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1 Introduction

In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then
an A-algebra is a ring morphism A — B whose image is contained in the center of B. We allow
noncommutative sheaves of rings, but if we say (X, Ox) is a ringed space then we mean Ox is a
sheaf of commutative rings. Throughout this note (X, Ox) is a ringed space. Associated to this
ringed space are the following categories:

Mod(X), BetNod(X), Alg(X), nAlg(X), &rAlg(X), BrnAlg(X)

We show that the forgetful functors 2lg(X) — Moo(X) and nAlg(X) — Mod(X) have left
adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg — AMod and
AnAlg — AMod have left adjoints given by the symmetric algebra and tensor algebra con-
structions respectively.

2 Sheaves of Tensor Algebras

Let .Z be a sheaf of Ox-modules, and for an open set U let P(U) be the Ox (U)-algebra given by
the tensor algebra T'(.% (U)). That is,

PU)=0x(U)s ZU)® Z(U)®?*a---

For an inclusion V-C U let p: Ox(U) — Ox (V) and 5 : #(U) — % (V) be the morphisms of
abelian groups given by restriction. For n > 2 we define a multilinear map

FU)x - xFU) — FV)®--- 0 F(V)
(ma,...,mp) > mily @ - @ my|y

Let n®™ denote the induced morphism of abelian groups .# (U)®" — .Z (V)®". Then p&n®n®2@
- gives a morphism of abelian groups P(U) — P(V) compatible with the module structures



and the ring morphism Ox (U) — Ox (V). It is then readily seen that P is a presheaf of Ox-
algebras, and we let T(.%) be the sheaf of O x-algebras given by the sheafification. The morphism
of presheaves of modules % — P given pointwise by the canonical injection .# (U) — T'(F(U))
composes with P — T(.%) to give a monomorphism of sheaves of Ox-modules % — T(%).

If ¢ : F — & is a morphism of sheaves of modules, whose associated presheaves of tensor
algebras are P, Q) respectively, then we define a morphism of presheaves of O x-algebras ¢’ : P —
Q by ¢}y = T(¢y). That is,

by =10¢v ® ¢ @5 & -
Let T(¢) : T(#) — T(¥) denote the morphism of sheaves of Ox-algebras given by the sheafifi-
cation of ¢'. This defines a functor

T(=) : Moo(X) — nAlg(X)
Note that the following diagram of sheaves of modules commutes

T(F) -2 T(%)

]

F 3 4

For d > 0 let P; denote the sub-presheaf of Ox-modules of P given by Py(U) = T4(.#(U)),
which is the submodule of T(%(U)) given by the isomorphic copy of .Z#(U)®¢. In particular
there are isomorphisms of presheaves of modules Py &2 Ox and P; & .%. By construction the
induced morphism @ ,-., P; — P is an isomorphism (coproduct of presheaves of modules) and
PyP. C Pyi.,1 € Py(X). Let T¢(F) denote the submodule of T(.#) given by the image of
aP; — aP = T(Z). Then T(%) together with the submodules T(.%) is a sheaf of graded
Ox-algebras. Note that T'(.%) is the image of the monomorphism .# — T(.%) and T°(.Z) is
the image of the canonical morphism of sheaves of algebras Ox — T(.%) (this latter morphism
is also a monomorphism of sheaves of modules, so T(#) = Ox and T!(F) = .F as sheaves of
modules). More generally for d > 0 there is a canonical monomorphism of sheaves of modules
F®1 . T(F) whose image is T%(.%) so we have (in the category MMod(X))

T(F) = PT14F) = P 7
d>0 d>0

and the product in T(.%) is described by commutativity of the following diagram for d,e > 0

Fol g Foe —=T(F) @ T(F)

| |

FOldte) — > T(F)

It is clear that if ¢ : # — ¢ is a morphism of sheaves of modules, then T(¢) is a morphism of
sheaves of graded Ox-algebras, so we also have a functor

T(—) : Mod(X) — GenAlg(X)

As usual, given 7 € Ox (U) we also write r for the corresponding element of TY(.%)(U). Similarly
if a € #(U) we write a for the corresponding element of T!(%)(U). For n > 1 and a4, ...,a, €
Z(U) we write a; ® -+ ® ay, for the element of T"(.%#)(U). In this notation, for a morphism of
sheaves of modules ¢ : % — ¢ we have

T(P)u(r+ a1+ az1 @ ags + -+ ap1 @ - @ any) =7 + ¢y (a11) + dulazn) @ du(azs)
+ot dulan) ® - @ du(ann)



Proposition 1. If g € T(F)(U) then for every x € U there is an open neighborhood x € V.C U
such that qly = q1 + - -+ + qs where each qi has the form

gr=r+a1+anQap -+ F+apn® - DQapy
where r € Ox (V) and a;; € F (V).

Proof. This follows immediately from the fact that T(F) is the sheafification of the presheaf P
defined above. O

Proposition 2. The functor T(—) : Mod(X) — nAlg(X) is left adjoint to the forgetful functor
nAlg(X) — Mod(X). The unit of the adjunction is given for a sheaf of modules F by the
canonical morphism % — T(F).

Proof. Let . be a sheaf of Ox-algebras and ¢ : F — . a morphism of sheaves of modules. We
have to show there exists a unique morphism of sheaves of algebras ® : T(.%#) — % making the
following diagram commute

é

F—

A

T(F)
We use the results of our notes on Tensor, Exterior and Symmetric algebras (TES) in what follows.
For every open set U there is a unique morphism of Ox (U)-algebras @y, : T(F# (U)) — #(U)
making the following diagram commute

F(U) du

< (U)

@,
T(F(U))

This defines a morphism of presheaves of Ox-algebras ®' : P — ., which induces a morphism
of sheaves of Ox-algebras ® : T(F#) — . with the required property. O

Proposition 3. The functor T(—) : Mod(X) — SenUlg(X) is left adjoint to the functor (—); :
Senlg(X) — Mod(X) which maps a sheaf of graded algebras to its degree 1 component. The unit
of the adjunction is given for a sheaf of modules .F by the canonical isomorphism F — TY(F).

Proof. The definition of a sheaf of graded Ox-algebras .# includes the provision of a sheaf of
modules .7, and any morphism of sheaves of graded algebras must induce a morphism of sheaves
of modules between these degree 1 components, so the functor (—); is well defined. It is not
difficult to check .# — T(.%) is natural in .#, and therefore defines a natural transformation
1 — (=) T(-).

We have to show that if . is a sheaf of graded Ox-algebras and ¢ : . % — ¥ a morphism
of sheaves of modules, then there exists a unique morphism of sheaves of graded algebras ® :
T(%#) — . such that ®; makes the following diagram commute

ﬁ—¢>«5ﬂl (1)

LA

T(F)

By Proposition 2 the composite # — 1 — ¥ induces a morphism of sheaves of algebras
¢ : T(#) — .7 unique with the property that ¥ — T(¥) — S is F — . It is
straightforward to check that ® is a morphism of sheaves of graded algebras, and ®; makes (1)
commute. Uniqueness is easily checked, which proves that T(—) is left adjoint to (—);. O



Proposition 4. IfU C X is open then the following diagram commutes up to a canonical natural
equivalence

Mod(X) — % n2Alg(X)

L

For a sheaf of modules % on X the natural isomorphism T(Z|y) — T(Z)|u has the action
a1® e ®an}_>a1® e ®an.

