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The aim of this note is to prove the Brown Representability theorem. This was originally proved
by Neeman [Nee01] but our presentation follows recent simplifications due to Krause [Kra02]. For
most of this note the only required background is our Triangulated Categories Part I notes.
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1 Brown Representability

First we introduce a portly abelian category A(S) for any preadditive category S. This will be a
certain full subcategory of the category of all contravariant additive functors S −→ Ab. Modulo
the fact that S is not assumed to be small, this is precisely what we call a right module over
a ringoid in our Rings With Several Objects (RSO) notes. For background on portly abelian
categories, the reader is referred to (AC,Section 2.4).

Definition 1. Given a preadditive categoryA, the objects of the portly abelian category ModA =
(Aop,Ab) are called right A-modules. A sequence of right modules

M ′ −→M −→M ′′

is exact in ModA if and only if the following sequence is exact in Ab for every A ∈ A

M ′(A) −→M(A) −→M ′′(A)

Similarly kernels, cokernels and images in ModA are computed pointwise. See (AC,Corollary
59) and the proof of (AC,Proposition 44) for details. A morphism φ : M −→ N in ModA is a
monomorphism or epimorphism if and only if φA : M(A) −→ N(A) has this property for every
A ∈ A. For any object A ∈ A we have the right module HA = Hom(−, A) : A −→ Ab defined in
the obvious way.

Proposition 1 (Yoneda). If A is a preadditive category, then

(i) For any object A ∈ A and right A-module T there is a canonical isomorphism of abelian
groups HomA(HA, T ) −→ T (A) defined by γ 7→ γA(1).

(ii) The functor A 7→ HA defines a full additive embedding A −→ ModA.

(iii) The objects {HA}A∈A form a (large) generating family of projectives for ModA.
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Proof. All three results are proved in the usual way. See (RSO,Lemma 1), (RSO,Lemma 2) and
(RSO,Proposition 3). Observe that since the object class of A is not assumed to be small, the
family {HA}A∈A is not indexed by a set, so is not a generating family in the usual sense. In
particular we cannot take coproducts and conclude that ModA has a generator.

Remark 1. Given the Yoneda embedding A −→ ModA it is natural to identify A with its image
in ModA. So at least in our intuition, we will tend to confuse A with HA and identify a morphism
α : A −→ B with its corresponding natural transformation HA −→ HB .

Definition 2. Let S be a preadditive category. We say that a right S-module F is coherent if
there exists an exact sequence in ModS of the following form

HA −→ HB −→ F −→ 0 (1)

That is, F is the cokernel of some morphism of S considered as a morphism of S-modules. Clearly
any representable functor is coherent. We denote by A(S) the full replete subcategory of ModS
consisting of the coherent modules. At the moment we only know that this is a preadditive portly
category.

Remark 2. Let S be a preadditive category. Given a morphism ϕ : M −→ N in ModS and
presentations

HA
//

��

HB
//

��

M //

ϕ

��

0

HA′
// HB′

// N // 0

there exist by projectivity vertical morphisms making the above diagram commute.

Lemma 2. Let S be a preadditive category. If a right S-module F is coherent, then as a covariant
functor Sop −→ Ab it preserves products.

Proof. Suppose that F has a presentation of the form (1). Given a family of objects {Xi}i∈I in
S and a coproduct

⊕
iXi we have a commutative diagram in which the rows are exact

Hom(
⊕

iXi, A) //

��

Hom(
⊕

iXi, B) //

��

F (
⊕

iXi) //

��

0

∏
iHom(Xi, A) // ∏

iHom(Xi, B) // ∏
i F (Xi) // 0

The first two vertical morphisms are clearly isomorphisms, and therefore so is the third. This
shows that F sends coproducts to products, as required.

Remark 3. Suppose we have a commutative diagram of abelian groups

A

c

��

a // B

d

��
A′

b
// B′

(2)

Taking cokernels of the rows, we get a morphism B/A −→ B′/A′. The cokernel of this morphism
is the quotient of B′/A′ by the subobject (Im(d) + A′)/A′, so it is isomorphic to the quotient
B′/(Im(d) + A′). In other words, it is the cokernel of the morphism B ⊕ A′ −→ B′ induced by
the morphisms d, b.

Now let S be a preadditive category, and suppose we are given a commutative diagram (2)
in S. Mapping this diagram to ModS and taking cokernels of the rows yields a commutative
diagram with exact rows

HA

��

// HB

��

// M

ϕ

��

// 0

HA′
// HB′

// N // 0
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There is an induced morphism ϕ : M −→ N . Let κ : HB′ −→ H be the cokernel of the morphism
HB ⊕ HA′ −→ HB′ induced by the morphisms d, b. Then it is not difficult to check that the
induced morphism N −→ H is the cokernel of ϕ in ModS. This observation motivates the proof
of the next result.

Lemma 3. Let S be an additive category. If ϕ : M −→ N is a morphism in A(S) then any
cokernel of ϕ in ModS also belongs to A(S).

Proof. In light of Remark 2 and Remark 3 we need only observe that the Yoneda embedding is
additive, so HB ⊕HA′

∼= HB⊕A′ and so H belongs to A(S).

