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The aim of this note is to prove the Brown Representability theorem. This was originally proved

by Neeman [Nee01] but our presentation follows recent simplifications due to Krause [Kra02]. For
most of this note the only required background is our Triangulated Categories Part I notes.
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1 Brown Representability

First we introduce a portly abelian category A(S) for any preadditive category S. This will be a
certain full subcategory of the category of all contravariant additive functors S — Ab. Modulo
the fact that S is not assumed to be small, this is precisely what we call a right module over
a ringoid in our Rings With Several Objects (RSO) notes. For background on portly abelian
categories, the reader is referred to (AC,Section 2.4).

Definition 1. Given a preadditive category A, the objects of the portly abelian category Mod. A =
(A°P) Ab) are called right A-modules. A sequence of right modules

M/ N M SN M//
is exact in ModA if and only if the following sequence is exact in Ab for every A € A
M'(A) — M(A) — M"(A)

Similarly kernels, cokernels and images in Mod.A are computed pointwise. See (AC,Corollary
59) and the proof of (AC,Proposition 44) for details. A morphism ¢ : M — N in ModA is a
monomorphism or epimorphism if and only if ¢4 : M(A) — N(A) has this property for every
A € A. For any object A € A we have the right module H4 = Hom(—, A) : A — Ab defined in
the obvious way.

Proposition 1 (Yoneda). If A is a preadditive category, then

(i) For any object A € A and right A-module T there is a canonical isomorphism of abelian
groups Hom 4 (Ha,T) — T(A) defined by v — va(1).

(ii) The functor A — H, defines a full additive embedding A — Mod A.

(iii) The objects {Ha}aca form a (large) generating family of projectives for Mod.A.
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Proof. All three results are proved in the usual way. See (RSO,Lemma 1), (RSO,Lemma 2) and
(RSO,Proposition 3). Observe that since the object class of A is not assumed to be small, the
family {Ha}aca is not indexed by a set, so is not a generating family in the usual sense. In
particular we cannot take coproducts and conclude that Mod.A has a generator. O]

Remark 1. Given the Yoneda embedding A — ModA it is natural to identify A with its image
in ModA. So at least in our intuition, we will tend to confuse A with H 4 and identify a morphism
a: A — B with its corresponding natural transformation H4 — Hp.

Definition 2. Let S be a preadditive category. We say that a right S-module F is coherent if
there exists an exact sequence in ModS of the following form

Hy— Hg — F —0 (1)

That is, F' is the cokernel of some morphism of S considered as a morphism of S-modules. Clearly
any representable functor is coherent. We denote by A(S) the full replete subcategory of ModS
consisting of the coherent modules. At the moment we only know that this is a preadditive portly
category.

Remark 2. Let S be a preadditive category. Given a morphism ¢ : M — N in ModS and
presentations

Hy Hp M 0
g
' '

Hy Hp: N 0

there exist by projectivity vertical morphisms making the above diagram commute.

Lemma 2. Let S be a preadditive category. If a right S-module F' is coherent, then as a covariant
functor S°? — Ab it preserves products.

Proof. Suppose that F has a presentation of the form (1). Given a family of objects {X;}ier in
S and a coproduct €, X; we have a commutative diagram in which the rows are exact

Hom(@, X;, A) — Hom(@D, X, B) — F(@, X;) —=0

l l |

The first two vertical morphisms are clearly isomorphisms, and therefore so is the third. This
shows that F' sends coproducts to products, as required. O

Remark 3. Suppose we have a commutative diagram of abelian groups

A—2>RB (2)

l ld

A ——=B

Taking cokernels of the rows, we get a morphism B/A — B’/A’. The cokernel of this morphism
is the quotient of B’/A’ by the subobject (Im(d) + A’)/A’, so it is isomorphic to the quotient
B'/(Im(d) + A’). In other words, it is the cokernel of the morphism B ® A’ — B’ induced by
the morphisms d, b.

Now let S be a preadditive category, and suppose we are given a commutative diagram (2)
in §. Mapping this diagram to ModS and taking cokernels of the rows yields a commutative
diagram with exact rows

Hx Hg M 0
oy
v
Ha Hp: N 0
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There is an induced morphism ¢ : M — N. Let x : Hgr — H be the cokernel of the morphism
Hp & Hys — Hp/ induced by the morphisms d,b. Then it is not difficult to check that the
induced morphism N — H is the cokernel of ¢ in ModsS. This observation motivates the proof
of the next result.