Proof. Let nAlg(X) denote the category of presheaves of Ox-algebras. Then associating a sheaf
of modules # with the presheaf P(U) = T(Z(U)) defines a functor Mod(X) — nAlg(X).
Clearly T(—) is the composite of this functor with sheafification nAlg(X) — n2Alg(X). So by
(SOA,Lemma 3) it suffices to show that the following diagram of functors commutes up to a
canonical natural equivalence

Moo (X) —— nAlg(X)

L

Mod(U) — nAlg(U)

In fact it is easy to see that this diagram commutes in the strictest sense, that is, the two legs of
the diagram are the same functor. O

Proposition 5. Let f : (X,0x) — (Y,0Oy) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

nAlg(X) =L nAlg(Y)

T()T TT()

Moo (X) = Moo (Y)

For a sheaf of modules % on X the natural isomorphism f.T(%) — T(f«%) has the action
a1® P ®anp_)a1® e ®an.

Proof. Using (SOA,Lemma 12) we reduce immediately to showing the following diagram commutes
up to a canonical natural equivalence

nAlg(X) =Z= nAlg(Y)

-

Mod(X) == Mod(Y)

where the vertical functors are the “presheaf” tensor algebra functors given in Proposition 4.
Let V C X be open. In our construction of the Oy (V)-module Z(f~1V)®" for n > 2 we
see that we actually produce the same underlying group as when we define .7 (f~1V)®" over

Ox(f~1V). Together with the ring isomorphism f# this gives an isomorphism of abelian groups
pv : Toy ) (Z(f'V)) — Toy (1) (Z(f7'V))
To, ) (Z (V) =0y (V) Z(fTV)e Z(fV)? e
4
Tox(-)(F(TV) =0x(FTV)e Z(ITV)e F(fTV) @

It is not hard to see this is an isomorphism of Oy (V')-algebras natural in V' and also in .%, which
completes the proof. O
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Proposition 6. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism 0 : T(M)™ — T(M™) of sheaves of Ox-algebras which is natural in M.
We have ) ] )

GU(GI ®...®an/81...5n) :a1/81® P ®an/sn
where U C X is open, a; € M and s; € A with U C D(s1---5y).
Proof. Consider the following diagram consisting of adjoint pairs of functors (see Ex 5.3, Propo-
sition 2, (SOA,Proposition 5) and (TES,Proposition 7))

AnAlg _ “nUg(X)

f ' M

T

S— -
l

S——

P S ———

AMod Mod(X)
r

The two composites nlg(X) — AMod are equal, so —T and T= are both left adjoints for the
same functor. Therefore they must be canonically naturally equivalent, which is what we wanted
to show. The isomorphism 6 : T (M)~ — T(M) is unique with the property that x(m/1) =m/1
for every m € M (one should think carefully about what the notation myl means in both cases).
This is an isomorphism of sheaves of algebras, so it is now easy to see 6 has the desired effect on
the special sections in the statement of the Proposition. O

Corollary 7. Let X be a scheme and F a sheaf of modules on X. If .F is quasi-coherent then
so is T(F).

Proof. For x € X let U be an open affine neighborhood of = and f : U — SpecOx (U) the
canonical isomorphism. Then f,.Z|y = .%#(U) and combining Proposition 6, Proposition 5 and
Proposition 4 we see that

[ (T(F)|v) = f(T(F|v))
= T(f*ﬁ'h])
> T(F(U))
=2T(ZFU))”

This is an isomorphism of sheaves of algebras, which is more than enough to show that T(.%) is
quasi-coherent. O

Proposition 8. Let X be a scheme and % a sheaf of modules on X. If & is quasi-coherent and
U C X is affine then there is a canonical isomorphism of graded Ox (U)-algebras natural in %
and the affine open set U

T:T(FU)) — T(F)U)
@ @fn— fi® - ®fn
Proof. We make T(Z)(U) into a graded Ox(U)-algebra as in (SOA,Proposition 40). Using
(SOA,Proposition 4) (¢) and Corollary 7 we get an isomorphism of Ox (U)-algebras 7, and it
is not hard to check it has the desired action on f; ® --- ® f,, and is therefore a morphism of

graded algebras. Note that 7 is actually the sheafification morphism P — T(%) evaluated at U,
from which naturality in .% and inclusions of affine open sets V' C U is obvious. O

Lemma 9. Let (X,0x) be a ringed space. Then T(Ox) is a sheaf of commutative graded Ox -
algebras.

Proof. It suffices to show that the presheaf P(U) = T(Ox(U)) is commutative, which follows
immediately from (TES,Lemma 8) O
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3 Sheaves of Symmetric Algebras

Throughout this section (X, Ox) is a ringed space. Let # be a sheaf of Ox-modules, and for an
open set U let H(U) be the commutative Ox (U)-algebra given by the symmetric algebra S(.# (U)).
That is, S(.Z (U)) is the commutative graded Ox (U)-algebra obtained as a quotient of T'(.%# (U))
by the two-sided ideal I generated by the elements of the form z ® y — y ® x. For an inclusion
V' C U the morphism of rings T(Z (U)) — T(F(V)) defined earlier induces a morphism of rings
S(Z((U)) — S(Z(V)) fitting into a commutative diagram

T(#(U)) —= S(#(U))

| !

T(F(V)) —=S(F(V))

This makes H into a presheaf of commutative Ox-algebras, and if P is the presheaf of alge-
bras P(U) = T(.#(U)) then the canonical projections give a morphism of presheaves of algebras
P — H. Let S(.%) denote the sheaf of commutative Ox-algebras obtained by sheafifying H.
Sheafifying P — H gives a canonical morphism of sheaves of algebras T(.#) — S(:%#), which is
an epimorphism of sheaves of modules. The morphism of presheaves of modules .% — H given
pointwise by the canonical injection . (U) — S(% (U)) composes with H — S(%) to give a
monomorphism of sheaves of Ox-modules % — S(#). The morphisms we have just defined fit
into a commutative diagram

N

S(7)

If ¢ : # — ¢ is a morphism of sheaves of modules, whose associated presheaves of symmetric
algebras are H, G respectively, then we define a morphism of presheaves of O x-algebras ¢’ : H —
G by ¢, = S(¢u). This sheafifies to give a morphism of sheaves of Ox-algebras S(¢) : S(F) —
S(%¢). This defines a functor

S(—=) : Moo (X) — Alg(X)

Note that the following diagrams commute

s(7) s 12 2% 1(9)

T

7 — S(%) S(9)

—_—
S(¢)

For d > 0 let H; denote the sub-presheaf of Ox-modules of H given by Hy(U) = S%(F(U)),
which is the submodule of S(.Z(U)) given by the image of .#(U)%? — T(F(U)) — S(ZF(U)).
In particular there are isomorphisms of presheaves of modules Hy = Ox and H; &£ %#. By
construction the induced morphism @ ,., Hi — H is an isomorphism (coproduct of presheaves
of modules) and HyH, C Hyi.,1 € Ho(X). Let SY(.#) denote the submodule of S(.#) given by
the image of aHy — aH = S(.#). Then S(.#) together with the submodules S?(.%) is a sheaf
of graded Ox-algebras. Note that S'(.%) is the image of the monomorphism .# — S(%) and
SY(Z) is the image of the canonical morphism of sheaves of algebras Ox — S(%) (this latter
morphism is also a monomorphism of sheaves of modules, so S°(#) = Ox and S}(F) & F as
sheaves of modules).