Definition 3. Let S be a preadditive category. A morphism u : X −→ Y is a weak kernel of
v : Y −→ Z if vu = 0 and if any other morphism f : T −→ Y with vf = 0 factors through u (not
necessarily uniquely). In other words, the induced sequence

HX −→ HY −→ HZ

is exact in ModS. If every morphism of S has a weak kernel, then we say that S has weak kernels.

Lemma 4. Let S be an additive category with weak kernels. If ϕ : M −→ N is a morphism in
A(S) then any kernel of ϕ in ModS also belongs to A(S).

Proof. Choose presentations of M,N and construct a commutative diagram inducing ϕ as follows

HA

Hc

��

Ha // HB

Hd

��

// M

ϕ

��

// 0

HA′
Hb

// HB′
// N // 0

We have a commutative diagram in S

A

c

��

a // B

d

��
A′

b
// B′

Taking our cue from Remark 3 we try to construct a square sitting on top of this one, which
induces a kernel of ϕ when we apply the Yoneda embedding and take cokernels. Take a weak
kernel B′′ −→ B ⊕ A′ of the morphism B ⊕ A′ −→ B′, and a weak kernel A′′ −→ B′′ ⊕ A of the
morphism B′′ ⊕A −→ B. In other words, we have two weak kernels

B′′

0@r
s

1A
// B ⊕A′

“
d b

”
// B′

A′′

0@m
n

1A
// B′′ ⊕A

“
r a

”
// B

and a commutative diagram

A′′

−n
��

m // B′′

r

��
A a

// B

Apply the Yoneda embedding to this diagram, and take a cokernel HB′′ −→ K of Hm : HA′′ −→
HB′′ . We have an induced morphism ψ : K −→ M , which one checks is a pointwise kernel of
ϕ : M −→ N . Since K is certainly coherent, the proof is complete.
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Proposition 5. Let S be an additive category with weak kernels. Then A(S) is a portly abelian
category. If S has coproducts then A(S) is cocomplete and the induced Yoneda functor

H(−) : S −→ A(S)

preserves coproducts.

Proof. We know from Lemma 3 and Lemma 4 that A(S) has kernels and cokernels, which can
be calculated in ModS. That is, the inclusion A(S) −→ ModS preserves kernels and cokernels.
Since the Yoneda functor H(−) : S −→ ModS preserves finite coproducts, it is clear that A(S)
is closed under finite products and coproducts in ModS, and is therefore portly abelian. Now
suppose that S has coproducts, and that we are given a nonempty family {Fi}i∈I of objects of
A(S). Choose presentations

HAi

Hαi // HBi
// Fi // 0

and let H⊕iBi −→ F be the cokernel in ModS of H⊕iαi . We have a commutative diagram for
each i ∈ I

HAi

��

// HBi

��

// Fi //

��

0

H⊕iAi
// H⊕iBi

// F // 0

and therefore an induced morphism ui : Fi −→ F . Given Q ∈ A(S) and morphisms φi : Fi −→ Q
it is easy to see that there is a morphism φ : F −→ Q with φui = φi. To prove uniqueness,
suppose we have a morphism φ : F −→ Q with Q ∈ A(S) and φui = 0 for every i ∈ I. Lift the
morphism φ to a morphism of presentations

H⊕iAi
//

��

// H⊕iBi

��

// F

φ

��

// 0

HC
// HD

// Q // 0

Since φui = 0 for each i, we deduce that for each i ∈ I the composite HBi −→ H⊕iBi −→ HD

vanishes on HD −→ Q, and therefore factors through HC −→ HD (using projectivity of HB). It
is now not difficult to see that H⊕iBi

−→ HD must factor through HC −→ HD, which implies
immediately that the composite H⊕iBi

−→ F −→ Q is zero. Since the first morphism is an
epimorphism, we deduce that φ = 0 as required. This proves that A(S) is cocomplete, and as a
special case of the above construction we find that given a coproduct {ui : Ai −→

⊕
iAi}i∈I in S,

the morphisms Hui : HAi −→ H⊕iAi are a coproduct in A(S). That is, the Yoneda functor into
A(S) preserves coproducts (in particular this shows that coproducts in A(S) are not computed
pointwise).

Remark 4. Let T be a triangulated category. Then homotopy kernels in T are weak kernels,
so Proposition 5 implies that A(T ) is a portly abelian category, which is cocomplete if T has
coproducts. The canonical functor T −→ A(T ) is clearly homological.

Definition 4. Let T be a triangulated category with coproducts. A nonempty set of objects
S ⊆ T is a perfect generating set for T (or perfectly generates T ) if the following conditions hold:

(G1) Given X ∈ T if we have Hom(k,X) = 0 for every k ∈ S then X = 0.

(G2) Given a nonempty countable family of morphisms {Xi −→ Yi}i∈I in T such that the map
Hom(k,Xi) −→ Hom(k, Yi) is surjective for every i ∈ I, k ∈ S, the induced map

Hom(k,
⊕
i∈I

Xi) −→ Hom(k,
⊕
i∈I

Yi)

is also surjective for any k ∈ S.
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If a perfect generating set exists for T then we say that T is perfectly generated.

Remark 5. With the notation of Definition 4, if S is a perfect generating set then so is the set
{Σnk |n ∈ Z, k ∈ S}. So a triangulated category T with coproducts has a perfect generating set
if and only if it has a perfect generating set closed under suspension.

