i ≥ 0 we have a canonical natural equivalence
µi : Rif∗(−) −→ Hi(X,−)˜ of additive functors Qco(X) −→ Mod(Y ), as required.

Corollary 11. Let f : X −→ Y be a morphism of schemes, with X noetherian. Then for any
quasi-coherent sheaf F on X the sheaves Rif∗(F ) are quasi-coherent on Y for i ≥ 0.

Proof. Let y ∈ Y be given, and find an affine open neighborhood V of y together with an isomor-
phism h : V −→ SpecA. Let g : f−1V −→ V be the morphism induced by f . Then by Proposition
10, Lemma 7 and Corollary 6 we have an isomorphism of sheaves of modules for i ≥ 0

h∗(Rif∗(F )|V ) ∼= h∗R
ig∗(F |f−1V )

∼= Ri((hg)∗(F |f−1V ))
∼= Hi(f−1V,F |f−1V )˜

which shows that Rif∗(F ) is quasi-coherent.

Remark 5. The proof of Proposition 10 also works under slightly different hypothesis. Let X
be a quasi-compact semi-separated scheme with finite semi-separating cover U. Then any quasi-
coherent sheaf F on X can be embedded in the sheaf C 0(U,F ) which by Proposition 10 is
quasi-coherent and both Γ(X,−) and f∗-acyclic. This allows us to show that both δ-functors in
the proof of Proposition 10 are effaceable without the noetherian hypothesis on X, and the rest
of the proof is the same.

In particular we deduce that the conclusion of Corollary 11 holds for a quasi-compact separated
morphism of schemes f : X −→ Y . In fact we show in Section 5 that with a little more work one
can weaken “separated” to “quasi-separated”.

Lemma 12. Let f : X −→ Y be a morphism of schemes and L a very ample sheaf on X relative
to Y . If V ⊆ Y is open and g : f−1V −→ V the induced morphism of schemes, then L |f−1V is
very ample relative to V .

Proof. It is clear that L |f−1V is invertible. Suppose i : X −→ PnY is an immersion of Y -schemes
with i∗O(1) ∼= L . Let k : PnV −→ PnY be the morphism induced by the inclusion V −→ Y (see
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(TPC,Section 5)). Then we induce a morphism j : f−1V −→ PnV into the pullback making every
face of the following diagram commute

PnY

  A
AA

AA
AA

X

i
<<xxxxxxxxx

// Y

PnV

k

OO

��@
@@

@@
@@

@

f−1V

d

OO

g
//

j
<<yyyyyyyy

V

OO

Using standard properties of pullbacks we see that every square face is a pullback, and in particular
j is an immersion of schemes over V (SI,Lemma 15). It is not difficult to see that k∗O(1) ∼= O(1)
and therefore there is an isomorphism of sheaves of modules

j∗O(1) ∼= j∗k∗O(1) ∼= d∗i∗O(1) ∼= d∗L ∼= L |f−1V

which shows that L |f−1V is very ample relative to V .

Lemma 13. Let f : X −→ Y be a morphism of schemes with X noetherian and Y affine, and let
F be a quasi-coherent sheaf of modules on X. Then F is generated by global sections if and only
if the counit ε : f∗f∗F −→ F is an epimorphism.

Proof. Since X is noetherian the sheaf f∗F is quasi-coherent, and is therefore generated by global
sections. For x ∈ X we have a commutative diagram

(f∗f∗F )x

��

εx // Fx

(f∗F )f(x) ⊗OY,f(x) OX,x

ϕ

66nnnnnnnnnnnnnn

where ϕ((V, s)⊗r) = r ·(f−1V, s). It follows that the image of εx is the OX,x-submodule generated
by the global sections. Therefore ε is an epimorphism if and only if F is generated by global
sections.

Theorem 14. Let f : X −→ Y be a projective morphism of noetherian schemes, let O(1) be a
very ample invertible sheaf on X relative to Y , and let F be a coherent sheaf on X. Then

(a) For all sufficiently large n, the natural morphism f∗f∗(F (n)) −→ F (n) is an epimorphism.

(b) For all i ≥ 0 the sheaf of modules Rif∗(F ) is coherent.

(c) For i > 0 and all sufficiently large n, we have Rif∗(F (n)) = 0.

Proof. First we reduce to the case where Y is affine. Given a point y ∈ Y let V be an affine open
neighborhood, set U = f−1V and let g : U −→ V the induced projective morphism of noetherian
schemes (SEM,Lemma 9). By Lemma 12 the invertible sheaf L |U is very ample relative to V ,
and it is not difficult to check that there is a commutative diagram for n > 0

f∗f∗(F (n))|U
ε|U //

��

F (n)|U

��
g∗g∗(F |U (n))

ε
// F |U (n)
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This shows that (a) is a local question, while (b), (c) are local by Corollary 6. So using quasi-
compactness of Y we can reduce to the case where Y is affine. Then by Lemma 13, (a) becomes
the statement that for n sufficiently large F (n) is generated by global sections, which follows from
(H, II 5.17). To prove (b), (c) we can by Lemma 7 reduce slightly to the case where Y = SpecA
for some noetherian ring A. For i ≥ 0 there is by Proposition 10 an isomorphism of sheaves of
modules

Rif∗(F ) ∼= Hi(X,F )˜
Therefore (b) follows (COS,Theorem 43)(a), while (c) follows from (COS,Theorem 43)(b).

Remark 6. Let f : X −→ Y be a closed immersion of noetherian schemes. In particular f is
projective, so the functors Rif∗ preserve quasi-coherent and coherent sheaves for i ≥ 0.

4 Higher Coinverse Image

Definition 3. Let f : X −→ Y be a closed immersion of schemes. There is an additve functor
f ! : Mod(Y ) −→ Mod(X) which is right adjoint to f∗ (MRS,Proposition 97) and we define the
higher coinverse image functors Rif ! : Mod(Y ) −→ Mod(X) to be the right derived functors of
f ! for i ≥ 0. Since f ! is left exact there is a canonical natural equivalence R0f ! ∼= f !. For any
short exact sequence of sheaves of modules on Y

0 −→ F ′ −→ F −→ F ′′ −→ 0

there is a long exact sequence of sheaves of modules on X

0 // f !(F ′) // f !(F ) // f !(F ′′) // R1f !(F ′) // · · ·

· · · // Rif !(F ′′) // Ri+1f !(F ′) // Ri+1f !(F ) // Ri+1f !(F ′′) // · · ·

Proposition 15. Let f : X −→ Y be a closed immersion of schemes and F a sheaf of modules
on Y . Then for i ≥ 0 there is a canonical isomorphism of sheaves of abelian groups natural in F

ρi : Rif !(F ) −→ f−1ExtiY (f∗OX ,F )

Proof. Both sides are universal cohomological δ-functors between Mod(Y ) and Ab(X), and the
case i = 0 is (MRS,Proposition 96), so we induce a natural equivalence in all degrees i ≥ 0 in the
usual way.

If f : X −→ Y is a closed immersion of noetherian schemes, the functor f ! preserves quasi-
coherent and coherent sheaves. We want to show this is also true for the higher coinverse image
functors. First we prove the higher versions of (MOS,Proposition 17), (MOS,Proposition 18) and
(MOS,Proposition 20).

Proposition 16. Let f : X −→ Y be a closed immersion of schemes, V ⊆ Y an open subset and
g : f−1V −→ V the induced morphism. Then for a sheaf of modules F on Y and i ≥ 0 there is a
canonical isomorphism of sheaves of modules on f−1V natural in F

θi : (Rif !F )|f−1V −→ Rig!(F |V )

That is, there is a canonical natural equivalence θi : (−|f−1V )Rif ! −→ Rig!(−|V ).