It is clear that if ¢ : # — ¢ is a morphism of sheaves of modules, then S(¢) is a morphism
of sheaves of graded Ox-algebras, so we also have a functor

S(—) : Moo (X) — B Alg(X)



As usual, given r € Ox(U) we write r for the corresponding element of S°(.#)(U). Similarly
if a € Z(U) we write a for the corresponding element of S!(#)(U). For n > 1 and sections
ai,...,an € ZF(U) the product a; - - - a,, in the ring S(F (U)) is the coset of the tensor a; ®- - -®ay,.
The image of this product in S"(.%)(U) via H — S(.%) is just the product of the a; considered as
sections of S*(.#)(U), so we can write this section as a; - - - a,, with no ambiguity. In this notation,
for a morphism of sheaves of modules ¢ : % — ¢ we have

S(@)u(r+ a1 + agiaze + -+ -+ apy - - ann) =1+ du(anr) + du(az)dv(aze)
+ -+ oulan) - dulann)

Proposition 10. If ¢ € S(Z)(U) then for every x € U there is an open neighborhood x € V. C U
such that qly = q1 + - - - + qs where each qi has the form

Gr =7+ a1 +aa2 + -+ apr - Arn
where r € Ox (V) and a;; € F(V).

Proof. This follows immediately from the fact that S(.%#) is the sheafification of the presheaf H
defined above. O

Proposition 11. The functor S(—) : Mod(X) — Alg(X) is left adjoint to the forgetful functor
Alg(X) — Mod(X). The unit of the adjunction is given for a sheaf of modules F by the canonical
morphism F — S(.F).

Proof. Let . be a sheaf of commutative O x-algebras and ¢ : % — . a morphism of sheaves of
modules. We have to show there exists a unique morphism of sheaves of algebras ® : S(#) — .
making the following diagram commute

One argues as for T(—), using the properties of the symmetric algebra given in our TES notes. [

Proposition 12. The functor S(—) : Mod(X) — SUG(X) is left adjoint to the functor
(—)1 @ B Alg(X) — Mod(X) which maps a sheaf of commutative graded algebras to its de-
gree 1 component. The unit of the adjunction is given for a sheaf of modules F by the canonical
isomorphism F — SY(F).

Proof. The canonical morphism .% — S!(%) is natural in .%, and we have to show that if .7 is
a sheaf of commutative graded O x-algebras and ¢ : # — %] a morphism of sheaves of modules,
then there exists a unique morphism of sheaves of graded algebras ® : S(#) — . such that @,
makes the following diagram commute

54\*4)>5ﬁ1 (2)

LA

SHF)

By Proposition 11 the composite % — .4 — . induces a morphism of sheaves of algebras
® : S(F) — & unique with the property that & — S(F) — & is & — . It is easy to
check that ® is a morphism of sheaves of graded algebras, and ®; makes (2) commute. Uniqueness
is clear, which proves that S(—) is left adjoint to (—);. O



Proposition 13. IfU C X is open then the following diagram commutes up to canonical natural
equivalence

Mod(X) ~ o 2Aig(X)

L

For a sheaf of modules F on X the natural isomorphism S(F|y) — S(F)|uy has the action
a1 QAp — Q1" Q.

Proof. Let Alg(X) denote the category of presheaves of commutative O x-algebras. Associating a
sheaf of modules .# with the presheaf H(U) = S(.% (U)) defines a functor Mod(X) — Alg(X).
Clearly S(—) is the composite of this functor with sheafification Alg(X) — Alg(X). So by
(MRS,Lemma 24) it suffices to show that the following diagram of functors commutes up to a
canonical natural equivalence

Mod(X) — Alg(X)

L

Moo (U) —— Alg(U)
But it is not hard to check that this diagram actually commutes. O

Proposition 14. Let f : (X,0x) — (Y,Oy) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

Alg(X) =L= Alg(Y)

S(—)T TS(—)

Moo(X) = Moo(Y)

For a sheaf of modules F on X the natural isomorphism f.S(F) — S(f+«.%) has the action
A1 Qp — Q1 Q.

Proof. Using (SOA,Lemma 12) we reduce immediately to showing the following diagram commutes
up to a canonical natural equivalence

Alg(X) =E= Alg(v)

I

Moo (X) = Moo (V)

where the vertical functors are the “presheaf” symmetric algebra functors given in Proposition
13. In Proposition 5 we defined an isomorphism of Oy (V)-algebras To, (v)(Z(f~'V)) —
Toy(s-1v)(F(f~'V)) natural in V and .# which induces the necessary isomorphism of symmetric
algebras. O

Proposition 15. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism 0 : S(M)™— S(M) of sheaves of Ox-algebras which is natural in M. We
have ) ) )

Ou(ar -+~ anfs1 -+ s0) = a1/t an/sn

where U C X is open, a; € M and s; € A with U C D(s1---5y).
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Proof. Consider the following diagram consisting of adjoint pairs of functors (see (Ex 5.3), (SOA,Proposition
5), Proposition 11 and (TES,Proposition 33))

AAlg T

.’f\\ F /\
s| | s<—>=\’!
o

AMod Moo

The two composites Alg(X) — AMod are equal, so —S and S(—)— are both left adjoints for the
same functor. Therefore they must be canonically naturally equivalent, which is what we wanted
to show. The isomorphism 6 : S(M)™— S(M) is unique with the property that 0x(m/1) = m/1
for every m € M. This is an isomorphism of sheaves of algebras, so it is easy to check 6 has the
desired effect on the sections in the statement of the Proposition. O

Corollary 16. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent then
so is S(.Z).

Proof. For x € X let U be an open affine neighborhood of = and f : U — SpecOx (U) the
canonical isomorphism. Then f..% |y = % (U) and combining Proposition 15, Proposition 14 and
Proposition 13 we see that

This is an isomorphism of sheaves of algebras, which shows that S(.%) is quasi-coherent. O

Proposition 17. Let X be a scheme and ¥ a sheaf of modules on X. If F is quasi-coherent
and U C X is affine then there is a canonical isomorphism of graded Ox (U)-algebras natural in
Z and the affine open set U

7:5(F(U)) — S(F)(U)
i o= fre I

Proof. We make S(.%)(U) into a graded Ox(U)-algebra as in (SOA,Proposition 40). Using
(SOA,Proposition 4) (¢) and Corollary 16 we get an isomorphism Ox (U)-algebras 7 with the
required properties. Note that 7 is actually the sheafification morphism H — S(%) evaluated
at U, which makes it clear that 7 is natural in % and the inclusion of affine open sets V C U. O

Corollary 18. Let X be a scheme and & a quasi-coherent sheaf of modules on X. Then S(%F)
is locally generated by S'(.F) as an S°(F)-algebra.

Proof. Using Proposition 17 we reduce immediately to showing that for a commutative ring A
and A-module M the graded A-algebra S(M) is generated by S'(M) as an A-algebra, which is
obvious. O

4 Sheaves of Exterior Algebras

Througout this section (X, Ox) is a ringed space. Let # be a sheaf of Ox-modules, and for
any open set U let H(U) be the (noncommutative) Ox (U)-algebra given by the exterior algebra
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N\ Z(U). Thatis, A Z#(U) is the graded Ox (U)-algebra obtained as a quotient of T'(.:#(U)) by the
two-sided ideal I generated by the elements of the form z®z. For an inclusion V' C U the morphism
of rings T(F (U)) — T(F(V)) defined earlier induces a morphism of rings A F#(U) — A F (V)
fitting into a commutative diagram

(7)) —= A7)

! !

T(FV) —= A7)

This makes H into a presheaf of O x-algebras, and if P is the presheaf of algebras P(U) = T'(# (U))
then the canonical projections give a morphism of presheaves of algebras P — H. Let A %
denote the sheaf of Ox-algebras obtained by sheafifying H. Sheafifying P — H gives a canonical
morphism of sheaves of algebras T(%#) — A %, which is an epimorphism of sheaves of modules.
The morphism of presheaves of modules . # — H given pointwise by the canonical injection
F(U) — N\ F(U) composes with H — A .Z to give a monomorphism of sheaves of O x-modules
F — A\ Z. The morphisms we have just defined fit into a commutative diagram

F—>T(F

(&

NZ
If ¢ : & — & is a morphism of sheaves of modules, whose associated presheaves of exterior
algebras are H, G respectively, then we define a morphism of presheaves of O x-algebras ¢’ : H —
G by ¢f; = A¢y. This sheafifies to give a morphism of sheaves of Ox-algebras A % — A¥9.