Lemma 3. Let S be an additive category. If ¢ : M — N is a morphism in A(S) then any
cokernel of v in ModS also belongs to A(S).

Proof. In light of Remark 2 and Remark 3 we need only observe that the Yoneda embedding is
additive, so Hg @ Ha» & Hpga and so H belongs to A(S). O

Definition 3. Let S be a preadditive category. A morphism u : X — Y is a weak kernel of
v:Y — Z if vu = 0 and if any other morphism f: T — Y with vf = 0 factors through u (not
necessarily uniquely). In other words, the induced sequence

HX — Hy — HZ
is exact in ModS. If every morphism of S has a weak kernel, then we say that S has weak kernels.

Lemma 4. Let S be an additive category with weak kernels. If ¢ : M — N is a morphism in
A(S) then any kernel of ¢ in ModS also belongs to A(S).

Proof. Choose presentations of M, N and construct a commutative diagram inducing ¢ as follows

Hq

Hy Hp M 0
HC\L lHd, i‘/’
H 4 A Hp N 0

We have a commutative diagram in S

A ——B

Taking our cue from Remark 3 we try to construct a square sitting on top of this one, which
induces a kernel of ¢ when we apply the Yoneda embedding and take cokernels. Take a weak
kernel B” — B @& A’ of the morphism B & A’ — B’, and a weak kernel A” — B" & A of the
morphism B” & A — B. In other words, we have two weak kernels

) (@ v

B'————>Ba&A ——B

) ¢ o

A// > B/IEBA

and a commutative diagram

A" m B

A—5=B

Apply the Yoneda embedding to this diagram, and take a cokernel Hg» — K of Hy, : Hyr —>
Hpr. We have an induced morphism ¢ : K — M, which one checks is a pointwise kernel of
@ : M — N. Since K is certainly coherent, the proof is complete. O



Proposition 5. Let S be an additive category with weak kernels. Then A(S) is a portly abelian
category. If S has coproducts then A(S) is cocomplete and the induced Yoneda functor

preserves COp’}"OdUCtS.

Proof. We know from Lemma 3 and Lemma 4 that A(S) has kernels and cokernels, which can
be calculated in ModS. That is, the inclusion A(S) — ModS preserves kernels and cokernels.
Since the Yoneda functor H(_y : S — ModS preserves finite coproducts, it is clear that A(S)
is closed under finite products and coproducts in ModsS, and is therefore portly abelian. Now
suppose that S has coproducts, and that we are given a nonempty family {F;};c; of objects of
A(S). Choose presentations

Ha,
Hp,

i

Hy,

7

F; 0

and let Hg,p, — F be the cokernel in ModS of Hg,,,. We have a commutative diagram for
eachiel

HAi HBi Fz 0

R

H@iAi HH@iBi —F——0

and therefore an induced morphism u; : F; — F. Given Q € A(S) and morphisms ¢; : F; — @
it is easy to see that there is a morphism ¢ : F' — @ with ¢u; = ¢;. To prove uniqueness,
suppose we have a morphism ¢ : FF — @ with @ € A(S) and ¢u; = 0 for every ¢ € I. Lift the
morphism ¢ to a morphism of presentations

Hg,a, —> Hg,p, —>F ——>0

N

He Hp Q 0

Since ¢u; = 0 for each ¢, we deduce that for each ¢ € I the composite Hp, — Hg,5, — Hp
vanishes on Hp — @, and therefore factors through Ho — Hp (using projectivity of Hg). It
is now not difficult to see that Hg,p, — Hp must factor through Ho — Hp, which implies
immediately that the composite Hg,p, — F — (@ is zero. Since the first morphism is an
epimorphism, we deduce that ¢ = 0 as required. This proves that A(S) is cocomplete, and as a
special case of the above construction we find that given a coproduct {u; : A; — €, A;}icr in S,
the morphisms H,,, : Ha, — Hg, a, are a coproduct in A(S). That is, the Yoneda functor into
A(S) preserves coproducts (in particular this shows that coproducts in A(S) are not computed
pointwise). O

Remark 4. Let 7 be a triangulated category. Then homotopy kernels in 7 are weak kernels,
so Proposition 5 implies that A(7) is a portly abelian category, which is cocomplete if 7 has
coproducts. The canonical functor 7 — A(7) is clearly homological.

Definition 4. Let 7 be a triangulated category with coproducts. A nonempty set of objects
S C 7 is a perfect generating set for T (or perfectly generates T) if the following conditions hold:

(G1) Given X € T if we have Hom(k,X) = 0 for every k € S then X = 0.