Proof. Both sides are universal cohomological δ-functors between Mod(Y ) and Mod(f−1V ), and
the case i = 0 is (MOS,Proposition 17), so we induce a natural equivalence in all degrees i ≥ 0 in
the usual way.
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Proposition 17. Suppose there is a commutative diagram of schemes

X

k

��

f // Y

h

��
X ′

g
// Y ′

with f, g closed immersions. Then for any sheaf of modules F on Y and i ≥ 0 there is a canonical
isomorphism of sheaves of modules natural in F

µi : k∗(Rif !F ) −→ Rig!(h∗F )

That is, there is a canonical natural equivalence µi : k∗ ◦Rif ! −→ Rig! ◦ h∗.

Proof. Use the same argument given in the proof of Proposition 16, using (MOS,Proposition 18)
in the case i = 0.

Proposition 18. Let φ : A −→ B be a surjective morphism of noetherian rings and f : X −→ Y
the corresponding closed immersion of affine schemes. For any A-module M and i ≥ 0 there is a
canonical isomorphism of sheaves of modules natural in M

ζi : ExtiA(B,M)˜ −→ Rif !(M̃)

Proof. Both sides are cohomological δ-functors between AMod and Mod(X). To show they
are universal, it suffices to show that for i > 0 they both vanish on injective A-modules. For
ExtiA(B,−)˜ this is trivial. If I is an injective A-module, then I˜ is an injective sheaf of modules
in Mod(X) (COS,Remark 7), so Rif !(I ˜ ) = 0 for i > 0. Therefore both sides are universal
δ-functors. We have a natural equivalence in degree zero by (MOS,Proposition 20), and therefore
a canonical natural equivalence ζi for i ≥ 0 by the usual argument.

Corollary 19. Let f : X −→ Y be a closed immersion of noetherian schemes. If F is a quasi-
coherent sheaf of modules on Y then the sheaves Rif !F are quasi-coherent for i ≥ 0. If F is
coherent, then so is Rif !F for i ≥ 0.

Proof. Let F be a quasi-coherent sheaf of modules on Y , and let x ∈ X be given. Let V be an
affine open neighborhood of f(x) and set U = f−1V , which is also affine. Let g : U −→ V, F :
SpecOX(U) −→ SpecOY (V ) be the induced closed immersions and k : U −→ SpecOX(U), h :
V −→ SpecOY (V ) the canonical isomorphisms. Then using Proposition 16, Proposition 17 and
Proposition 18 we have an isomorphism of sheaves of modules for i ≥ 0

k∗(Rif !F )|U ∼= k∗(Rig!(F |V ))
∼= RiF !h∗(F |V )
∼= RiF !(F (V )˜)
∼= ExtiOY (V )(OX(U),F (V ))˜

which shows that Rif !F is quasi-coherent. If F is coherent then F (V ) is finitely generated, and
hence so is the OX(U)-module ExtiOY (V )(OX(U),F (V )) (EXT,Proposition 9), which shows that
Rif !F is coherent.

Remark 7. Let f : X −→ Y be a closed immersion of noetherian schemes. Then for i ≥ 0 the
functors Rif∗ and Rif ! preserve quasi-coherent and coherent sheaves.
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5 Direct Image and Quasi-coherence (General case)

The aim of this section is to prove that for a concentrated morphism of schemes f : X −→ Y
the higher direct image functors Rif∗(−) preserve quasi-coherence, thus generalising Corollary 11.
We follow the elegant proof given in Kempf’s paper [2]. Here is the proof in outline. First we
show how to localise sheaves with respect to a global section. Given F and f ∈ Γ(X,OX) one
takes the direct limit F(f) over the direct system

F −→ F −→ F −→ · · ·

where the morphisms are multiplication by f . The elementary properties of this construction
take up Section 5.1. The main result is that this construction localises cohomology Hi(X,F )f ∼=
Hi(X,F(f)). In Section 5.3 we show that localising F is the same as restricting to Xf and then
pushing back up to the whole scheme. Finally in Section 5.4 we put all of this together and give
the proof of the main theorem.

5.1 Localisations of Sheaves

A direct system of sheaves which commonly arises is successive multiplication by a section of the
structure sheaf or, more generally, by a section of an invertible sheaf. Let f be a global section
of an invertible sheaf L on a scheme X. For any sheaf of modules F on X, we have the direct
system

F −→ F ⊗L −→ F ⊗L ⊗2 −→ · · · (2)

given by multiplication by f . This direct system is natural in F . To be clear, these morphisms
are defined for sections over an open set U by

F −→ F ⊗L a 7→ a ⊗̇ f |U
F ⊗L ⊗i −→ F ⊗L ⊗(i+1) a ⊗̇ f1 ⊗̇ · · · ⊗̇ fi 7→ a ⊗̇ f1 ⊗̇ · · · ⊗̇ fi ⊗̇ f |U

If we take F to be a sheaf of commutative algebras and L = OX , the direct limit lim−→(F ⊗O⊗n
X )

becomes a sheaf of commutative algebras in a canonical way. In particular lim−→(OX ⊗ O⊗n
X ) is a

sheaf of algebras, which behaves like the localisation Af of a ring A, and for any sheaf of modules
F the sheaf lim−→(F ⊗O⊗n

X ) is a sheaf of modules over lim−→(OX ⊗O⊗n
X ) (which one should compare

with Mf being a module over Af ). In the remainder of this section we check the details of these
claims.

Let X be a scheme, f ∈ Γ(X,OX) a global section and F a sheaf of commutative OX -algebras.
We have the direct system of multiplication by f

F −→ F ⊗OX −→ F ⊗O⊗2
X −→ · · · (3)

Each of these sheaves is a sheaf of commutative OX -algebras in a canonical way (SOA,Section
2.5), but multiplication by f is certainly not a morphism of OX -algebras so we cannot define the
ring structure on lim−→(F ⊗O⊗n

X ) in the naive way (by just taking direct limits).
The algebra structure on F gives a canonical morphism of sheaves of modules F ⊗F −→ F

which we use to define the following morphism of sheaves of modules for d, e ≥ 0

ρd,e : (F ⊗O⊗d
X )⊗ (F ⊗O⊗e

X ) ∼= (F ⊗F )⊗O⊗(d+e)
X −→ F ⊗O⊗(d+e)

X

(m ⊗̇ f1 ⊗̇ · · · ⊗̇ fd) ⊗̇ (n ⊗̇ g1 ⊗̇ · · · ⊗̇ ge) 7→ mn ⊗̇ f1 ⊗̇ · · · ⊗̇ fd ⊗̇ g1 ⊗̇ · · · ⊗̇ ge

Note that since the tensor products occur over OX , we can rearrange the f1, . . . , fd, g1, . . . , ge
into any order we like. This is a cruical point in what follows, which is why we can’t expect the
same thing to work for an arbitrary invertible sheaf L . The following lemma simply says that
if you apply the morphisms in the direct system to either term in a product (that is, stick extra
factors of f on the end) and then multiply, you get the original product with the factors of f at
the end.
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Lemma 20. For any d, e ≥ 0 and k > 0 the following diagram commutes

(F ⊗O⊗d
X )⊗ (F ⊗O⊗e

X )

��

ρd,e

// F ⊗O⊗(d+e)
X

��
(F ⊗O⊗(d+k)

X )⊗ (F ⊗O⊗e
X )

ρd+k,e

// F ⊗O⊗(d+k+e)
X

The analogous diagram in the second variable also commutes. In addition the following diagram
commutes

(F ⊗O⊗d
X )⊗ (F ⊗O⊗e

X )

ρd,e **VVVVVVVVVV
+3 (F ⊗O⊗e

X )⊗ (F ⊗O⊗d
X )

ρe,dtthhhhhhhhhh

F ⊗O⊗(d+e)
X

Proof. To check this reduce to special sections and then apply the explicit formula for ρd,e. There
is another diagram for associativity of the product that we will need, but we leave it to the reader
to write down and verify.