This defines a functor

(=) : Mod(X) — nAlg(X)

Note that the following diagrams commute

ANFLong 1) D 1)

! L

F—>Y —
3 N v N9

For d > 0 let Hy denote the sub-presheaf of Ox-modules of H given by Hy(U) = N“(Z(U)),
which is the submodule of A (% (U)) given by the image of .7 (U)®? — T(F (U)) — A(Z(U)).
In particular there are isomorphism of presheaves of modules Hy & Ox and H; &£ %. By
construction the induced morphism €@ 4>0 Ha — H is an isomorphism (coproduct of presheaves
of modules) and HyH, C Hyye,1 € Ho(X). Let /\d F denote the submodule of A\ .Z given by the
image of aHy — aH = \.%. Then \.Z together with the submodules \?.Z is a sheaf of super
Ox-algebras. Note that \'.Z is the image of the monomorphism .# — A.Z and A’.Z is the
image of the canonical morphism of sheaves of algebras Ox — A % (this latter morphism is also
a monomorphism of sheaves of modules, so \°.Z = Ox and \'.Z = .F as sheaves of modules).

It is clear that if ¢ : F — & is a morphism of sheaves of modules, then A ¢ is a morphism
of sheaves of super O x-algebras, so we also have a functor

/\(=) : Mod(X) — sAlg(X)
Asusual, given r € Ox(U) we write r for the corresponding element of I'(U, /\O Z). Similarly ifa €

Z(U) we write a for the corresponding element of D'(U, \' #). For n > 1 and a4, ..., a, € Z(U)
we write aj A - - - Aay, for the element of I'(U, A" %) which is the image of a1 A- - -Aa, € \"(F(U))

10



under H — A %. This is just the product of the individual a; considered as elements of
(U, A" .Z). In this notation, for a morphism of sheaves of modules ¢ : F — % we have

(AP U (r+a11 + a1 Aaga + -+ +apt A -+ Aapy) =7+ ¢u(arr) + du(az) A gy (azs)
+ .. +¢U(ah1) Ao A ¢U(ahh)

For d > 0 let A% : /\d F — /\d % be the morphism of sheaves of modules induced on the graded
submodules by A¢, which is unique making the following diagram of sheaves of modules commute

7N g

|

A\
d o d
N'F o N

This defines a functor A%(—) : Mod(X) — Mod(X).

Proposition 19. Ifq € T'(U, \ F) then for every x € U there is an open neighborhood x € V.C U
such that qly = q1 + - -+ + qs where each qi has the form

qr =74 a1 +an Aagz + - Fant A - Aap
where r € Ox (V) and a;; € F(V).

Definition 1. Let (X,Ox) be a ringed space and # a sheaf of Ox-modules. For n > 1 we say
a multilinear morphism (MRS,Definition 9) f:.% x --- x #F — ¢ from the n-fold product into
a sheaf of abelian groups ¥ is alternating if for every open U C X the map fy is alternating.
That is, for every open U C X we have fy(mq,...,m,) = 0 whenever m; = m; for ¢ # j. The
canonical morphism of sheaves of sets

n
7:9><-~-><9—>/\57
(a1,...,an)— a1 A - Aay

is clearly an alternating multilinear form. In fact this is the universal alternating multilinear form,
as we will see in a moment. If n = 1 then an alternating multilinear map is just a morphism of
sheaves of abelian groups .% — ¢ and an alternating multilinear form is a morphism of sheaves
of modules.

Proposition 20. Let (X,0x) be a ringed space, F,9 sheaves of modules on X and suppose
f:F x- X F — 9 is an alternating multilinear form out of the n-fold product for n > 1.
Then there is a unique morphism of sheaves of modules 0 : N\ .F — 4 making the following
diagram commute

Fx-xF—>N\N"F

fl/

4

Proof. For each open U C X we have an alternating multilinear form fi; : #(U)" — ¢ (U), which
by (TES,Lemma 18) corresponds to a morphism of Ox(U)-modules ¢y : A" F(U) — 4 (U).
Together these define a morphism of presheaves of Ox (U)-modules ¢ : Hy — ¢. The induced
morphism 6 : \".% — ¥ is the one we require. O

Proposition 21. The functor \(=) : Mod(X) — sAlg(X) is left adjoint to the functor (—);
s2Wlg(X) — Mod(X) which maps a sheaf of super algebras to its degree 1 component. The unit
of the adjunction is given for a sheaf of modules F by the canonical isomorphism F — /\1 ZF.

11
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Proof. The canonical morphism 7 : % — /\1 & is natural in %, and we have to show that if .%
is a sheaf of super Ox-algebras and ¢ : % — %] a morphism of sheaves of modules, then there
exists a unique morphism of sheaves of super algebras ® : A . ¥ — % such that ®; makes the
following diagram commute

72 (3)

Let ®y be the canonical morphism /\0 F — S and let ®; be the composite ¢n~!. For n > 1
we define a multilinear form

f:F X XTF — .
fU(ala"'aan):¢U(a1)"'¢U(an)

which is alternating since . is a super Ox-algebra. By Proposition 20 there is an induced
morphism ®,, : A".F — .%,. The morphisms ®,, for n > 0 induce a morphism of sheaves of
graded Ox-modules @ : A .F — . out of the coproduct. In fact with a little work one checks
that ® is a morphism of super Ox-algebras, while ®; trivially makes (3) commute. Uniqueness is
clear, which proves that A(—) is left adjoint to (—);. O

Proposition 22. IfU C X is open then the following diagram commutes up to canonical natural
equivalence

Moo (X) — L saug(x)

l i

Moo (U sAlg(U
(1)~ s2Ag(0)
For a sheaf of modules # on X the natural isomorphism N(F|v) = (NZF)|u has the action
a1 A -+ Aap — a1 A -+ Aa,. In particular there is an isomorphism of sheaves of modules

AT o) = (N F)|v natural in F.

Proof. Let GrnAlg(X) denote the category of presheaves of graded Ox-algebras. Associating a
sheaf of modules .# with the presheaf of graded Ox-algebras H(U) = A(Z (U)) defines a functor
Moo(X) — GrnAlg(X). Clearly A(—) is the composite of this functor with sheafification
GrnAlg(X) — &nlg(X). So by (SOA,Lemma 38) it suffices to show that the following diagram
of functors commutes up to a canonical natural equivalence

Mod(X) —— GrnAlg(X)
Mod(U) —— GrnAlg(U)
But it is not hard to see that this diagram actually commutes. O

Corollary 23. IfU C X is open and F is a sheaf of modules on X then for any d > 0 there is

a canonical isomorphism N*(F|y) = (/\d 9’) |u of sheaves of modules on U natural in F.

Proposition 24. Let f : (X,0x) — (Y,Oy) be an isomorphism of ringed spaces. Then the
following diagram commutes up to canonical natural equivalence

s2Alg(X) SELEN sAlg(Y)

/\()T T/\()

Moo (X) = Moo (Y)

12
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For a sheaf of modules # on X the natural isomorphism fo(\F) — NA(f«F) has the action
il A Aap—ar A - Aap.

Proof. Using (SOA,Lemma 44) we reduce immediately to showing that the following diagram
commutes up to a canonical natural equivalence

GrnAlg(X) L GrnAlg(Y)

T !

