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Throughout this note all rings are commutative, and A is a fixed ring. If S,T are graded
A-algebras then the tensor product S ® 4 T' becomes a graded A-algebra in a canonical way with
the grading given by (TES,Lemma 13). That is, S ® 4 T is the coproduct of the morphisms of
A-modules Sq ®4 T, — S ®4 T for d,e > 0. The canonical morphisms p; : S — S ®4 T, ps :
T — S ®4 T are then morphisms of graded A-algebras.

Definition 1. Let S, T be graded A-algebras. We define their cartesian product, denoted S x 4 T,
to be the following graded A-algebra: as an A-module it is the sum of the images of the A-module
morphisms Sg ®4 Ty — S ®4 T for all d > 0. This is an A-subalgebra of S ® 4 T" which is a
graded A-algebra with grading (S x4 T)qg = Sq®4 Ty for d > 0.

The scheme Proj(S x 4 T) is covered by open subsets Dy (f ® g) for f € S, g € T homogenous
of the same degree d > 0. It is not hard to check that the following are well-defined morphisms of
A-algebras

@198 — (S xaT)(saqg) s/fr—(s@g")/(f@g)"
Vi Tg) — (S x4 T)(sag) t/g" — (frot)/(f@g)"

If h € S,k € T are homogenous of the same degree e > 0 then it is readily checked that the
following diagram commutes (the vertical morphisms are the canonical ring morphisms)

e, by,
S ————= (8 xa T)(sag) ~———T(g)

| | |

S(sn) (S xaT)(sreogk) DT Tigk)

Pfh,gk
Therefore the morphisms Spec(y¢y,4) and Spec(s,4) glue to give morphisms of schemes over A
®: Proj(S xaT)— ProjS, W:Proj(SxaT)— ProjT

Here @ is the unique morphism of schemes making the left square in the following diagram commute
for every pair of homogenous elements of the same positive degree f € S,g € T, and similarly for
U and the right square

ProjS Proj(SxaT) ProjT

| | |

SPGCS(f) -~ Spec((S XA T)(f®g)) SpeCT(g)

Spec(ef,q) Spec(s,g)
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Lemma 1. Let S be a graded ring and f € Sq for some d > 0. If h € S, for e > 0 then the
isomorphism D (f) = SpecS(y) identifies the open subsets D (fh) and D(h?/f¢).

SpecS sy

Proof. If p € ProjS is a homogenous prime ideal with f ¢ p then the image of p in SpecSy) is
the prime ideal pSy N S(yy. It is clear that this prime belongs to D(h?/f¢) if and only if h? ¢ p,
so if and only if p € Dy (fh) = D(f) N Dy (h). O

Lemma 2. Let S,T be graded A-algebras and ®,V as above. If f € S,g € T are homogenous of
degree d > 0 then @ 1D, (f)N V™D (g9) = Dy (f ® g).

Proof. The inclusion 2 is obvious, since by construction we have ®(D,(f ® g)) € D4 (f) and
U(D4(f ®g)) C Di(g). For the reverse inclusion let p be a homogenous prime of S x 4 T with
®(p) € D4 (f) and ¥(p) € D, (g). There exists homogenous h € S,k € T of the same degree e > 0
such that p € Dy (h ® k). Using Lemma 1 and the definition of the morphisms ¢p, ., ¥n 1k We see
that h? ® ¢¢ ¢ p and f¢ ® k% ¢ p. Therefore (f¢ ® ¢°)(h? @ k%) = f¢h? @ g°k? ¢ p and hence
f®g¢ép, as required. O

Proposition 3. Let S, T be graded A-algebras, and suppose that S is generated by S1 as an Sy-
algebra and that T is generated by Ty as a Ty-algebra. Then Proj(S x4 T) = ProjS x4 ProjT,
so we have a pullback diagram

Proj(SxaT) —Y s ProjT

| |

ProjS SpecA

Proof. By the hypotheses on S, T the open sets of the form D, (f), D4 (g) for f € S1,9 € T1 give
open covers of ProjS and ProjT respectively. By the local nature of products and Lemma 2 it
is enough to show that D, (f ® g) = Dy (f) xa D4 (g) or equivalently Spec((S xa T)(taq)) =
Spec(T(q)) % a Spec(S(yy), for every pair of homogenous elements f € Sy, g € T1. This amounts to
showing that the following diagram is a pushout of rings

A——5) (1)

T

Tiy) 0 (S xaT)(sog)

We show (1) is a pushout by showing that the ring morphism Sy ®4 T(y) — (S xa T)(tag)
defined by s/f" @ t/g™ — (sf™ @ ¢g"t)/(f ® g)"™™ is an isomorphism of rings. The proof is
motivated by the technique used in (TPC,Proposition 15).