Example 1. Let T be a triangulated category with coproducts, S ⊆ T a nonempty set of objects.
If every object of S is small (AC,Definition 18) then S satisfies condition (G2).

Definition 5. Let T be an additive category, S ⊆ T a nonempty class of objects. We denote by
Add(S) the smallest full, replete subcategory of T containing S and closed under coproducts and
direct summands in T . That is, Add(S) is the intersection of all subcategories of T with these
properties. Clearly Add(S) is an additive category.

The next lemma explains the importance of the condition (G2).

Lemma 6. Let T be an additive category with coproducts and weak kernels, S ⊆ T a nonempty
set of objects of T , and define S = Add(S). Then

(i) The additive category S has weak kernels, and A(S) is a cocomplete portly abelian category.

(ii) The map F 7→ F |S gives an exact functor A(T ) −→ A(S).

Proof. Observe that for every X ∈ T , there exists an approximation ν : X ′ −→ X such that
X ′ ∈ S and Hom(w,X ′) −→ Hom(w,X) is surjective for every w ∈ S. To see this, define X ′ to
be

⊕
k∈S Xk whereXk =

⊕
f∈Hom(k,X) k and define ν to be the morphism νuk,f = f . Let S ′ be the

full subcategory of T consisting of the objects w ∈ T which make Hom(w,X ′) −→ Hom(w,X)
surjective. One checks that S ′ is replete, closed under coproducts and direct summands, and
contains S. It therefore contains S, which is what we were trying to show.

(i) It suffices by Proposition 5 to show that S has weak kernels. Given a morphism Y −→ Z
in S, one obtains a weak kernel by composing a weak kernel X −→ Y in T with an approximation
X ′ −→ X.

(ii) Restriction defines an exact functor ModT −→ ModS, and we claim that this restricts
to an exact functor A(T ) −→ A(S). Suppose we are given F ∈ A(T ) and choose a presentation
HA −→ HB −→ F −→ 0. We have an exact sequence in ModS

HA|S −→ HB |S −→ F |S −→ 0

so it suffices by Lemma 3 to show that HA|S ∈ A(S) for any A ∈ T . Given the object A ∈ T , let
A′ −→ A be an approximation. By definition of an approximation, the morphism HA′ −→ HA|S
is an epimorphism in ModS. Let X −→ A′ be a weak kernel in T , and X ′ −→ X another
approximation. We have an exact sequence in ModS

HX′ −→ HA′ −→ HA|S −→ 0

which proves that HA|S is coherent, as required. The functor A(T ) −→ A(S) is obviously exact.

Lemma 7. Let T be a triangulated category with coproducts, S ⊆ T a nonempty set of objects of
T , and define S = Add(S). Then the functor

T −→ A(S), X 7→ HX |S

is homological. It preserves countable coproducts if and only if (G2) holds for S.

Proof. The functor T −→ A(S) is the composite T −→ A(T ) −→ A(S), so it is clearly homologi-
cal. We observe that T −→ A(S) preserves (countable) coproducts if and only if A(T ) −→ A(S)
does. One implication is clear, since T −→ A(T ) preserves coproducts. Suppose that T −→ A(S)
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preserves (countable) coproducts. Given objects Fi ∈ A(T ) construct a coproduct as in Proposi-
tion 5. Restricting to S we have a commutative diagram with exact rows

HAi
|S

��

// HBi
|S //

��

Fi|S //

��

0

H⊕iAi
|S // H⊕iBi

|S // F |S // 0

By assumption the first two families of vertical morphisms form coproducts, and since coproducts
preserve cokernels we deduce that the morphisms Fi|S −→ F |S are a coproduct in A(S) as well,
which is what we wanted to show.

Now we show that T −→ A(S) preserves countable coproducts if and only if (G2) holds for
S. Suppose that (G2) holds for S and that we are given a countable coproduct Ai −→

⊕
iAi in

T . As in the proof of Lemma 6 we construct a presentation of HAi |S in ModS as follows: take
an approximation A′i −→ Ai, a homotopy kernel Xi −→ A′i of this approximation, and another
approximation X ′

i −→ Xi. By (G2) countable coproducts of approximations are approximations,
and by (TRC,Remark 9) coproducts preserve homotopy kernels. Therefore we have a commutative
diagram with exact rows in A(S)

HX′
i

��

// HA′i
//

��

HAi |S

��

// 0

H⊕iX′
i

// H⊕A′i
// H⊕iAi |S // 0

We know that the first two families of vertical morphisms form coproducts in A(S), and since
coproducts preserve cokernels we deduce that the morphisms HAi

|S −→ H⊕iAi
|S are a coproduct

in A(S), as required.
Conversely, we suppose that T −→ A(S) preserves countable coproducts, and prove that (G2)

holds for S. Given a nonempty countable family of morphisms {Xi −→ Yi}i∈I as in the statement
of (G2), by assumption the morphisms HXi |S −→ HYi |S are epimorphisms in A(S). Therefore
their coproduct H⊕iXI

|S −→ H⊕iYi
|S is an epimorphism, which is what we needed to show.