Moo (X) % Moo (Y)

where the vertical functors are the “presheaf” exterior algebra functors given in Proposition
22. In Proposition 5 we defined an isomorphism of Oy (V')-algebras TOY(V)(ﬁ(f_l‘/)) —
Toy(f-1v)(Z(f~'V)) natural in V and .# which induces the necessary isomorphism of exterior
algebras. O

Lemma 25. Let (X,Ox) be a ringed space and F a sheaf of modules on X. Fory € X there is
a canonical isomorphism of graded Ox ,-algebras natural in F

T:(/\ﬂ)y—> /\ Fy

Ox.y
(Uyar A -+ Aay) — (Uyar) A+ A (U, ap)

In particular for d > 0 there is a canonical isomorphism of Ox ,-modules (/\d F)y = /\?QX ) Fy
natural in F .

Proof. Let H be the presheaf H(U) = A(Z (U)). Then H, becomes a graded Ox ,-algebra with
the canonical grading, and in fact H, is a super Ox ,-algebra (TES,Definition 4). Suppose T
is a super Ox y-algebra and that ¢ : %, — T} is a morphism of Ox y-modules. For each
open neighborhood U of y the morphism of Ox(U)-modules #(U) — %, — T induces a
morphism of super Ox (U)-algebras A(F# (U)) — T (TES,Proposition 7). Taking the direct limit
we obtain a well-defined morphism of super Ox ,-algebras 7 : H, — T defined for a € F#(U)
by (U,a) — ¢(U,a). If n: %, = (Hy)1 is the canonical isomorphism of Ox ,-modules then 7 is
trivially the unique morphism of super algebras making the following diagram commute

yy L> T

But this is the universal property that identifies the super algebra /\Ox ) #y. Therefore we have
a canonical isomorphism of graded Ox ,-algebras ’

T:Hy — /\ Fy
Ox,y
TUa1r A ANap) = (U,a1) A+ A (U, ay)

composing with the canonical isomorphism H, = (A %), we have the desired isomorphism. Nat-
urality in .% is easily checked. O

Proposition 26. Let X = SpecA be an affine scheme and M an A-module. Then there is a
canonical isomorphism of sheaves of graded Ox-algebras natural in M

0:(\M)”— N\M)

(a1 A Aan)/(s1-Sn) > ai1/si A -+ Aan/sn

13
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Proof. See (SOA,Definition 13) for the definition of the sheaf of graded Ox-algebras (A M)™. If
A = 0 then this is trivial, so assume A is nonzero. For p € SpecA we have an isomorphism of
Ox p-algebras, using (TES,Corollary 16) and Lemma 25

Op o (ANaM) "y = (AaM), = Aa, My = Moy ,(M7)p, = (AM7),

It is not hard to check that germ,0y(s) = 0,(germys) defines the necessary isomorphism of
sheaves of graded algebras. Naturality in M is also easily checked. O

Corollary 27. Let X be a scheme and F a sheaf of modules on X. If F is quasi-coherent then
so are \ F, /\d F for every d > 0. If X is noetherian and % coherent then /\d & is coherent for
d>0.

Proof. For x € U let U be an affine open neighborhood of = and f : U — SpecOx(U) the
canonical isomorphism. Then f,.#|y = Z#(U)~ and combining Proposition 26, Proposition 24
and Proposition 22 we see that there is an isomorphism of sheaves of graded algebras

LN\ D) = £\ Z )
= A\ (f.7Iv)
= \(Z(U))
= (\ZU))~

This shows that /\ .# is quasi-coherent. Since A 7 = P, A7 it follows from (MOS,Lemma

1) that A*.Z is a quasi-coherent sheaf of modules for d > 0. Since (4) is an isomorphism of sheaves
of graded algebras, we deduce an isomorphism of sheaves of modules f,((A*.Z)|v) = (A*.Z(U))~
for d > 0. If X is noetherian and .# coherent then .#(U) is a finitely generated Ox (U)-module,
so A\*.Z(U) is finitely generated (TES,Lemma 11) and consequently A*.Z is coherent. O

Corollary 28. Let X be a nonempty scheme and % a locally free sheaf of finite rank n > 1.
Then for 0 < d < n the sheaf /\dﬁz is locally free of rank (7}). If d > n then /\dﬁz =0.

Proof. If x € X then we can find an affine open neighborhood U of x with % |y free of rank n.

Then .Z(U) is a free Ox (U)-module of rank n (MOS,Lemma 6) and therefore A*.Z(U) is a free
module of rank (7)) if d < n and is zero otherwise (TES,Proposition 21). The result now follows

from the isomorphism f*((/\d Flu) = (/\d F(U))~ of Corollary 27. O

Proposition 29. Let f: (X,0x) — (Y,Oy) be a morphism of ringed spaces and .# a sheaf of
modules on Y. Then there is a canonical isomorphism of sheaves of graded Ox-algebras natural
in F

& f(NF) — \F)

In particular for d > 0 there is a canonical isomorphism of Ox-modules f*(/\d F) = /\d 7
natural in % .

Proof. See (SOA,Section 3.1) for the definition of the inverse image of a sheaf of graded alge-
bras. For z € X we use Lemma 25, (SOA,Lemma 45) and (TES,Proposition 15) to obtain an

14
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isomorphism of graded Ox .-algebras

o f*(/\ Tz = (/\ F) j(@) OOy sy OX

= ( /\ yf(z)) QOy s Ox .
Oy f(x)

= A (Fr) ®0y 10y Ox.0)
OX,m

1
>
<
Y
g
1
/N
=
=%
Y
N

Ox .,z

One checks that germ,£y(s) = &, (germys) gives a well-defined isomorphism of sheaves of graded
Ox-algebras. Naturality in .% is easily checked. O

Lemma 30. Let (X,0x) be a ringed space and v : F — 4 an epimorphism of sheaves of
Ox-modules. Then N : N*.F — N“G is an epimorphism for d > 1.

Proof. By Lemma 25 we reduce to showing that if R is a commutative ring, v : M — N an
epimorphism of R-modules then AYM — AYN is an epimorphism, which is trivial. O

Remark 1. Let (X,Ox) be a ringed space, % a sheaf of Ox-modules. Then for a,b > 1 the
product in the sheaf of graded Ox-algebras A .% induces a morphism of sheaves of O x-modules

a b a+b
NZoNF — \N7F (5)
a®b— ab

Proposition 31. Let (X,Ox) be a nontrivial ringed space and suppose we have an exact sequence
of locally free sheaves

0 Ay S 0

where G, 7 are locally free of finite ranks a,b respectively. Then there is a canonical isomorphism
of sheaves of Ox -modules N*7° F = NG @ N\* A

Proof. See (MRS,Remark 13) for the definition of a nontrivial ringed space. In the cases where
one of a,b are zero there is a trivial isomorphism, so assume a,b > 1. Tensoring \“¥Y — A" .F

with /\b Z and then composing with (5) gives a morphism of sheaves of Ox-modules
a-+b

a b
0N NF— N7

Using Lemma 25 to reduce to the case of rings and exterior powers of modules, one checks that 6
is an epimorphism of sheaves of modules (see (TES,Section 3.3.1) for the case of rings). Tensoring

the epimorphism A\”.# — A" with A®¥ gives an epimorphism of sheaves of O x-modules

a b a b
pNgoNF — NG \#
We claim that Ker(0) = Ker(p). It suffices to show that Ker(0), = Ker(p), for every z € X,
which follows from Lemma 25 and (TES,Proposition 32). Since 6, p are epimorphisms with the

same kernel, it follows that there is a unique isomorphism of sheaves of Ox-modules /\a+b F =

15
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N9 ® /\b 2 fitting into the following commutative diagram