With this technical preliminary out of the way, let P be the presheaf colimit of the direct
system (3). That is, P (U) = lim−→Γ(U,F ⊗ O⊗n

X ). This is already a presheaf of OX -modules,
and we make it into a presheaf of OX -algebras by defining multiplication in the following way for
d, e ≥ 0

(d, x) · (e, y) = (d+ e, ρd,eU (x ⊗̇ y))

From Lemma 20 we infer that P (U) is a commutative Γ(U,OX)-algebra and P a presheaf of
commutative OX -algebras. It follows that the sheaf of OX -modules lim−→(F ⊗O⊗n

X ) is canonically
a sheaf of commutative OX -algebras with the following multiplication

(d,m ⊗̇ f1 ⊗̇ · · · ⊗̇ fd) · (e, n ⊗̇ g1 ⊗̇ · · · ⊗̇ ge) = (d+ e,mn ⊗̇ f1 ⊗̇ · · · ⊗̇ fd ⊗̇ g1 ⊗̇ · · · ⊗̇ ge)

In particular if we set F = OX then the direct limit of the following direct system

OX −→ O⊗2
X −→ O⊗3

X −→ · · ·

is a sheaf of commutative OX -algebras. Of course this direct system is canonically isomorphic to
the direct system

OX −→ OX −→ OX −→ · · ·

whose morphisms are multiplication by f . We denote the direct limit of this system by OX,(f).
This is a sheaf of commutative OX -algebras with multiplication (d,m) · (e, n) = (d+ e,mn). If F
is just a sheaf of OX -modules then we have another direct system of multiplication by f

F −→ F −→ F −→ · · · (4)

and the direct limit F(f) becomes a sheaf ofOX,(f)-modules with action (d, r)·(e,m) = (d+e, r·m).

Definition 4. Let X be a scheme and f ∈ Γ(X,OX) a global section. Taking direct limits over
multiplication by f yields a sheaf of commutative OX -algebras OX,(f). For any sheaf of OX -
modules F the same procedure yields a sheaf of OX,(f)-modules F(f). A morphism of sheaves of
OX -modules α : F −→ G induces a morphism of the direct systems (4) and taking direct limits a
morphism of sheaves of OX,(f)-modules α(f) : F(f) −→ G(f) defined by (α(f))(d, x) = (d, αU (x)).

The next few results show just how good the analogy is between passing from the sheaf M˜
to the sheaf (Mf )˜ and passing from the sheaf F to the sheaf F(f). First we have to show how
to write the localisation Mf as a direct limit.
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Lemma 21. Let A be a ring, M an A-module and f ∈ A. Consider the direct system of modules

M
f // M

f // M
f // M // · · · (5)

determined by multiplication by f . There is a canonical isomorphism of A-modules natural in M

lim−→M −→Mf

(k,m) 7→ m/fk

Proof. Just for convenience index the copies of M in the direct system in the following way
M0 −→ M1 −→ · · · . Define for k ≥ 0 a morphism of A-modules Mk −→ Mf by m 7→ m/fk.
This is a cocone on the direct system, and one checks easily it is a colimit. In the direct limit
definition of the localisation, it is the position in the sequence that corresponds to the degree of f
in the denominator. So applying one of the morphisms in the system corresponds to multiplying
top and bottom of a fraction by f .

If we replace f by a power fk then the corresponding direct system is just a cofinal subset of
(5), so the direct limit remains unchanged. The same argument works in the sheaf case. That is,
given a scheme X, f ∈ Γ(X,OX) and a sheaf of OX -modules F we have for any k > 0 a canonical
isomorphism of sheaves of modules F(fk) −→ F(f) natural in F defined by (n,m) 7→ (nk,m).

In fact, in the sense that we elaborate below, the “localisation” F(f) is also natural in the
global section f .

Remark 8. Let X be a scheme and f, g ∈ Γ(X,OX) global sections. If f ∈ √
g, by which we

mean that f belongs to the radical of the ideal (g) generated by g in Γ(X,OX), then we can write
fk = bg for some k > 0 and b ∈ Γ(X,OX). It follows easily that Xf ⊆ Xg as open subsets.

Lemma 22. Let X be a scheme, f, g ∈ Γ(X,OX) global sections with f ∈ √g, and F a sheaf of
OX-modules. There is a canonical morphism of sheaves of modules natural in F

F(g) −→ F(f)

Proof. Firstly just suppose we are given h such that f = bg. We define a morphism of direct
systems

F

1

��

g // F

b

��

g // F

b2

��

g // · · ·

F
f
// F

f
// F

f
// · · ·

which induces a morphism of sheaves of modules F(g) −→ F(f) defined on an open set U by
(n,m) 7→ (n, b|nUm). In general we can find k > 0 and b such that fk = bg. Then we have a
composite F(g) −→ F(fk)

∼= F(f) defined by (n,m) 7→ (nk, b|nUm). It is straightforward to check
that this morphism doesn’t actually depend on k > 0 or b, so it is canonical. Naturality in F is
also clear.

Proposition 23. Let X be a concentrated scheme and f ∈ Γ(X,OX) a global section. There is
a canonical isomorphism of Γ(X,OX)-algebras θ : Γ(X,OX)f −→ Γ(X,OX,(f)) and for any sheaf
of OX-modules F and i ≥ 0 there is a canonical isomorphism of Γ(X,OX)-modules

ϑ : Hi(X,F )f −→ Hi(X,F(f))

compatible with the ring morphism θ and natural in F and f .

Proof. For any sheaf of OX -modules F we have the direct system of multiplication by f

F −→ F −→ F −→ · · · (6)

12



Applying Hi(X,−) and taking direct limits we obtain an isomorphism of Γ(X,OX)-modules
lim−→Hi(X,F ) −→ Hi(X,F )f defined by (k,m) 7→ m/fk. Using (COS,Theorem 26) (here we
use the fact that X is concentrated) we have a canonical isomorphism of Γ(X,OX)-modules

ϑ : Hi(X,F )f ∼= lim−→Hi(X,F ) ∼= Hi(X,F(f))

a/fk 7→ (k, a)

Taking i = 0 we obtain in the same way, for every quasi-compact open U ⊆ X, a canonical
isomorphism of Γ(U,OX)-modules

θ : Γ(U,F )f |U −→ Γ(U,F(f))

a/f |kU 7→ (k, a)

In the case where F = OX it is clear that θ is a morphism of rings and therefore an isomorphism
of Γ(U,OX) algebras. In fact the canonical morphism of rings Γ(U,OX) −→ Γ(U,OX,(f)) sends
f |U to a unit with inverse (1, 1), and θ is the induced morphism of rings. Taking U = X proves
the first statement of the proposition.

We can consider F(f) as a sheaf of modules over the ringed space (X,OX,(f)), so the coho-
mology group Hi(X,F(f)) is canonically a Γ(X,OX,(f))-module. Compatibility of ϑ and θ is now
trivial, given the explicit expressions we have for both morphisms. Naturality in F is obvious.
By naturality in f we mean that for global sections f, g ∈ Γ(X,OX) with f ∈ √g the following
diagram commutes

Hi(X,F )g

��

// Hi(X,F(g))

��
Hi(X,F )f // Hi(X,F(f))

But we can find k > 0 and b such that fk = bg, and the explicit construction of F(g) −→ F(f)

makes it easy to check that this diagram commutes.