Theorem 8 (Brown Representability). Let T be a triangulated category with coproducts and
a perfect generating set. Then an additive functor F : T op −→ Ab is representable if and only if
it is homological and product preserving.

Proof. Equivalently, we are claiming that a contravariant additive functor F : T −→ Ab is
naturally equivalent to HX for some X ∈ T if and only if it is cohomological (TRC,Definition 5)
and sends coproducts in T to products in Ab. By Remark 5 we can assume that T has a perfect
generating set S closed under suspension, and we set S = Add(S).

Let F : T op −→ Ab be a homological functor which preserves products. We construct induc-
tively a sequence of objects and morphisms in T

X0
φ0 // X1

φ1 // X2
// · · · (3)

together with a morphism πi : HXi
−→ F in ModT for each i ≥ 0. Given k ∈ S and x ∈ F (k)

we write kx for the object k and set X0 =
⊕

k∈S,x∈F (k) kx (all coproducts are taken in T ). By
assumption we have a canonical isomorphism of abelian groups

F (X0) ∼=
∏

k∈S,x∈F (k)

F (kx)

so the sequence (x)k∈S,x∈F (k) in the right-hand product corresponds to an element π0 of F (X0),
and therefore to a morphism π0 : HX0 −→ F in ModT with

(π0Huk,x
)T (ϕ) = F (ϕ)(x)
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for any T ∈ T and morphism ϕ : T −→ uk,x. Suppose we have already constructed objects
X0, . . . , Xi morphisms φ0, . . . , φi−1 and π0, . . . , πi for some i ≥ 0. Set Ki = Kerπi and define
Ti =

⊕
k∈S,x∈Ki(k)

kx. It is easy to check that Ki sends coproducts in T to products in Ab, so
there is a canonical morphism HTi

−→ Ki. Composing with the kernel morphism Ki −→ HXi
we

have a morphism vi : Ti −→ Xi in T . Extending this to a triangle

Ti
vi // Xi

φi // Xi+1
ξi // ΣTi

defines the object Xi+1 and morphism φi. Since F is homological we have an exact sequence

F (ΣTi) −→ F (Xi+1) −→ F (Xi) −→ F (Ti)

By construction F (vi)(πi) = 0 so there is an element πi+1 ∈ F (Xi+1) such that F (φi)(πi+1) = πi.
In other words, we can write πi : HXi

−→ F as the composite of πi+1 : HXi+1 −→ F and
Hφi : HXi −→ HXi+1 . This completes the construction of the sequence (3) and morphisms πi.

For each i ≥ 0 let κi : HTi −→ Ki be the morphism in ModT constructed above. By construc-
tion (κi)k is surjective for every k ∈ S, and it follows that HTi

|S −→ Ki|S is an epimorphism in
ModS (the category of all w ∈ T such that (κi)w is surjective is replete, closed under coproducts
and direct summands, therefore contains S). For the same reason, πi|S : HXi

|S −→ F |S is an
epimorphism. We therefore have an exact sequences in the portly abelian category ModS

0 // Ki|S // HXi |S
πi|S // F |S // 0 (4)

HTi
|S

Hvi
|S // HXi

|S
πi|S // F |S // 0 (5)

From which we deduce that F |S and Ki|S are coherent. For each i ≥ 0 we have a commutative
diagram in A(S) with exact rows

0 // Ki|S

0

��

// HXi
|S

ψi

��

πi|S // F |S

1

��

// 0

0 // Ki+1|S // HXi+1 |S
πi+1|S

// F |S // 0

where we set ψi = Hφi
|S . The composite Ki|S −→ HXi

|S −→ HXi+1 |S is zero since φi ◦ vi = 0, so
there is a factorisation `i : F |S −→ HXi+1 |S . It is clear that πi+1|S ◦ `i = 1, so the exact sequence
(4) splits for i ≥ 1 and there is an isomorphism HXi |S ∼= F |S ⊕ Ki|S . Consider the following
commutative diagram in A(S)

HX1 |S

��

ψ1 // HX2 |S

��

ψ2 // HX3 |S

��

ψ3 // · · ·

F |S ⊕K1|S
1⊕0

// F |S ⊕K2|S
1⊕0

// F |S ⊕K3|S
1⊕0

// · · ·

Taking colimits of the rows we deduce that the morphisms {πi|S : HXi
|S −→ F |S}i≥1 are a colimit

in A(S) of the direct system in the first row. In the usual way (DTC,Remark 23) we deduce an
exact sequence in A(S)

0 //
⊕

i≥1HXi
|S

1−ν //
⊕

i≥1HXi
|S // F |S // 0 (6)

where the coproducts are taken in A(S). We should observe that 1 − ν is a monomorphism by
virtue of being a coretraction. To see this, note that 1− ν can be written as a direct sum of the
corresponding morphisms for the following two sequences

K1|S
0 // K2|S

0 // K3|S
0 // · · ·

F |S
1 // F |S

1 // F |S
1 // · · ·
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In the first case 1−ν = 1 and in the second case 1−ν is easily checked to be a coretraction, so the
direct sum of these two morphisms is a coretraction, which justifies exactness of (6). Now take
a homotopy colimit (TRC,Definition 34) of the sequence (3) in T (with the first term deleted).
That is, we have a triangle⊕

i≥1Xi
1−µ //

⊕
i≥1Xi

q // X // Σ
⊕

i≥1Xi (7)

and since F is homological, an exact sequence

F (X)
F (q) // F (

⊕
i≥1Xi)

F (1−µ) // F (
⊕

i≥1Xi)

Under the isomorphism
∏
i≥1 F (Xi) ∼= F (

⊕
i≥1Xi) the sequence (πi)i≥1 corresponds to an ele-

ment j ∈ F (
⊕

i≥1Xi). Since πi = πi+1Hφi
for every i ≥ 1, it is clear that F (1 − µ)(j) = 0, so

there is π ∈ F (X) with F (q)(π) = j. That is, we have a morphism π : HX −→ F with πHqi = πi
for every i ≥ 1, where we let qi be the ith component of the morphism q defined above.