NG o N #

which completes the proof. O

Proposition 32. Let (X,Ox) be a ringed space and F a sheaf of modules on X. Then forn > 1
there is a canonical morphism of sheaves of modules natural in F

n

g: N7 — (NZ)"
ﬁU(l/l/\~-~/\1/n)V(a1/\~~/\an):ngn H (ao(i))

g€Sy i=1

Proof. For an open subset U C X and vy,...,v, € (U, #V) we define a morphism of sheaves of
sets

&.,

fV(ala"'7 =

sgn(o H v(as()) = det((vi)v(ay))

9\U>< Xy‘U—>Ox‘U
€Sn =1

Using the standard properties of the determinant, one checks that f is an alternating mul-
tilinear form. By Proposition 20 there is a corresponding morphism of sheaves of modules
N'(Z|lv) — Oxly. Let 0, ,, denote the composite of this morphism with the canonical
isomorphism A" (Z|v) 2 (A" F)|u of Proposition 22. One checks that the following map is also
an alternating multilinear form

n
T:ﬁvx~-~xﬁv—>(/\§)v
TU(VI» ceey Vn) = 91/1,...,1/,”
which by Proposition 20 must correspond to a morphism of sheaves of modules § with the required
property. O

Corollary 33. Let X be a nonempty scheme, £ a locally free sheaf of finite rank. Then forn > 1
the canonical morphism of sheaves of modules

8: N2 — (A2)"

of Proposition 32 is an isomorphism.

Proof. Let £ be a locally free sheaf of rank » > 0. If r = 0 then . = 0 and 3 is trivially an
isomorphism. If » > 1 but n > r then the domain and codomain of 3 are both zero, so once again
B is an isomorphism. So we may assume 1 < r < n. For z € X the Ox z-module .Z; is free of
rank r. Using Lemma 25, Corollary 28 and (MRS,Corollary 92) we have a commutative diagram

(AL}, — = {(N\"2)"},

ﬂ ﬂ

Noy, (Lo) —=——== (Nb, . Z:)"

16
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where the bottom morphism is the isomorphism of (TES,Corollary 31). Therefore §, is an iso-
morphism for every x € X, which implies that § is an isomorphism and completes the proof. O

Proposition 34. Let (X,0x) be a ringed space and F,9 sheaves of modules on X. Then there
18 a canonical isomorphism of sheaves of super Ox-algebras

s NFeoNg— \NFe9)
(fl/\ Afm)@(gl/\ /\gn)'_)(flvo)/\ /\(f'ﬂuo)/\(ovgl)/\ /\(Oagn)

In particular for d > 0 there is a canonical isomorphism of sheaves of modules

m n d
P N7 N9 — N\ZFo9)

m+n=d

Proof. By the tensor product A\ .% @ A ¥ we mean the super Ox-algebra of (SOA Proposition
52). By Proposition 21 the functor A(—) : MMod(X) — sAlg(X) has a right adjoint and therefore
preserves all colimits. It follows that the morphisms A # — A(F ®¥) and N9 — A(F @ Y)
are a coproduct in the category slg(X). But the super Ox-algebra A Z ® A ¥ is also a coproduct
by (SOA,Proposition 52), so there is a canonical isomorphism of super O x-algebras A FQA Y —
N(ZF @ 9), as claimed. The second statement follows immediately from (MRS,Lemma 101). O

Corollary 35. Let X be a scheme and £ an invertible sheaf of modules on X. Then for d > 1
there is a canonical isomorphism of sheaves of modules

d
5 \gt— 2

Proof. Here % denotes the coproduct of d copies of .Z. We can assume X is nonempty, so we
have canonical isomorphisms A\".Z =~ Ox, \' £ = % and \" £ = 0 for n > 1 by Corollary 28.
For d > 1 the sheaf £ is locally free of rank d, so again by Corollary 28 we have A" .Z¢ = 0 for
n > d. We construct the isomorphism § recursively. For d = 1 we take the canonical isomorphism
o1 : /\13 & #. Suppose that the isomorphism d; has been constructed for 1 < i < d. Using
Proposition 34 and d4_1 we have a canonical isomorphism

d d 1 d—1 0 d
Ne'=zNzeg = (Nze N2 e (N N2
gj@,iﬁ@(d_l) :Dg@d

as required. O

5 Sheaves of Polynomial Algebras

Let % be a sheaf of modules on X, and let n > 1 be an integer. We define a presheaf P on X as
follows: For an open subset U C X we define

PU) = Z(U)z1,. .., zn]

That is, P(U) is the graded Ox (U)-module of all polynomials in n variables with coefficients from
Z (U). The homogenous polynomials of degree m give the mth graded piece. For open subsets
V C U the morphism of modules .#(U) — .#(V) induces P(U) — P(V), and with these
morphisms it is clear that P is a presheaf of graded modules on X. Restriction acts by restriction
on the coefficients:

(f+ fizi+ -+ fozn+--)lv = flv+ (Alv)zr +- -+ (falv)en + - -

17
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If ¢ : & — & is a morphism of sheaves of modules, and @ is the presheaf of polynomial modules
for ¢, then we get a morphism of presheaves of graded modules

p:P—0Q
ov  F(U)[x1,. .., 20 — G(U)[x1,. .., Tn]
faftagr = gu(fagt --agr

There is a morphism of presheaves of modules % — P given pointwise by the canonical injection

Definition 2. Let (X,Ox) be a ringed space and .# a sheaf of modules on X. For n > 1 the
polynomial module with coefficients in %, denoted Z[x1,...,x,] is the sheaf of graded modules
on X given by the sheafification of the presheaf P(U) = .#(U)[z1,...,x,] above. If ¢ : F — &
is a morphism of sheaves of modules, there is an induced morphism of sheaves of graded modules
Flat,...,xn] — G]21,...,2,) given by the sheafification of ¢ above. This defines a functor

(x1s .-y xn] : Mod(X) — SNM0d(X)

The composite # — P — F|x1,...,2,] gives a monomorphism of sheaves of modules 7 :
F — Flx1,...,x,] which is clearly natural in %#. The image of this morphism is clearly
9[1’1, ‘e ,.’ﬂn]o.

If Z is a sheaf of algebras on X then P(U) becomes a Ox (U)-algebra via the ring morphism
Ox(U) — F(U) — F(U)[x1,...,%4]

and in this way P is a presheaf of graded algebras on X. Therefore % [zy,...,x,] is a sheaf of
graded Ox-algebras with the same grading as above. For every open set U C X we write x; for the
polynomial in P(U) whose only nonzero coefficient is the identity 1 € .#(U) on the monomial x;.

So we have a section #; € F[x1,...,2,](U) homogenous of degree 1. We use a similar notation
for any monomial in xy,...,2,. If ¢ : F — ¥4 is a morphism of sheaves of algebras, then
Flr1, ..., xn] — Y[x1,...,2,] is clearly a morphism of sheaves of graded algebras, so we get
functors

(D)1 -y @n] s nAlG(X) — GenAlg(X)
(—)[xl, .. ,xn] : Q‘[g(X) — 6t§[[g(X)

In particular for n > 1 we have a commutative sheaf of graded Ox-algebras Ox|[z1,...,z,] with
Ox[{El, e ,xn]o = Ox.