Remark 9. Let X be a concentrated scheme, f ∈ Γ(X,OX) a global section and F a sheaf of
modules. Let P denote the presheaf of modules U 7→ Γ(U,F )f |U . For each quasi-compact open
U ⊆ X we have the isomorphism of Γ(U,OX)-modules θ : Γ(U,F )f |U −→ Γ(U,F(f)) given in the
proof of Proposition 23. This morphism is natural with respect to U , in the sense that for another
quasi-compact open set V ⊆ U the following diagram commutes

Γ(U,F )f |U

��

θ // Γ(U,F(f))

��
Γ(V,F )f |V θ

// Γ(V,F(f))

In Proposition 23 the morphism θ was only defined for quasi-compact open sets U , but the same
formula allows us to define it on any open set U . So we have a morphism of presheaves of OX -
modules φ : P −→ F(f) with the property that θU is an isomorphism for any quasi-compact open
set U .

5.2 Localisation as Restriction (Invertible sheaves)

Let X be a scheme, L an invertible sheaf and f ∈ Γ(X,L ) a global section, F a sheaf of modules
on X and adopt the notation of the previous section. Let Xf be the open subset of X consisting
of those points x where f generates the stalk Lx as an OX,x-module (MOS,Lemma 29). The open
set Xf is not necessarily affine, but the inclusion Xf −→ X is always an affine morphism We have
a direct system of the form (2) for the sheaf of modules Xf

F , and it follows from the next result
that every morphism in this system is an isomorphism.
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Lemma 24. For i ≥ 1 the canonical morphism of sheaves of modules

ν : Xf
F −→ (Xf

F )⊗L ⊗i

νU (a) = a ⊗̇ (f |U )⊗i

is an isomorphism.

Proof. The global section f determines a morphism α : OX −→ L which is an isomorphism when
restricted to Xf . That is, we have a canonical isomorphism L |Xf

∼= OX |Xf
. If i : Xf −→ X is

the inclusion then we deduce from the projection formula (MRS,Lemma 80) an isomorphism

κ : (Xf
F )⊗L ⊗i ∼= i∗(F |Xf

⊗L ⊗i|Xf
) ∼= i∗(F ⊗OX |⊗iXf

) ∼= Xf
F

It is easy to check that κν = 1. Since we already know κ is an isomorphism, it is immedite that
νκ = 1 as well, so the proof is complete. Just for interest’s sake, observe that on a section of the
form a ⊗̇ f1 ⊗̇ · · · ⊗̇ fi, where the fj are sections of L over an open subset U ⊆ X, we have

κU (a ⊗̇ f1 ⊗̇ · · · ⊗̇ fi) =
(
f1|U∩Xf

f |U∩Xf

· · ·
fi|U∩Xf

f |U∩Xf

)
· a

where for 1 ≤ j ≤ i the symbol fj |U∩Xf
/f |U∩Xf

denotes the unique element of Γ(U ∩ Xf ,OX)
which acts on f |U∩Xf

∈ Γ(U ∩Xf ,L ) to give fj |U∩Xf
.

It is therefore clear that the morphisms (Xf
F )⊗L ⊗i −→ Xf

F are a direct limit of the system
(2) for Xf

F . Consider the natural morphism of sheaves of modules ψ : F −→ Xf
F . Then ψ

induces a morphism of sheaves of modules

φ : lim−→(F ⊗L ⊗n) −→ lim−→(Xf
F ⊗L ⊗n) = Xf

F

φU ((n, a ⊗̇ f1 ⊗̇ · · · ⊗̇ fn)) =
(
f1|U∩Xf

f |U∩Xf

· · ·
fn|U∩Xf

f |U∩Xf

)
· a|U∩Xf

which is natural in F in the obvious sense. If F is a sheaf of commutative OX -algebras then
both of the sheaves involved here become sheaves of OX -algebras, and it is easy to check that φ
is a morphism of OX -algebras.

Proposition 25. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent
then for every invertible sheaf L and global section f ∈ Γ(X,L ) the canonical morphism

φ : lim−→(F ⊗L ⊗n) −→ Xf
F

is an isomorphism.

Proof. The key point is to show that φ is local, so we can reduce to X affine. Let U ⊆ X be open,
so that we have the global section f |U of L |U . It is clear that the open subset Xf |U of U is just
Xf ∩U and that Xf∩U (F |U ) is (Xf

F )|U . Comparing the direct systems it is not difficult to check
that we have a commutative diagram of sheaves of modules on U

lim−→(F ⊗L ⊗n)|U

��

φL ,f |U // (Xf
F )|U

1

��
lim−→(F |U ⊗L |⊗nU )

φL |U ,f|U

// Xf∩U (F |U )

which shows that φ is local. Reducing to the affine case, we are left with the following algebra
problem: suppose we are given a ring A, and A-module M and f ∈ A. We have a direct system
of modules

M −→M ⊗A −→M ⊗A⊗2 −→M ⊗A⊗3 −→ · · ·
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defined by multiplication by f . There are morphisms of A-modules

M ⊗A⊗i −→Mf

m⊗ a1 ⊗ · · · ⊗ ai 7→
a1 · · · ai ·m

f i

and we have to show that the induced morphism lim−→(M ⊗A⊗n) −→Mf is an isomorphism. This
is just Lemma 21, so the proof is complete.

Theorem 26. Let F be a quasi-coherent sheaf on a concentrated scheme X and L be an invertible
sheaf with global section f ∈ Γ(X,L ). There is a canonical isomorphism of abelian groups natural
in F for i ≥ 0

lim−→Hi(X,F ⊗L ⊗n) −→ Hi(Xf ,F |Xf
)

Proof. If we set U = Xf then the inclusion U −→ X is affine (RAS,Lemma 6), so by (COS,Corollary
28) there is a canonical isomorphism of abelian groups natural in F for i ≥ 0

Hi(U,F |U ) −→ Hi(X, UF )

By Proposition 25 we have a canonical isomorphism natural in F

φ : lim−→(F ⊗L ⊗n) −→ UF

where the direct limit is taken over the direct system (2) defined by multiplication by f . Applying
(COS,Theorem 26) (X is concentrated and therefore its underlying space is quasi-noetherian) we
have the desired canonical isomorphism of abelian groups

lim−→Hi(X,F ⊗L ⊗n) ∼= Hi(X, lim−→(F ⊗L ⊗n)) ∼= Hi(X, UF ) ∼= Hi(U,F |U ) (7)

which one checks is natural in F .

5.3 Localisation as Restriction

Let X be a scheme, f ∈ Γ(X,OX) a global section, and F a sheaf of modules on X. Specialising
Lemma 24 to the case L = OX we have shown that in the following direct system of multiplication
by f

Xf
F −→ Xf

F −→ Xf
F −→ · · ·

every morphism is an isomorphism. We deduce a canonical morphism of sheaves of modules
φ : F(f) −→ Xf

F natural in F defined by φU (n, a) = (f |U∩Xf
)−n · a|U∩Xf

. In the case F = OX
this is actually a morphism of OX -algebras.

From Proposition 25 we know that φ : F(f) −→ Xf
F is an isomorphism provided F is quasi-

coherent. In particular we always have an isomorphism of OX -algebras OX,(f) −→ Xf
OX . The

following result upgrades Proposition 25 slightly in our current context.