Since S is a perfect generating set, it follows from Lemma 7 that the functor T −→ A(S)
is homological and preserves countable coproducts. Applying this functor to (7) yields an exact
sequence in A(S)

⊕
i≥1HXi

|S
1−ν //

⊕
i≥1HXi

|S // HX |S // HΣ⊕i≥1Xi
|S

HΣ(1−µ)|S // HΣ⊕i≥1Xi
|S

We claim that λ = HΣ(1−µ)|S is a monomorphism. It suffices to prove this pointwise, so we take
the category of all w ∈ S such that λw is injective. This is replete, closed under coproducts and
direct summands, and contains S since we know the morphism 1 − ν of (6) is a monomorphism,
and by assumption S is closed under suspension. It follows that our subcategory is all of S, and
λ is a monomorphism. Comparing with (6) we infer that π|S : HX |S −→ F |S is an isomorphism.
Moreover the full subcategory of all Y ∈ T such that πY is an isomorphism is replete, closed under
coproducts and mapping cones, and contains S.

Let Q be any full subcategory of T with all these properties. We claim that Q = T . To see
this let Y ∈ T be given and apply the construction in the first part of the proof to the functor
F = HY : T op −→ Ab. In the construction of the sequence (3) for F = HY we take coproducts
of objects in S and mapping cones of morphisms between such objects, so it is clear that every
Xi belongs to Q. From (7) we conclude that X ∈ Q, so we have a morphism π : HX −→ HY with
X ∈ Q which restricts to an isomorphism on S. Extend the corresponding morphism π : X −→ Y
to a triangle

W −→ X −→ Y −→ ΣW

Given k ∈ S we apply Hom(k,−) to this triangle and obtain a long exact sequence of abelian
groups. Using the fact that S is closed under suspension and π restricts to an isomorphism on S,
we deduce that Hom(k,W ) = Hom(k,ΣW ) = 0. By (G1) we have W = 0 and ΣW = 0, which
implies that X −→ Y is an isomorphism, from which we deduce Y ∈ Q as claimed. Applying
this conclusion to the first part of the proof, we see that π : HX −→ F is an isomorphism, and
therefore F is representable.

Corollary 9. Let T be a triangulated category with coproducts and S a perfect generating set.
Then 〈S〉 = T .

Proof. That is, the smallest localising subcategory of T containing the objects of S is the whole
category. This follows from the observation made in the last part of the proof of Theorem 8.

Definition 6. Let T be a triangulated category with coproducts. We say that the representabil-
ity theorem holds for T if an additive functor T op −→ Ab is representable if and only if it is
homological and product preserving.

Corollary 10. Let T be a triangulated category with coproducts for which the representability
theorem holds. Then T also has products.
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Proof. Given a nonempty family of objects {Xi}i∈I of T , the additive functor∏
i∈I

HomT (−, Xi) : T op −→ Ab

is homological and preserves products. It is therefore representable, and any representing object
is clearly a product of the family {Xi}i∈I .

Lemma 11. Let F : C −→ D be a functor. Then F has a right adjoint if and only if for every
D ∈ D the contravariant functor HDF : C −→ Sets is representable.

Proof. If F has a right adjoint G then HDF ∼= HG(D) so one implication is obvious. For the other,
suppose we are given for each D ∈ D an object G(D) ∈ C representing HDF . That is, there is a
bijection natural in X

HomC(X,G(D)) −→ HomD(F (X), D)

A morphism α : D −→ D′ in D induces a natural transformation HαF : HDF −→ HD′F and
therefore a unique morphism G(α) : G(D) −→ G(D′) making the following diagram commute for
each X ∈ C

HomD(F (X), D)

��

// HomD(F (X), D′)

��
HomC(X,G(D)) // HomC(X,G(D′))

This makes G into a functor, which is clearly right adjoint to F .

Corollary 12. Let T be a triangulated category with coproducts for which the representability
theorem holds. Then a triangulated functor T −→ S is coproduct preserving if and only if it has
a right adjoint.

Proof. Let F : T −→ S be a coproduct preserving triangulated functor. Given D ∈ C the
composite HDF : T −→ Ab is homological and product preserving, therefore representable. It
follows from Lemma 11 that F has a right adjoint.

Lemma 13. Let T be a triangulated category with coproducts, S ⊆ T a thick localising subcategory
satisfying the representability theorem. Then S is a bousfield subcategory of T .

Proof. The inclusion S −→ T is a triangulated functor preserving all coproducts, which by Corol-
lary 12 must have a right adjoint.