Consider the following well-defined A-bilinear map

SgxTy — (S®aT)sgg
(s/f" t/g™) — (sf™ @ tg™)/(f @ g)" T


file:"TheProjConstruction.pdf"

This induces a morphism of A-algebras Sy ®4 T, — (S ®a T')fgq- The canonical maps S —
S¢, T — T, are morphisms of A-algebras, so we have a morphism of A-algebras S ®4 1T —
S;®@aT, defined by s@t — s/1®t/1. This sends f ® g to a unit, so there is an induced morphism
of A-algebras (S®aT)fgg — St ®a Ty given by (s®@1t)/(f ®¢g)" — s/f" @t/g". Since we have
already constructed the inverse, this is an isomorphism of A-algebras.

The rings Sy, T, are Z-graded, and are therefore graded A-modules. Hence Sy ®4 T, is a
graded A-module and therefore also a Z-graded ring. It is not hard to check that (S ®a T) g =
Sy ®a Ty is an isomorphism of Z-graded rings, so it induces an isomorphism of degree zero
subrings (S®aT)(feq) = (Sf®aTy)o. The injective morphism of A-algebras S x 4T — S®aT,
which certainly does not preserve grade, nonetheless localises and restricts to give an injective ring
morphism (SXAT)(f®g) — (S@AT)(f@g) = (Sf@ATg)O defined by (S®t)/(f®g)" = S/fn®t/gn
for s € S,,t € T,.

Let a : Sf @z Ty — Sy ®a Ty be the canonical morphism of groups (GRM,Section 6). The
kernel of « is the abelian group P’ generated by elements (a-z) @ y — z ® (a - y) where z,y
are homogenous. The morphism Sy ®z Ty — Sy ®z Ty is injective since S(y),T(4) are direct
summands of S, T, respectively, and tensor products preserve colimits. Therefore the group
S(r) ®z T{y) is isomorphic to its image in Sy ®z Ty, which is mapped by a onto the image of
(S xaT)(foqg) in (Sf®aTy)o. So there is an isomorphism of abelian groups (S5 ®z T(y))/P" =
(SxaT)(seq) where P" = P'N(S(y) ®zT(y)). We can write Sy @z T, as the following direct sum

Sy @z Ty = @ (Sf)p ®z (Tg)q
P,qEL

Therefore it is not hard to see that P” is generated as an abelian group by elements (a - z) @ y —
r ® (a-y) where x,y are homogenous of degree zero, that is, x € S(y),y € T(,). Hence there is an
isomorphism of abelian groups

Siry ©@a Tig) = (S(p) @2 T(g))/P" = (S xa T)(s)
s/fr@t/g" — (sf"@g"t)/(f@g)"T™

This shows that (1) is a pushout, and completes the proof. O

Lemma 4. Let S,T be graded A-algebras. If S is generated by elements {s;};cr C S1 as an
So-algebra and T is generated by {t;};c; C Th as a Tp-algebra, then S x4 T is generated by

{si®t;} C(SxaT)1 as an (S x4 T)o-algebra.

Corollary 5. Let A be a ring and fix integers m,n > 1. There is a canonical closed immersion
PR x4 P& — P of schemes over A, called the Segre embedding.

Proof. The pullback we have in mind is Proj(A[zo, ..., Zm] X4 Alyo,. .., yn]) =P x4 P%. Con-
sider the following morphism of graded A-algebras

v A[{Zij}ogigm,ogjgn] — Alzo, ..., Tm] XA AlYos - - - Yn)
Zij 7 Ti O Yj

which is surjective since the latter ring is generated as an A-algebra by the elements z; ® y;.
Therefore the morphism of A-schemes induced by - is the desired closed immersion. O

Proposition 6. Let X be a scheme and fix integers m,n > 1. There is a canonical closed
immersion PR x x P — PR of schemes over X, called the Segre embedding.