Corollary 27. Let X be a scheme and F a quasi-coherent sheaf of modules on X. For any global
section f ∈ Γ(X,OX) there is a canonical isomorphism of sheaves of modules natural in F

φ : F(f) −→ Xf
F

which sends the action of OX,(f) to the action of Xf
OX . This morphism is also natural in f .

Proof. The fact that φ is an isomorphism of sheaves of OX -modules is just Proposition 25. But we
know from the previous section that F(f) is also a sheaf of OX,(f)-modules, and Xf

F is certainly
a sheaf of Xf

OX -modules. We claim that φ sends the action of OX,(f) to the action of Xf
OX in

a way compatible with the canonical isomorphism of algebras OX,(f)
∼= Xf

OX . This comes down
to an explicit calculation, for which we use the explicit form of φ and the explicit actions given in
the last section.
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By naturality in f we mean that for global sections f, g ∈ Γ(X,OX) with f ∈ √g the following
diagram commutes

F(g)

��

// Xg
F

��
F(f)

// Xf
F

which is easily checked by choosing specific k > 0 and b such that fk = bg.

We have just shown that the morphism F(f) −→ Xf
F preserves the additional module struc-

ture present on both sheaves. In our application, we will also need to know that the induced
morphisms on cohomology preserve the additional structure. This will follow from the next gen-
eral lemma.

Lemma 28. Let (X,OX) be a ringed space, G ,H sheaves of commutative OX-algebras and
M ,N sheaves of modules over G ,H respectively. Suppose we have two morphisms of sheaves of
OX-modules

ψ : G −→ H , ψ : M −→ N

where the former is a morphism of OX-algebras and the latter sends the action of G to the action
of H using the morphism ψ. Then the induced morphism

Hi(X,ψ) : Hi(X,M ) → Hi(X,N )

is a morphism of Γ(X,OX)-modules that sends the action of Γ(X,G ) to the action of Γ(X,H ).

Proof. Considering (X,G ) as a ringed space in its own right, the cohomology groups Hi(X,M )
become Γ(X,G )-modules, and the same can be said of H and N . Given α ∈ Γ(X,G ) let
α : M −→ M and ψ(α) : N −→ N denote the endomorphisms of sheaves of abelian groups
determined by the action of α and ψ(α) respectively. By assumption the following diagram
commutes

M

α

��

φ // N

ψ(α)

��
M

φ
// N

ApplyingHi(X,−) and using the characterisation of the module structures given by (COS,Remark
4), we reach the desired conclusion.

We can deduce from Theorem 26 that under certain hypotheses there is an isomorphism of
abelian groups Hi(X,F(f)) ∼= Hi(Xf ,F |Xf

). But for the application we have in mind, we will
have to upgrade this to an isomorphism of modules.

Corollary 29. Let F be a quasi-coherent sheaf on a concentrated scheme X and let f ∈ Γ(X,OX)
be a global section. For i ≥ 0 there is a canonical isomorphism of Γ(X,OX)f -modules natural in
F and f

Hi(X,F(f)) −→ Hi(Xf ,F |Xf
)

Proof. First we have to explain what the module structures are. If we set U = Xf then the
group Hi(U,F |U ) has a canonical Γ(U,OX)-module structure, and therefore via the ring mor-
phism Γ(X,OX)f −→ Γ(U,OX) it acquires the required module structure. For the first group,
observe that we can consider F(f) as a sheaf of modules over the ringed space (X,OX,(f)), so the
cohomology group Hi(X,F(f)) is canonically a Γ(X,OX,(f))-module, and by Proposition 23 this
ring is canonically isomorphic to Γ(X,OX)f .

From Corollary 27 and Lemma 28 we deduce that there is a natural isomorphism of Γ(X,OX)-
modules

Hi(X,F(f)) −→ Hi(X, UF )
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sending the Γ(X,OX,(f))-module structure on the left to the Γ(U,OX)-module structure on the
right (induced by considering UF as a sheaf over UOX). Since the inclusion U −→ X is affine we
can apply (COS,Corollary 28) to the quasi-coherent sheaf F |U to deduce a natural isomorphism
of abelian groups

Hi(U,F |U ) −→ Hi(X, UF ) (8)

Both of these groups have canonical Γ(U,OX)-module structures. An element t ∈ Γ(U,OX) =
Γ(X, UOX) induces a morphism of sheaves of abelian groups F |U −→ F |U , and naturality then
implies that (8) is an isomorphism of Γ(U,OX)-modules. Putting these together we have the
desired canonical isomorphism of Γ(X,OX)f -modules

Hi(X,F(f)) ∼= Hi(X, UF ) ∼= Hi(U,F |U )

which is natural with respect to morphisms of quasi-coherent sheaves.
By naturality in f we mean that for global sections f, g ∈ Γ(X,OX) with f ∈ √g the following

diagram commutes
Hi(X,F(g))

��

// Hi(Xg,F |Xg
)

��
Hi(X,F(f)) // Hi(Xf ,F |Xf

)

where the vertical morphism on the right is defined in (COS,Remark 11). Commutativity of this
square follows from the naturality of Corollary 27 and a close study of the proof of (COS,Corollary
28) and the definition in (COS,Remark 11).

5.4 The Proof

Theorem 30. Let f : X −→ Y be a morphism of schemes where X is concentrated and Y =
SpecA is affine. Then for any quasi-coherent sheaf of modules F on X and i ≥ 0 there is a
canonical isomorphism of sheaves of modules on Y natural in F

γ : Hi(X,F )˜ −→ Rif∗(F )

Proof. We give Rif∗(F ) the canonical OY -module structure of Definition 2. We know that the
abelian group Hi(X,F ) has a canonical Γ(X,OX)-module structure, and therefore also an A-
module structure. For g ∈ A we set U = D(g) and let h ∈ Γ(X,OX) be the image of g, so that
f−1U = Xh. Combining (COS,Lemma 12), Corollary 29 and Proposition 23 we have a canonical
isomorphism of Γ(X,OX)h-modules

Hi(Xh,F ) ∼= Hi(Xh,F |Xh
) ∼= Hi(X,F(h)) ∼= Hi(X,F )h

Of course considering Hi(X,F ) as an A-module there is a canonical isomorphism of abelian
groups Hi(X,F )h ∼= Hi(X,F )g. So finally we have for each g ∈ A a canonical isomorphism of
Γ(D(g),OY )-modules

Γ(D(g),Hi(X,F )˜) ∼= Hi(X,F )g ∼= Hi(Xh,F ) = Γ(D(g), f∗H i(F ))

Naturality of all our results in g means that for another element f ∈ A with D(f) ⊆ D(g) the
following diagram commutes

Γ(D(g),Hi(X,F )˜) //

��

Γ(D(g), f∗H i(F ))

��
Γ(D(f),Hi(X,F )˜) // Γ(D(f), f∗H i(F ))
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We deduce that the presheaf f∗H i(F ) actually satisfies the sheaf condition with respect to open
covers of affine open subsets of the form D(g) ⊆ Y , and therefore obtain a canonical isomorphism
of Γ(D(g),OY )-modules

Γ(D(g),Hi(X,F )˜) ∼= Γ(D(g), f∗H i(F )) ∼= Γ(D(g),af∗H i(F )) ∼= Γ(D(g), Rif∗(F ))

which is natural with respect to inclusions of the form D(f) ⊆ D(g). By glueing there is a unique
morphism of sheaves of modules γ : Hi(X,F )˜ −→ Rif∗(F ) which evaluates to this isomorphism
on D(g) for every g ∈ A. Clearly γ is the desired isomorphism, natural in F .