1.1 Dual Notions

Definition 7. Let T be a triangulated category with products. A nonempty set of objects S ⊆ T
is a perfect cogenerating set for T (or perfectly cogenerates T ) if it perfectly generates T op. That
is, the following conditions hold:

(H1) Given X ∈ T if we have Hom(X, k) = 0 for every k ∈ S then X = 0.

(H2) Given a nonempty countable family of morphisms {Xi −→ Yi}i∈I in T such that the map
Hom(Yi, k) −→ Hom(Xi, k) is surjective for every i ∈ I, k ∈ S, the induced map

Hom(
∏
i∈I

Yi, k) −→ Hom(
∏
i∈I

Xi, k)

is also surjective for any k ∈ S.

If S is a perfect cogenerating set then so is the set {Σnk |n ∈ Z}, so T has a perfect cogenerating set
if and only if it has a perfect cogenerating set closed under suspension. If a perfect cogenerating set
exists for T then we say that T is perfectly cogenerated (equivalently, T op is perfectly generated).
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Theorem 14 (Representability for the Dual). Let T be a triangulated category with products
and a perfect cogenerating set. Then an additive functor F : T −→ Ab is representable if and
only if it is homological and product preserving.

Definition 8. Let T be a triangulated category with products. We say that the dual repre-
sentability theorem holds for T if an additive functor T −→ Ab is representable if and only if it
is homological and preserves products. That is, the representability theorem holds for T op.

Corollary 15. Let T be a triangulated category with products for which the dual representability
theorem holds. Then T also has coproducts.

Corollary 16. Let T be a triangulated category with products for which the dual representability
theorem holds. Then a triangulated functor T −→ S is product preserving if and only if it has a
left adjoint.

2 Compactly Generated Triangulated Categories

Definition 9. Let T be a triangulated category with coproducts. A nonempty set of objects
S ⊆ T is a compact generating set for T (or compactly generates T ) if it satisfies (G1) and every
object k ∈ S is compact (AC,Definition 18).

If T admits a compact generating set, then we say that T is compactly generated. It follows from
Remark 1 that a compact generating set is a perfect generating set, so any compactly generated
triangulated category T satisfies Brown representability.

In the case of compactly generated triangulated categories, the next result is very useful in
identifying the compact objects.

Lemma 17. Let T be a compactly generated triangulated category and suppose S is a family of
compact generators. Then T c is the smallest thick triangulated subcategory of T containing the
objects of S.

Proof. By Corollary 9 we have T = 〈S〉 so this is an immediate consequence of (TRC2,Lemma
49).

Definition 10. Let T be a triangulated category. A nonempty set of objects S ⊆ T is a symmetric
generating set for T if it is satisfies (G1) and if there exists a nonempty set of objects T ⊆ T with
the following property:

(G3) For any morphism X −→ Y the induced map HomT (k,X) −→ HomT (k, Y ) is surjective
for every k ∈ S if and only if HomT (Y,m) −→ HomT (X,m) is injective for every m ∈ T .

If T has coproducts then it is clear that (G3) implies (G2), so any symmetric generating set for
a triangulated category with coproducts is a perfect generating set.

Lemma 18. If T is a triangulated category then T has a symmetric generating set if and only if
T op does.

Proof. It suffices to show that if T has a symmetric generating set then so does T op. Let S be
a symmetric generating set for T with T as in the definition. We claim that T is a symmetric
generating set for T op. To prove (G1), suppose that X ∈ T is such that HomT (X,m) = 0
for every m ∈ T . Then HomT (X,m) −→ HomT (0,m) is injective for every m ∈ T and so
HomT (k, 0) −→ HomT (k,X) is surjective for every k ∈ S. Therefore X = 0 by (G1) for S.

For (G3), suppose we are given a morphism Y −→ X in T which we extend to a triangle

Y −→ X −→ Z −→ ΣY
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Writing out the corresponding long exact sequences, we deduce the following chain of equivalences

HomT (X,m) −→ HomT (Y,m) surjective for every m ∈ T
m

HomT (Σ−1Z,m) −→ HomT (Σ−1X,m) injective for every m ∈ T
m

HomT (k,Σ−1X) −→ HomT (k,Σ−1Z) surjective for every k ∈ S
m

HomT (k, Y ) −→ HomT (k,X) injective for every k ∈ S

which proves that T is a symmetric generating set for T op.

Proposition 19. Let T be a triangulated category with coproducts. Then any compact generating
set for T is also a symmetric generating set.

Proof. Let S be a compact generating set for T . Consider the abelian group Q/Z, which is an
injective cogenerator for the abelian category Ab. For each k ∈ S we have a homological product
preserving functor

Qk : T op −→ Ab

Qk(X) = HomAb(HomT (k,X),Q/Z)

Since T is perfectly generated it satisfies the representability theorem, and we can find objects
Tk ∈ T representing these functors and define T = {Tk}k∈S . Using the fact that Q/Z is an
injective cogenerator, it is now easy to check that S satisfies (G3) and is therefore a symmetric
generating set.

So given a triangulated category T with coproducts the different types of generating sets fit
into the following implication: compact =⇒ symmetric =⇒ perfect.