Proposition 36. Let (X,Ox) be a ringed space and F a sheaf of commutative algebras on X.
For n > 1 there is a bijection natural in F

B Homsg(x)(Ox[21, ..., 0], F) = F(X)"

Proof. 1t is clear that § is a morphism of abelian groups. Using the fact that sheafification is a
left adjoint, we have a bijection

Homgg(x)(Ox[1,. .. 2n], F) = Hom giqx) (P, F) (6)

where P sheafifies to give Ox|[z1,...,2,]. Since P(U) = Ox(U)[z1,...,z,] it is not hard to
check that Hom(P, %) = .#(X)"™ under the map ¢ — (¢Yx(x1),...,¢¥x(x,)). Together with (6)
this gives the desired isomorphism (. Naturality in % is easily checked. If we are given a tuple

(a1y...,ay) with a; € F(X) then the corresponding morphism Ox[z1,...,z,] — Z is induced
by P — .% defined pointwise by the morphism of Ox (U)-algebras Ox (U)[z1,...,x,] — F(U)
corresponding to (a1|u, ..., an|v). O

18



Proposition 37. Let (X,0x) be a ringed space and F a sheaf of graded commutative algebras
on X. Then for n > 1 a morphism of sheaves of algebras ¢ : Ox|[x1,...,x,] — F is a morphism
of sheaves of graded algebras if and only if px(2;) € F1(X) for 1 <i < n.

Proof. The condition is clearly necessary. To see it is sufficient, we can reduce to showing that
the corresponding morphism ¢’ : P — % of presheaves of algebras preserves grade, which is
obvious. O

Corollary 38. Let (X,0x) be a ringed space and F a sheaf of graded commutative algebras on
X. Forn > 1 there is a bijection natural in F

ﬁ : HOmthg[[g(X)(OX[xlw .. ,!En],y) = yl(X)n
¢) = ((ZSX(x.l)v SRR ¢X(:Cn))

Proposition 39. If U C X is open and n > 1 then the following diagram commutes up to a
canonical natural equivalence

(—)[£E1,-..,$n,]

Mod(X) Mod(X)
Moo (U Moo (U
W) S )
For a sheaf of modules # on X the natural isomorphism F|y[x1,...,2n] — Flr1,..., 2]l
has the action ax{!' - xp™ — ax]' - xp™.
Proof. This is straightforward, using the technique of Proposition 4. O

Proposition 40. Let f : (X,0x) — (Y, Oy) be an isomorphism of ringed spaces. Then for
n > 1 the following diagram commutes up to canonical natural equivalence

Moo (X) L Moo (Y)

(=1, IH]T T(—)[wu-wrn]

For a sheaf of modules 7 on X the natural isomorphism fu(F[x1,...,2s]) = (foF)[z1,. .. 0]

has the action azx{* - xp™ — ax{' - xR,

Proof. Once again, straightforward using the technique of Proposition 5. O

Lemma 41. Let A be a commutative ring, p a prime ideal of A and M an A-module. For n > 1
there is a canonical isomorphism of Ay-modules ¢y : M(x1,...,xn]y — Mpz1,...,x,] defined

by ¢p(f/s)(a) = f(@)/s.

Lemma 42. Let (X,0x) be a ringed space and F a sheaf of modules on X. For n > 1 and
y € X there is a canonical isomorphism of Ox ,-modules natural in F

v Fxr, . Ty — Fylxa, .., 2]

(U, az - 28m) = (U, a)z - 2%

n

Proof. Let P be the presheat P(U) = .#(U)[z1,...,zy). It is not hard to check that the following
is a well-defined isomorphism of Ox ,-modules

T: Py — Fylr1,..., 2]
T(U7 f)(a) = (U7 f(a))
We define v to be the composite of the canonical isomorphism F#[z1,...,x,], = P, with 7.
Naturality in .% is easily checked. O
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Proposition 43. Let X = SpecA be an affine scheme and M an A-module. Then for n > 1 there
18 a canonical isomorphism of sheaves of modules natural in M

QZ} : M[‘rla"'axn] _)M[xlv"wirn]ﬂv
(m/s)a:‘fl cpln s mzxt - ~xg"/s
Proof. For open U C X and p € U and a polynomial f € M(U)[:z:l, ..., xy] let f(p) denote the
polynomial a — f(a)(p ) of Mylx1,...,z,]. Let P be the presheaf P(U) = M (U)[z1,...,Z4]
which sheafifies to give M [1,...,2,]. We have a morphism of presheaves of modules
P — Mzy,..., 2]
by () = ¢, (f(p))

where ¢, is the isomorphism defined in Lemma 41. To see that ¢, (f) is a well-defined section,
take the nonzero coefficients of f and find an open neighborhood of p small enough so all these
coefficients are of the form m/ s. Then on that neighborhood 1, (f) will be of the form g/t for a

polynomial g € M[z1,...,z,]. For any prime p there is a commutative diagram
by _
Pp : M[xla"',xn]p
Mp[(ﬂl,...’xn] :>Mp[x1,...,xn] :}M[.’El,. --amn}p

Therefore w; is an isomorphism, and hence so is the morphism of sheaves of modules ¥ :
Mlzy,...,x,) — M|z, ...,2,]" induced by ¢’. Naturality in M is easily checked. O

Corollary 44. Let X be a scheme and % a sheaf of modules on X. If F is quasi-coherent, then
the same is true of Flx1,...,xy,] for any n > 1.

Proof. For x € X let U be an affine open neighborhood of z and f : U — SpecOx(U) the
canonical isomorphism. Then f,.%|y =& & (U) and combining Proposition 39, Proposition 40 and
Proposition 43 we see that

f*(y[wla"'axn”U) ( U[xlv ) n])

7
£ Zl0)n, . )]

/—\

Ze

y(U)[xla cee 7xn]
F

O)[z1,. - xn)”

This shows that F#[x1,...,z,] is a quasi-coherent sheaf of modules, as required. ]

1%

Proposition 45. Let X be a scheme and F quasi-coherent sheaf of modules on X. Forn > 1
and affine open U C X there is a canonical isomorphism of graded Ox (U)-modules natural in F
and the affine open set U

7 FO)[z1, .. xn] = Flrn,. .. 20](U)

Qn

aq (&5} : Qn
ary  ---T," /> ary - Tn

If & is a sheaf of algebras, this is an isomorphism of graded Ox (U)-algebras.

Proof. We make .Z[x1,...,2,](U) into a graded Ox (U)-module as in (SOA,Proposition 40). Using
Proposition (H,5.1(d)) and Corollary 44 we get an isomorphism Ox (U)-modules 7, which is easily
seen to preserve grade. If .# is a sheaf of algebras, then 7 is clearly a morphism of sheaves of
algebras. Note that 7 is actually the Sheaﬁﬁcation morphism P — Flxq,...,x,] evaluated at
U, from which it follows that 7 is natural in .% and inclusions of open affines V cU. O
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Corollary 46. Let X be a scheme and F a quasi-coherent sheaf of commutative algebras on X.

Then forn > 1, Flx1,...,xy) is locally finitely generated by F [x1,...,xn]1 as an Flx1,...,Zu]0-
algebra.
Proof. This follows immediately from Proposition 45. O

Lemma 47. Let X be a nonempty scheme and % a free Ox-module of rank n > 1. For any basis
fi,.., fn € F(X) there is a canonical isomorphism of sheaves of graded Ox-algebras

B:O0x[z1,...,2,] — S(F)
T — fi
Proof. By a “basis” we mean a coproduct {¢; : Ox — % }1<i<n, but since morphisms Oy — %
correspond to global sections of .7, there is no harm in calling the elements (¢;)x (1) a basis. We
know such a morphism of sheaves of graded Ox-algebras 3 exists by Corollary 38. Since .# is
quasi-coherent, we reduce by (MOS,Lemma 2) to showing that Sy is a bijection for every affine

open U C X, and this follows at once from (TES,Lemma 34), Proposition 45, and Proposition
17. O

Lemma 48. If X is a scheme then there is a canonical isomorphism of sheaves of graded Ox -
algebras

ﬁ : Ox[m] E— T(OX>
i 1eTHOx)(X)