Corollary 31. Let f : X −→ Y be a concentrated morphism of schemes and F a quasi-coherent
sheaf on X. Then Rif∗(F ) is quasi-coherent for i ≥ 0. Further, there is a canonical isomorphism
of Γ(U,OY )-modules

Hi(f−1U,F |f−1U ) −→ Γ(U,Rif∗F )

for any affine open U ⊆ Y .

Proof. Since the higher direct image is local (HDIS,Corollary 6), to show that Rif∗F is quasi-
coherent we can reduce to the case where Y = Spec(A) is affine. In particular this means that X
is a concentrated scheme, so the result follows from Theorem 30.

The famous theorem of Serre (COS,Theorem 14) tells us that quasi-coherent sheaves have
vanishing higher cohomology on an affine scheme. On the much larger class of concentrated
schemes something similar is true: quasi-coherent sheaves can have nonzero higher cohomology,
but the number of nonzero groups is bounded by a fixed integer.

Lemma 32. Let X be a concentrated scheme. There is an integer d ≥ 0 such that Hi(X,F ) = 0
for every quasi-coherent sheaf F on X and i > d.

Proof. Given a concentrated scheme X let n(X) denote the smallest integer n ≥ 1 such that X
can be covered by n quasi-compact separated open subsets. Such an integer exists because X is
quasi-compact, and any affine open subset is quasi-compact and separated.

If n = 1 then X is separated, and we can find a finite cover U of X by open affines with affine
intersections. If this cover has d elements then the Čech complex has only d nonzero terms (that
is, C e(U,F ) = 0 for any sheaf F and e ≥ d). Since cohomology on X can be calculated using the
Čech complex (COS,Theorem 35) we deduce that for any quasi-coherent sheaf F and i > d − 1
we have Hi(X,F ) = 0 as required.

If n > 1 then let X1, . . . , Xn be a cover of X by quasi-compact separated open subsets, and
set U = X1, V = X2 ∪ · · · ∪ Xn. Given a quasi-coherent sheaf F on X let I be an injective
resolution of F as a sheaf of abelian groups. From the canonical short exact sequence (the Čech
complex for I and the cover {U, V })

0 −→ Γ(X,I ) −→ Γ(U,I )⊕ Γ(V,I ) −→ Γ(U ∩ V,I ) −→ 0

we deduce a long exact sequence

· · · −→ Hi−1(U ∩ V,F |U∩V ) −→ Hi(X,F ) −→ Hi(U,F |U )⊕Hi(V,F |V ) −→ · · ·

But n(U) = 1, n(V ) = n− 1 and n(U ∩V ) < n since X is quasi-separated so finite intersections of
quasi-compact open subsets of X are quasi-compact. By the inductive hypothesis and the above
long exact sequence, we reach the desired conclusion.

One of Grothendieck’s fundamental insights was that a concept in algebraic geometry only
reaches its full potential when it is made relative with respect to a morphism of schemes. The
relative version of cohomology of a sheaf is the higher direct image of the sheaf (taken over SpecZ
this yields the usual cohomology groups). In this sense the next result is the relative version of
Lemma 32.
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Proposition 33. Let f : X −→ Y be a concentrated morphism of schemes with Y quasi-compact.
There is an integer d ≥ 0 such that for any quasi-coherent sheaf F on X and i > d, we have
Rif∗(F ) = 0.

Proof. Since Y can be covered by a finite number of open affines, we can reduce to the case where
Y = SpecA is affine, in which case X is concentrated. So by Theorem 30 what we have to show is
that there exists an integer d ≥ 0 such that Hi(X,F ) = 0 for F quasi-coherent on X and i > d,
which is precisely what we did in Lemma 32.

Lemma 34. Let f : X −→ Y be an affine morphism of schemes and F a quasi-coherent sheaf
on X. Then Rif∗(F ) = 0 for i > 0.

Proof. We can reduce immediately to the case where X,Y are affine, where the result follows from
Theorem 30 and Serre’s theorem (COS,Theorem 14).

Here are some more useful properties of the direct image functor.

Lemma 35. Let (X,OX) be a ringed space. Then the forgetful functor F : Mod(X) −→ Ab(X)
preserves and reflects all colimits.

We say that a continuous map of topological spaces f : X −→ Y is quasi-compact if for any
quasi-compact open subset V ⊆ Y the open set f−1V is quasi-compact. By (CON,Corollary 2)
there is no ambiguity with the same concept for morphisms of schemes.

Corollary 36. Let f : X −→ Y be a quasi-compact map of quasi-noetherian topological spaces,
and let F be a quasi-flasque sheaf of abelian groups on X. Then Rif∗(F ) = 0 for i > 0.

Proof. Since Y has a basis of quasi-compact open sets, it is enough by Proposition 1 to show that
Hi(f−1V,F ) = 0 for V ⊆ Y quasi-compact and i > 0. But Hi(f−1V,F ) ∼= Hi(f−1V,F |f−1V ),
and since f−1V is quasi-compact it is itself a quasi-noetherian space. So the desired result follows
from (COS,Corollary 11).

Proposition 37. If f : X −→ Y is a morphism of concentrated schemes then the additive functor
f∗ : Mod(X) −→ Mod(Y ) preserves direct limits and coproducts.

Proof. By (CON,Lemma 16) the morphism f is concentrated and in particular quasi-compact,
so by (AC,Lemma 43) it is enough to prove the following statement: if f : X −→ Y is a quasi-
compact map of quasi-noetherian topological spaces then f∗ : Ab(X) −→ Ab(Y ) preserves direct
limits..

Let {Fα, ϕαβ}α∈Λ be a direct system of sheaves of abelian groups on X and lim−→Fα a direct
limit. We have to show that the canonical morphism of sheaves

Φ : lim−→
α

f∗(Fα) −→ f∗(lim−→Fα)

is an isomorphism. For this it suffices to show that ΦV is an isomorphism for V ⊆ Y quasi-compact.
We have by (COS,Proposition 23)

Γ(V, lim−→
α

f∗(Fα)) ∼= lim−→
α

Γ(V, f∗(Fα))

∼= lim−→
α

Γ(f−1V,Fα)

∼= Γ(f−1V, lim−→
α

Fα)

= Γ(V, f∗(lim−→
α

Fα))

This composite is equal to ΦV , so the proof is complete.

Corollary 38. If f : X −→ Y is a morphism of concentrated schemes then the additive functor
Rif∗(−) : Mod(X) −→ Mod(Y ) preserves direct limits and coproducts for all i ≥ 0.
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Proof. It is enough to prove the following statement: if f : X −→ Y is a quasi-compact map of
quasi-noetherian topological spaces then Rif∗(−) : Ab(X) −→ Ab(Y ) preserves direct limits. The
proof of this statement is the same as (COS,Theorem 26), but we write down the proof anyway.

Let {Fα, ϕαβ}α∈Λ be a direct system of sheaves of abelian groups on X. For each α ∈ Λ we
have a short exact sequence

0 −→ Fα −→ F d
α −→ Gα −→ 0

Taking direct limits, we have a short exact sequence

0 −→ F −→ C −→ G −→ 0

where F = lim−→α
Fα and C = lim−→α

F d
α is quasi-flasque by (COS,Corollary 25). Hence it is f∗-

acyclic by Corollary 36. Using the long exact sequence of cohomology, we have the following
commutative diagrams with exact rows

0 // lim−→ f∗(Fα)

��

// lim−→ f∗(F d
α)

��

// lim−→ f∗(Gα)

��

// lim−→R1f∗(Fα)

��

// 0

0 // f∗(F ) // f∗(C ) // f∗(G ) // R1f∗(F ) // 0

and for i > 0
0 // lim−→Rif∗(Gα)

��

// lim−→Ri+1f∗(Fα)

��

// 0

0 // Rif∗(G ) // Ri+1f∗(F ) // 0

By induction on i we are done, because Proposition 37 included the case i = 0.