Corollary 20. If a triangulated category T is compactly generated, then T is perfectly cogenerated.
In particular T has products.

In particular if T is a compactly generated triangulated category, then the representability
theorem and the dual representability theorem hold for T . That is, if F is an additive functor
T −→ Ab or T op −→ Ab then F is representable if and only if it is homological and preserves
products.

Corollary 21. Let F : T −→ S be a triangulated functor with T compactly generated. Then

(i) F has a right adjoint if and only if it preserves coproducts.

(ii) F has a left adjoint if and only if it preserves products.

Lemma 22. Let F : T −→ S, G : S −→ T be triangulated functors with T compactly generated,
and suppose that F is left adjoint to G. Then F preserves compactness if and only if G preserves
coproducts.

Proof. Suppose that G preserves coproducts, and let k ∈ T be compact. For any coproduct
⊕

i Yi
in S we have an isomorphism

HomS(F (k),⊕iYi) ∼= HomT (k,G(⊕iYi))
∼= HomT (k,⊕iG(Yi))
∼= ⊕iHomT (k,G(Yi))
∼= ⊕iHomS(F (k), Yi)
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from which it follows that F (k) is compact in S. Note that this direction does not need T to be
compactly generated. Now suppose that F preserves compactness and let ⊕iYi be a coproduct in
S. The canonical morphism ⊕iG(Yi) −→ G(⊕iYi) induces a morphism

HomT (k,⊕iG(Yi)) −→ HomT (k,G(⊕iYi))

for every object k ∈ T , which one checks as above is an isomorphism provided k is compact (since
we know F (k) is also compact). But then in the triangle

⊕iG(Yi) −→ G(⊕iYi) −→ Z −→ Σ⊕i G(Yi)

we must have HomT (k, Z) = 0 for every compact object k. Since T is compactly generated this
implies Z = 0, from which we deduce that G preserves coproducts.

Lemma 23. Let F : T −→ S be a triangulated functor with T compactly generated, and let S be
a compact generating set for T . Then F preserves compactness if and only if F (k) is compact for
every k ∈ S.

Proof. The compact objects of S form a thick triangulated subcategory, and therefore so does the
subcategory of objects in T mapping into compacts of S. The claim now follows from Lemma
17.

3 Portly Considerations

Let T be a portly triangulated category with coproducts. It is clear what we mean by a perfect
generating set, a perfect cogenerating set, a compact generating set and a symmetric generating set
for T , and therefore what we mean when we say that T is perfectly generated, perfectly cogenerated
or compactly generated. A compact generating set is a perfect generating set.

Definition 11. Let C be a portly category. We say that C is mildly portly if the object conglom-
erate of C is actually a class, and every morphism conglomerate of C is small. Replacing each
morphism conglomerate by a bijective set, we can define a (noncanonical) category D together
with an isomorphism of categories C −→ D which is the identity on objects. In particular if a
portly triangulated category T is mildly portly, then it is triisomorphic to a triangulated category.

The only difference between a mildly portly triangulated category and a triangulated category
is some pedantic distinction between small conglomerates and sets (which many authors simply
ignore). So one would expect Brown representability to hold under appropriate hypotheses. How-
ever, since the morphism conglomerates may not be sets, we have to modify what we mean by a
representable functor.

Definition 12. Let C be a preadditive mildly portly category and F : C −→ Ab an additive
functor. We say that F is representable if there is an additive isomorphism of portly categories
T : D −→ C with D a preadditive category (not just a portly category) such that the functor FT
is representable. Equivalently, FT is representable for every additive isomorphism D −→ C with
D a preadditive category. If C happens to be a category, this agrees with the usual definition.

If F : C −→ Ab is representable and Q : C′ −→ C an additive equivalence of mildy portly
preadditive categories, then QF is also representable. Representability is also stable under natural
equivalence of functors C −→ Ab.

Lemma 24. Let C be a mildly portly preadditive category and F : C −→ Ab an additive functor.
Then F is representable if and only if there exists X ∈ C together with an isomorphism of (large)
abelian groups natural in Y

HomC(X,Y ) −→ F (Y )

We say that the object X represents F , and this representing object is unique up to isomorphism.
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Definition 13. Let T be a mildly portly triangulated category with coproducts. We say that
the representability theorem holds for T if an additive functor T op −→ Ab is representable if and
only if it is homological and product preserving. This property is stable under triequivalence of
mildly portly triangulated categories.

If T is a mildly portly triangulated category with products we say that the dual representability
theorem holds for T if the representability theorem holds for T op, that is, an additive functor
F : T −→ Ab is representable if and only if it is homological and product preserving. This
property is also stable under triequivalence.

Theorem 25. Let T be a mildly portly triangulated category with coproducts and a perfect gen-
erating set. Then the representability theorem holds for T .

Proof. With the definition of a representable functor given in Definition 12 this follows at once
from Theorem 8.

Corollary 26. Let T be a mildly portly triangulated category with coproducts for which the rep-
resentability theorem holds. Then T also has products.

Corollary 27. Let T be a mildly portly triangulated category with coproducts for which the rep-
resentability theorem holds. Then a triangulated functor T −→ S into another mildly portly
triangulated category is coproduct preserving if and only if it has a right adjoint.