Proof. First of all, we know from Lemma 9 that T(Ox) is a quasi-coherent sheaf of commutative
graded Ox-algebras. So such a morphism of sheaves of graded Ox-algebras g exists by Corollary
38. We reduce by (MOS,Lemma 2) to showing that Gy is a bijection for every affine open U C X,
and this follows at once from (TES,Lemma 8), Proposition 45, and Proposition 8. O

6 Sheaves of Ideal Products

Suppose for every n > 0 we have a sheaf of ideals _#,, on X satisfying the following conditions

Jo=0x (7)
In S Im m<n (8)
By Zn_#m C _Zn+m we mean that the ideal product _#Z, _#,,, which is a sheaf of ideals on X, is
contained in _#Zp, 4. This is equivalent to having #,(U)_Zm(U) € _Zmyn(U) as ideals in Ox (U)

for every open subset U C X. Let P be the following presheaf of modules on Ox (coproduct of
presheaves of modules)

P=@P /=0x0 /10 f20--

n>0

For open U C X define a product on the Ox (U)-module P(U) by

(xy)z = Z TdYe

d+e=1

It is easy to check this is a commutative graded Ox (U)-algebra with identity (1,0,...) and graded
piece 7, (U) in degree n > 0. As usual we identify elements of #,(U) with sequences in P(U)
with only one nonzero entry. In that case multiplication in P(U) is just multiplication in Ox (U)
where you have to keep track of the grade. With component-wise restriction it is clear that
P is a presheaf of Ox(U)-algebras. Therefore the sheafification & is a sheaf of commutative
graded Ox-algebras, where the submodule &7, for n > 0 is the image of the canonical morphism
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In — P — & In fact these morphisms _#,, — & are the canonical coproduct of sheaves of

modules
7= s

n>0

As usual, given a € _#,(U) for n > 0 and some open set U C U we simply write a for the
corresponding element of & (U) which is the image under P — & of the sequence in P(U) with
a single nonzero entry given by a in the nth place. Equivalently this is the image of a under

In — 2.

Definition 3. Let (X, Ox) be a ringed space, {_#,}n>0 a collection of sheaves of ideals satisfying
(7),(8),(9). Then the coproduct of sheaves of modules €, -, #» becomes a sheaf of commutative
graded Ox-algebras in a canonical way. In particular if ¢ is a sheaf of ideals then we can set
In = F" for n > 1 (the n-fold product), and in this case we write B(_#) for @, -, _#n and
B"(_#) for the submodule of degree n for n > 0. Note that B’(_#) = Ox.

If # C . then there is a canonical morphism of graded Ox-algebras B(_¢#) — B(.%¢)
which is the sheafification of the morphism given component-wise by the inclusion ¢ — 2. If
H = _¢ this is the identity, and if # C J# C .Z then the composite B(_#) — B(#) — B(Y)
is just B(_#) — B(2).

Proposition 49. If 7 is a sheaf of ideals and g € B(_#)(U) then for every x € U there is an
open neighborhood x € V- C U such that qly = q1 + -+ - + qs where each gy has the form

Qx =T+ a11 + az1a22 + -+ Ap1 - Gap

where v € Ox (V) and a;; € # (V). In the sum above, an n-fold product is given grade n for
n>1.

Proposition 50. If U C X is open and _# is a sheaf of ideals on X then there is a canonical
isomorphism of sheaves of graded Ox -algebras natural in g

B(Zlv) — B(A)lv

ap - QAp = a1 - an

Proposition 51. Let f : (X,0x) — (Y,Oy) be an isomorphism of ringed spaces with inverse
h and let 7 be a sheaf of ideals on X. Then there is a canonical isomorphism of sheaves of
Oy -algebras

p: f.B(#) — B(# - Oy)

a1---an'—>hﬁ(a1)--~hﬁ(an)
where U C X is open and a; € _#(U).

Proof. Here ¢ - Oy denotes the sheaf of ideals on Y corresponding to _# under (MRS,Lemma
49). Let P be the presheaf of algebras on X sheafifying to give B(_#) and let @ sheafify to give
B(_7 - Oy). Then we have isomorphisms of presheaves of Oy-modules (using (MRS,Proposition

52))
=0y ®(JF Oy)o(f2 Oy)@-
=0y @ (7 -Oy)a (g -Oy) o
=Q
In fact this is an isomorphism of presheaves of algebras, and together with the canonical iso-

morphism of sheaves of algebras a(f.P) = f.(aP) this gives our isomorphism p of sheaves of
algebras. O
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If A is a ring with ideal a then we can define a commutative graded A-algebra
Bla)=@a"=Acawa®®---
n>0

with the product (zy); =), te—i TdYe- 1f b C a are ideals then the inclusions give a morphism of
graded A-algebras B(b) — B(a). If A is an integral domain then clearly so is B(a).

Proposition 52. Let X = SpecA be an affine scheme and a C A an ideal. Then there is a
canonical isomorphism of sheaves of Ox -algebras

¢ :B(a) — B(a)”
1)1+~ )8 = @1 - G 51 5n

Proof. Since the functor — : AMod — 90%od(X) preserves all colimits, there is an isomorphism
of sheaves of modules

B(a)=Oxdada’®---
—O0xDaDa2D -
>~ B(a)~

To check it is a morphism of sheaves of algebras we can reduce to the case of sections of the special
form given in the statement, which is easy. O

Proposition 53. Let X be a scheme and _# a sheaf of ideals on X. If ¢ is quasi-coherent then

sois B( 7).

Proof. This follows immediately from (MOS,Corollary 12) and (MOS,Proposition 25). O

Proposition 54. Let X be a scheme and ¢ a sheaf of ideals on X. If 7 is quasi-coherent and
U C X is affine then there is a canonical isomorphism of graded Ox (U)-algebras natural in ¢
and the affine open subset U

T:B(Z(U)) — B(/)U)

a1 Qp = a1 Qp

Proof. We make B(_#)(U) into a graded Ox (U)-algebra as in (SOA,Proposition 40). Let P be the
presheaf P(U) = B(_# (U)) of Ox-algebras, which sheafifies to give B(_#) by (MOS,Proposition
13), and let 7 be the canonical morphism P — B(_#) evaluated at U. This is a morphism of
graded Ox (U)-algebras, and it follows from (MOS,Lemma 6) that 7 is an isomorphism. O

Corollary 55. Let X be a scheme and ¢ a quasi-coherent sheaf of ideals on X. Then B(_7) is
locally generated by B(_# )1 as a B(_# )o-algebra (locally finitely generated if ¢ is coherent).

Proof. Using Proposition 54 we reduce immediately to showing that for a commutative ring A
and ideal a the graded A-algebra B(a) is generated by B(a); as an A-algebra, with B(a) finitely
generated by B(a); if a is finitely generated. This is easy enough to check. O

Proposition 56. If A is a ring then there is a canonical isomorphism of graded A-algebras
8 : Alz] — B(4)
z+— (0,1,0,...)

Corollary 57. If X is a scheme then there is a canonical isomorphism of sheaves of graded
Ox -algebras

ﬁ : Ox[m] — B(OX>
i 1eBYOx)(X)
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Proof. We know from Proposition 53 that B(Ox) is a quasi-coherent sheaf of commutative graded
Ox-algebras. So such a morphism of sheaves of graded Ox-algebras 3 exists by Corollary 38. We
reduce by (MOS,Lemma 2) to showing that Sy is a bijection for every affine open U C X, and
this follows from Proposition 56, Proposition 45 and Proposition 54. O
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In summary we have the following diagram of functors. Pairs of functors going in opposite
directions are adjoint pairs, with the left adjoint on the left.

n2Alg(X)
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