6 Uniqueness of Cohomology

Let X be a concentrated scheme. Taking global sections defines three additive functors

Γ(X,−) : Ab(X) −→ Ab

Γm(X,−) : Mod(X) −→ Ab

Γqc(X,−) : Qco(X) −→ Ab

whose right derived functors we denote by Hi(X,−),Hi
m(X,−) and Hi

qc(X,−) respectively (note
that since X is concentrated Qco(X) has enough injectives (MOS,Proposition 66)). It would be
very unsettling if these three functors were to define distinct cohomology theories. In (COS,Section
1.2) we showed that Hi(X,−) and Hi

m(X,−) agree for any scheme (even a ringed space). In this
section we will show that under very mild hypotheses on X the third cohomology Hi

qc(X,−) agrees
with the other two.

More generally, for any concentrated morphism of schemes f : X −→ Y with X concentrated
we have three additive functors (CON,Proposition 18)

f∗ : Ab(X) −→ Ab(Y )
fm∗ : Mod(X) −→ Mod(Y )
fqc∗ : Qco(X) −→ Qco(Y )

with right derived functors Rif∗(−), Rifm∗ (−) and Rifqc∗ (−). We showed in Section 2 that Rif∗(−)
and Rifm∗ (−) agree, and the main result of this section shows that under the same mild hypotheses
the third derived functor Rifqc∗ (−) agrees with the other two. This material is well-known, and
one good reference is [3] which we follow closely.

If the scheme X is noetherian then a quasi-coherent sheaf I is injective in Qco(X) if and only
if it is injective in Mod(X), so the claims are all completely trivial in this case:
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Proposition 39. Let f : X −→ Y be a morphism of schemes with X noetherian. Then for any
quasi-coherent sheaf F on X and i ≥ 0 there is a canonical isomorphism of sheaves of modules
Rifqc∗ (F ) −→ Rif∗(F ) natural in F .

Proof. Fix assignments of injective resolutions to Ab(X) and Qco(X), and define Rif∗(−) :
Mod(X) −→ Mod(Y ) as in Definition 2. Then we have two universal cohomological δ-functors

{Rifqc∗ (−)}≥0 : Qco(X) −→ Qco(Y )

{Rif∗(−)}≥0 : Mod(X) −→ Mod(Y )

Composing with the exact functors V : Qco(X) −→ Mod(X) and v : Qco(Y ) −→ Mod(Y ) we have
cohomological δ-functors {v ◦ Rifqc∗ (−)}≥0 and {Rif∗(−) ◦ V }≥0. The first is clearly universal.
Universality of the second follows from the fact that injectives in Qco(X) agree with injectives in
Mod(X). Since they agree in degree zero, we deduce a canonical isomorphism of δ-functors. In
particular for i ≥ 0 we have a canonical natural equivalence

v ◦Rifqc∗ (−) −→ Rif∗(−) ◦ V

which is what we wanted to show.

Before proceeding we have to define the “presheaf of cohomology” for the cohomology functors
defined relative to quasi-coherent sheaves, in precisely the same was as we did in (COS,Section
1.3) for sheaves of abelian groups.

Definition 5. Let X be a concentrated scheme and U ⊆ X an open subset. Let Hi
qc(U,−) be the

ith right derived functor of the left exact functor Γ(U,−) : Qco(X) −→ Ab. There is a canonical
natural equivalence H0

qc(U,−) ∼= Γ(U,−), and short exact sequences of quasi-coherent sheaves lead
to long exact sequences in the usual manner.

Let U ⊆ V be open subsets ofX. Then restriction defines a natural transformation Γ(V,−) −→
Γ(U,−) which leads to natural transformations µiV,U : Hi

qc(V,−) −→ Hi
qc(U,−) for i ≥ 0 as defined

in (DF,Definition 11). This construction is functorial, in the sense that for open sets W ⊆ U ⊆ V
we have µiU,W ◦ µiV,U = µiV,W and µiU,U = 1 for any open set U . For a quasi-coherent sheaf F

on X we define a presheaf of abelian groups H i
qc(F ) for i ≥ 0 by Γ(U,H i

qc(F )) = Hi
qc(U,F )

with the restriction map Γ(V,H i
qc(F )) −→ Γ(U,H i

qc(F )) given by (µiU,V )F . If φ : F −→ G is a
morphism of quasi-coherent sheaves then for i ≥ 0 there is a morphism of presheaves of abelian
groups

H i
qc(φ) : H i

qc(F ) −→ H i
qc(G )

H i
qc(φ)U = Hi

qc(U, φ)

This defines for i ≥ 0 an additive functor H i
qc(−) : Qco(X) −→ Ab(X) where Ab(X) is the

category of all presheaves of abelian groups on X. There is a canonical isomorphism of presheaves
of abelian groups F ∼= H 0

qc(F ) natural in F (DF,Lemma 43).
Suppose we have an exact sequence of quasi-coherent sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0

For an open subset U ⊆ X and i ≥ 0 we have the canonical connecting morphism Hi
qc(U,F

′′) −→
Hi+1
qc (U,F ′) and since these are natural in U (DF,Proposition 44) we have a morphism of

presheaves of abelian groups ωi : H i
qc(F

′′) −→ H i+1
qc (F ′). These fit into a long exact sequence

of presheaves of abelian groups

0 // F ′ // F // F ′′ // H 1
qc(F

′) // H 1
qc(F ) −→ H 1

qc(F
′′) −→ · · ·

· · · // H n
qc(F

′′) // H n+1
qc (F ′) // H n+1

qc (F ) // H n+1
qc (F ′′) // · · ·
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Remark 10. Since the situation will arise several times in what follows, consider a scheme X
which is quasi-compact and semi-separated (CON,Definition 4). Equivalently, X is a scheme
which admits a finite open cover U by affine open sets with affine pairwise intersections. If F is
a quasi-coherent sheaf on X, then we have the canonical Čech resolution (COS,Theorem 35)

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · (9)

which is an exact sequence of quasi-coherent sheaves.
Let V ⊆ X be an open subset whose inclusion V −→ X is affine. Then V is also quasi-compact

and semi-separated, and in particular both X and V are concentrated schemes (CON,Lemma 20).
Let U|V = {U ∩V }U∈U denote the restricted affine open cover of V , which still has affine pairwise
intersections. It is clear that C p(U,F )|V = C p(U|V ,F |V ), so the restriction to V of the Čech
resolution (9) is the Čech resolution for V,U|V and F |V .

Proposition 40. Let X be a quasi-compact semi-separated scheme with finite semi-separating
open cover U, F a quasi-coherent sheaf on X and V ⊆ X an open subset with affine inclusion.
Then C p(U,F ) is acyclic with respect to Γqc(V,−) : Qco(X) −→ Ab for p ≥ 0.