Proof. When we say “canonical” we mean that once you select specific pullbacks P}, P, P¥ x x
P% and PR %" the definition of the closed immersion involves no arbitrary choices. Consider
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the following commutative diagram

P X
Py SpecZ
P X x P P
i
P72 x P P

where « is induced into the bottom pullback to make the diagram commute. Using standard
properties of pullbacks, we see that every face of this cube is a pullback. That is,

Py xx Py =Py xpp (P7 x P7")

Py xx Py =P% xpp (P7 x P7')

Therefore there is a unique morphism of schemes over X, P% x y P% — PP making the
following diagram commute

IFmX X x P% . P§n+m+n (2)
]P)% X P%z Pgm—&-m—&-n

where the bottom morphism is the closed immersion of Corollary 5. Once again using standard
properties of pullbacks we see that (2) is a pullback, and therefore the top morphism is a closed
immersion, which completes the proof. O

Corollary 7. Let Z be a scheme and fix integers m,n > 1. There is a canonical closed immersion
Ppr — Py E™E of schemes over Z.

Proof. By definition we have
PS%ZIP?XP%ZZXP%XP%
Let o : P x P§ — Pt he the Segre embedding. Then the morphism
1z x a:Ppy = Z x (P7' x Pp) — Z x PpmHmen = pyramen

is the desired closed immersion (LocP,Proposition 1). O
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Proposition 8. The composition of projective morphisms is projective.

Proof. Let f : X — Y and g : Y — Z be projective morphisms, so that we have integers
m,n > 1 and a commutative diagram

Py Py
V \ 74 \
X 7 Y 5 Z

where f’, g’ are closed immersions. The morphism P} : Py — P, of (TPC,Section 5) is a closed
immersion, and using Corollary 7 we have a commutative diagram with the top morphism also a
closed immersion

Poy B —
]PZ

ZN
Py Py
X - Y . Z

This shows that gf is projective and completes the proof. O

Pmn+m+n
A

Lemma 9. Projective morphisms are stable under pullback. That is, if f: X — Y is projective
and there is a pullback diagram

then f' is projective.

Proof. This follows immediately from the construction of the morphisms IP’;} in (TPC,Section 5)
and the fact that closed immersions are stable under pullback. O

Proposition 10. If f: X — Y and g : Y — Z are quasi-projective with Y noetherian, then
go [ is quasi-projective.

Proof. Use the proof of Proposition 8, except now f’, g’ are immersions and we use the stability of
immersions under pullback (SI,Lemma 15) and composition (SI,Lemma 16). We need Y noetherian
so that P} is noetherian, which is the technical condition of (SI,Lemma 16). O

Proposition 11. Let &2 be a property of morphisms of schemes such that
(a) a closed immersion has Z.
(b) the composition of two morphisms having & has 2.
(c) & is stable under base extension.
Then the following holds
(d) the product of two morphisms having & has 2.

(e) if f: X —Y and g: Y — Z are two morphisms, and if go f has & and g is separated,
then f has 2.


file:"TheProjConstruction.pdf"
file:"TheProjConstruction.pdf"
file:"SubschemesAndImmersions.pdf"
file:"SubschemesAndImmersions.pdf"
file:"SubschemesAndImmersions.pdf"

Proof. (d) Let f: X — Y and f’ : X’ — Y’ be morphisms of schemes over a scheme S and
form the following diagram

Xxg X — X xy (Y xgY')——=X

X' xy (Y XgY) ———=Y xgY' ——Y
X , Y S
f

Using (b) and (c) it is easy to check that f xg f’ has &. For (e) we consider X,Y as schemes
over Z and f as a morphism of Z-schemes. Since g is separated over Z the graph morphism
't : X — X xzY is a closed immersion. Therefore I'y has & and using the definition of the
graph morphism and (b), (¢) we see that f also has 2. O

Corollary 12. We have the following properties of projective morphisms
(a) a closed immersion is projective.
(b) the composition of two projective morphisms is projective.
(c¢) projective morphisms are stable under base extension.
(d) the product of projective morphisms is projective.

(e) if f: X — Y and g:Y — Z are two morphisms, and if g o f is projective and g is
separated, then f is projective.