Dually

Corollary 28. Let T be a mildly portly triangulated category with products for which the dual
representability theorem holds. Then a triangulated functor T −→ S into another mildly portly
triangulated category is product preserving if and only if it has a left adjoint.

Lemma 29. Let T be a mildly portly triangulated category with coproducts, S ⊆ T a thick local-
ising portly subcategory satisfying the representability theorem. Then S is a bousfield subcategory
of T .

Lemma 30. If T is a mildly portly triangulated category then T has symmetric generating set if
and only if T op does.

Proposition 31. Let T be a mildly portly triangulated category with coproducts. Then any com-
pact generating set for T is also a symmetric generating set.

Corollary 32. If a mildly portly triangulated category T is compactly generated, then T is perfectly
cogenerated.

In particular if T is a compactly generated mildly portly triangulated category, then the
representability theorem and the dual representability theorem hold for T . That is, if F is an
additive functor T −→ Ab or T op −→ Ab then F is representable if and only if it is homological
and preserves products.

Corollary 9 is still true with T a mildly portly triangulated category. Lemma 17 is still true
with T a mildly portly triangulated category. Clearly Lemma 22 and Lemma 23 are still true with
S, T both mildly portly.
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4 Representability for Linear Categories

Throughout this section let k be a commutative ring. Recall the definition of a k-linear category
from (AC,Definition 35) and a k-linear triangulated category (TRC,Definition 32). Given a k-
linear category A an additive functor T : Aop −→ kMod is said to be k-linear if for every pair
A,B ∈ A the map

HomA(A,B) −→ Homk(TB, TA)

is a morphism of k-modules. The k-linear functors form a portly abelian subcategory ModkA of
the portly abelian category (Aop, kMod) of all additive functors Aop −→ kMod. A sequence in
ModkA of the form

M ′ −→M −→M ′′

is exact if and only if for the following sequence in kMod is exact for every A ∈ A

M ′(A) −→M(A) −→M ′′(A)

Similarly kernels, cokernels and images in ModkA are computed pointwise. A morphism φ :
M −→ N in ModkA is a monomorphism or epimorphism if and ony if φA : M(A) −→ N(A)
has this property for every A ∈ A. For any object A ∈ A the functor HA = Hom(−, A) defines
an object of ModkA. In order to avoid a clash of notation with earlier results, we denote the
morphism sets in ModkA by HomkA(M,N). It is clear that ModkA is a k-linear portly category.

Proposition 33. If A is a k-linear category, then

(i) For any object A ∈ A and T in ModkA there is a canonical isomorphism of k-modules
HomkA(HA, T ) −→ T (A) defined by γ 7→ γA(1), which is natural in A and T .

(ii) The functor A 7→ HA defines a full k-linear embedding A −→ ModkA.

(iii) The objects {HA}A∈A form a (large) generating family of projectives for ModkA.

Definition 14. Let S be a k-linear category. We say that an object F of ModkA is coherent if
there exists an exact sequence in ModkA of the following form

HA −→ HB −→ F −→ 0 (8)

Clearly any representable functor is coherent. We denote by Ak(S) the full replete subcategory of
ModkA consisting of the coherent functors. At the moment we only know that this is a k-linear
portly category.

If S is a k-linear category and ϕ : M −→ N a morphism of ModkS then given two presentations
of the form (8) we can lift ϕ to a morphism of the presentations. As in Lemma 2 a coherent functor
F ∈ ModkS preserves products as a functor Sop −→ kMod. The observation of Remark 3 is also
still valid.

Lemma 34. Let S be a k-linear additive category. If ϕ : M −→ N is a morphism in Ak(S) then
any cokernel of ϕ in ModkS also belongs to Ak(S).

Lemma 35. Let S be a k-linear additive category with weak kernels. If ϕ : M −→ N is a
morphism in Ak(S) then any kernel of ϕ in ModkS also belongs to Ak(S).

Proposition 36. Let S be a k-linear additive category with weak kernels. Then Ak(S) is a portly
abelian category. If S has coproducts then Ak(S) is cocomplete and the induced Yoneda functor

H(−) : S −→ Ak(S)

preserves coproducts.

Lemma 37. Let T be a k-linear additive category with coproducts and weak kernels, S ⊆ T a
nonempty set of objects of T , and define S = Add(S). Then
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(i) The additive category S has weak kernels, and Ak(S) is a cocomplete portly abelian category.

(ii) The map F 7→ F |S gives an exact functor Ak(T ) −→ Ak(S).

Lemma 38. Let T be a k-linear triangulated category with coproducts, S ⊆ T a nonempty set of
objects, and define S = Add(S). Then the functor

T −→ Ak(S), X 7→ HX |S

is homological. It preserves countable coproducts if and only if (G2) holds for S.

Theorem 39 (Linear Brown Representability). Let T be a k-linear triangulated category
with coproducts and a perfect generating set. Then a k-linear functor F : T op −→ kMod is
representable if and only if it is homological and product preserving.

Clearly if T is a k-linear mildly portly triangulated category with coproducts then the analogue
of Theorem 39 holds for T , once we define a k-linear functor F : T op −→ kMod to be representable
if there is X ∈ T together with an isomorphism of (large) k-modules natural in Y

HomT (Y,X) −→ F (Y )
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