Proof. Let f : W −→ X be the inclusion of an affine open subset, and assume further that f is
an affine morphism. Consider the following commutative diagram

Qco(X)
Γqc(V,−)

%%LLLLLLLLLL

Qco(W )

f∗
77ppppppppppp

Γqc(W∩V,−)
// Ab

in which f∗ : Qco(W ) −→ Qco(X) is exact (CON,Lemma 19) and has an exact left adjoint (the
restriction functor). In particular f∗ preserves quasi-coherent injectives (AC,Proposition 25). This
means that for any quasi-coherent sheaf X on W we have a Grothendieck spectral sequence

Epq2 = Hp
qc(V,R

qfqc∗ (X )) =⇒ Hp+q
qc (W ∩ V,X )

Of course f∗ is exact so its higher derived functors vanish, and therefore Epq2 = 0 for q > 0. That
is, the spectral sequence degenerates. From this we deduce an isomorphism for p > 0

Hp
qc(V, f∗(X )) ∼= Hp

qc(W ∩ V,X ) = 0

since W ∩V is affine and therefore Γqc(W ∩V,−) is exact. Since any C p(U,F ) is built from finite
coproducts of sheaves of the form f∗(X ), this completes the proof that C p(U,F ) is acyclic for
Γqc(V,−).

Setting V = X in the next result shows that the three types of cohomologyHi(X,−),Hi
m(X,−)

and Hi
qc(X,−) agree on a quasi-compact semi-separated scheme. We need the result in the stated

generality to deal with the derived direct image functors later on.

Corollary 41. Let X be a quasi-compact semi-separated scheme, F a quasi-coherent sheaf on X
and V ⊆ X an open subset with affine inclusion. For i ≥ 0 there is an isomorphism of abelian
groups natural in F and V

Hi
qc(V,F ) −→ Hi(V,F )

Proof. To be clear, we mean the inclusion i : V −→ X is an affine morphism, and naturality of
the two cohomology groups in V is defined by Definition 5 and (COS,Section 1.3) respectively.
Let U be a finite semi-separating cover of X. By (COS,Theorem 35) the Čech sheaves give an
exact sequence of quasi-coherent sheaves

C (U,F ) : 0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · (10)
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Slightly modifying the proof of (COS,Theorem 35) one checks that each C p(U,F ) is acyclic for
the additive functor Γ(V,−) : Ab(X) −→ Ab, and we also know from Proposition 40 that this
sheaf is acyclic for Γqc(V,−) : Qco(X) −→ Ab.

Suppose I ,J are the chosen injective resolutions of F in Ab(X),Qco(X) respectively. Then
as usual the identity lifts to morphisms of complexes C (U,F ) −→ I and C (U,F ) −→ J whose
images under Γ(V,−) and Γqc(V,−) respectively are quasi-isomorphisms (DTC2,Remark 14). In
other words, we have an isomorphism for i ≥ 0

Hi
qc(V,F ) = Hi(Γqc(V,J )) ∼= Hi(Γ(V,C (U,F ))) ∼= Hi(Γ(V,I )) = Hi(V,F )

which is easily checked to be natural in F and V . Observe that the isomorphism is canonical
once we fix the finite semi-separating cover U.

Corollary 42. Let X be a quasi-compact semi-separated scheme, F a quasi-coherent sheaf on X
and V ⊆ X an open subset with affine inclusion. For i ≥ 0 there is an isomorphism of abelian
groups natural in F

Hi
qc(V,F ) −→ Hi

qc(V,F |V )

Proof. To be clear, the left hand side uses the derived functors of F = Γ(V,−) : Qco(X) −→ Ab
and the right hand side the right derived functors of G = Γ(V,−) : Qco(V ) −→ Ab. Let U be a
finite semi-separating cover of X. From Proposition 40 we know that the Čech resolution

C (U,F ) : 0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · (11)

is an F -acyclic resolution of F in Qco(X). Restricting this resolution to V we have C (U|V ,F |V )
which by the same argument is a G-acyclic resolution of F |V in Qco(V ), from which one deduces
the desired isomorphism.

Proposition 43. Let f : X −→ Y be a quasi-compact morphism of semi-separated schemes with
X quasi-compact, and F a quasi-coherent sheaf on X. For every i ≥ 0 there is a canonical
isomorphism of sheaves of abelian groups on Y natural in F

ν : af∗H i
qc(F ) −→ Rifqc∗ (F )

In other words, Rifqc∗ (F ) is the sheafification of the presheaf

U 7→ Hi
qc(f

−1U,F )

Proof. The assumptions mean that f is a concentrated morphism, so it makes sense to talk
about the right derived functors of fqc∗ : Qco(X) −→ Qco(Y ). For every i ≥ 0 we have the
additive functor af∗H i

qc(−) which is the composite of H i
qc(−) with the direct image for presheaves

f∗ : Ab(X) −→ Ab(Y ) and the sheafification a : Ab(Y ) −→ Ab(Y ). Note that the functor af∗ is
exact. Suppose we have a short exact sequence of quasi-coherent sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0

Then by Definition 5 we have a canonical connecting morphism ωi : H i
qc(F

′′) −→ H i+1
qc (F ′) for

each i ≥ 0. The functors af∗H i
qc(−) together with the morphisms af∗ωi define a cohomological

δ-functor between Qco(X) and Ab(Y ). We claim that this δ-functor is universal.
Let F be a quasi-coherent sheaf on X and U a finite semi-separating cover of X. Then F

embeds into the quasi-coherent sheaf X = C 0(U,F ). Let V be a semi-separating affine basis of
Y . For any W ∈ V the inclusion W −→ Y is affine, and therefore by pullback so is the inclusion
f−1W −→ X. But then by Proposition 40 we have for i > 0

Γ(W, f∗H i
qc(X )) = Hi

qc(f
−1W,X ) = 0

Since the W form a basis we conclude that af∗H i
qc(X ) = 0 for i > 0, so the functors af∗H i

qc(−)
are effaceable for i > 0. It follows that the δ-functor is universal (DF,Theorem 74).
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Composing the derived functors Rifqc∗ (F ) with the exact forgetful functor Qco(Y ) −→ Ab(Y )
we have another universal cohomological δ-functor between Qco(X) and Ab(Y ) (DF,Definition
24). In degree zero we have a canonical isomorphism of sheaves of abelian groups natural in F

af∗H 0(F ) ∼= a(f∗F ) ∼= f∗F ∼= R0fqc∗ (F )

This natural equivalence af∗H 0(−) ∼= R0fqc∗ (−) induces a canonical isomorphism of cohomo-
logical δ-functors. In particular for each i ≥ 0 we have the canonical natural equivalence ν, as
required.

We are now ready to prove our main result, which assures us that the three types of higher
direct image Rif∗(−), Rifm∗ (−) and Rifqc∗ (−) agree.

Proposition 44. Let f : X −→ Y be a quasi-compact morphism of semi-separated schemes with
X quasi-compact, and F a quasi-coherent sheaf on X. For every i ≥ 0 there is an isomorphism
of sheaves of abelian groups on Y natural in F

τ : Rifqc∗ (F ) −→ Rif∗(F )

Proof. Fix a finite semi-separating cover U for X and a semi-separating affine basis V for Y . For
each W ∈ V the inclusion f−1W −→ X is affine, so we have by Corollary 41 an isomorphism of
abelian groups

Γ(W, f∗H i
qc(F )) = Hi

qc(f
−1W,F ) −→ Hi(f−1W,F ) = Γ(W, f∗H i(F ))

This is natural in F and W , and induces an isomorphism on the stalks of the two presheaves. We
can lift this isomorphism on stalks to an isomorphism of sheaves of abelian groups natural in F

af∗H i
qc(F ) −→ af∗H i(F )

Composing with the isomorphisms of Proposition 43 and Proposition 8 we have the desired iso-
morphism of sheaves of abelian groups natural in F

Rifqc∗ (F ) ∼= af∗H i
qc(F ) ∼= af∗H i(F ) ∼= Rif∗(F )

which completes the proof.
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