(G2) Given a nonempty countable family of morphisms {X; — Y;};er in 7 such that the map
Hom(k, X;) — Hom(k,Y;) is surjective for every i € I,k € S, the induced map

Hom(k, @ X;) — Hom(k, @ Y:)
iel iel

is also surjective for any k € S.



If a perfect generating set exists for 7 then we say that 7 is perfectly generated.

Remark 5. With the notation of Definition 4, if S is a perfect generating set then so is the set
{¥"k|n € Z,k € S}. So a triangulated category 7 with coproducts has a perfect generating set
if and only if it has a perfect generating set closed under suspension.

Example 1. Let 7 be a triangulated category with coproducts, S C 7 a nonempty set of objects.
If every object of S is small (AC,Definition 18) then S satisfies condition (G2).

Definition 5. Let 7 be an additive category, S C 7 a nonempty class of objects. We denote by
Add(S) the smallest full, replete subcategory of 7 containing S and closed under coproducts and
direct summands in 7. That is, Add(S) is the intersection of all subcategories of 7 with these
properties. Clearly Add(S) is an additive category.

The next lemma explains the importance of the condition (G2).

Lemma 6. Let T be an additive category with coproducts and weak kernels, S C T a nonempty
set of objects of T, and define S = Add(S). Then

(i) The additive category S has weak kernels, and A(S) is a cocomplete portly abelian category.
(i) The map F — F|s gives an exact functor A(T) — A(S).

Proof. Observe that for every X € 7, there exists an approzimation v : X' — X such that
X' € S and Hom(w, X') — Hom(w, X) is surjective for every w € S. To see this, define X’ to
be @, c g Xk where X}, = @feHom(k’X) k and define v to be the morphism vuy ¢ = f. Let S’ be the
full subcategory of T consisting of the objects w € 7 which make Hom(w,X’') — Hom(w, X)
surjective. One checks that S’ is replete, closed under coproducts and direct summands, and
contains S. It therefore contains &, which is what we were trying to show.

() Tt suffices by Proposition 5 to show that S has weak kernels. Given a morphism ¥ — Z
in S, one obtains a weak kernel by composing a weak kernel X — Y in 7 with an approximation
X — X.

(%) Restriction defines an exact functor Mod7 — ModS, and we claim that this restricts
to an exact functor A(7) — A(S). Suppose we are given F € A(T) and choose a presentation
Hy — Hp — F — 0. We have an exact sequence in ModS

HA‘S%HBLS—)F'S—)O

so it suffices by Lemma 3 to show that H4ls € A(S) for any A € 7. Given the object A € T, let
A’ — A be an approximation. By definition of an approximation, the morphism H4 — Hals
is an epimorphism in ModS. Let X — A’ be a weak kernel in 7, and X’ — X another
approximation. We have an exact sequence in ModS

HX’ —)HA/ —)HA|S—>O

which proves that Ha|s is coherent, as required. The functor A(7) — A(S) is obviously exact.
O

Lemma 7. Let T be a triangulated category with coproducts, S C T a nonempty set of objects of
T, and define S = Add(S). Then the functor

T — A(S), X — Hxls

is homological. It preserves countable coproducts if and only if (G2) holds for S.

Proof. The functor T — A(S) is the composite T — A(7) — A(S), so it is clearly homologi-
cal. We observe that 7 — A(S) preserves (countable) coproducts if and only if A(7) — A(S)
does. One implication is clear, since 7 — A(7) preserves coproducts. Suppose that 7 — A(S)
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preserves (countable) coproducts. Given objects F; € A(7) construct a coproduct as in Proposi-
tion 5. Restricting to S we have a commutative diagram with exact rows

Hp,ls — Hp,|s Fils 0

b

Hg, a,ls — Hg,B,|s Fls 0

i

By assumption the first two families of vertical morphisms form coproducts, and since coproducts
preserve cokernels we deduce that the morphisms F;|s — F|s are a coproduct in A(S) as well,
which is what we wanted to show.

Now we show that 7 — A(S) preserves countable coproducts if and only if (G2) holds for
S. Suppose that (G2) holds for S and that we are given a countable coproduct A; — @, 4; in
7. As in the proof of Lemma 6 we construct a presentation of Hy,|s in ModS as follows: take
an approximation A, — A;, a homotopy kernel X; — A of this approximation, and another
approximation X — X,. By (G2) countable coproducts of approximations are approximations,
and by (TRC,Remark 9) coproducts preserve homotopy kernels. Therefore we have a commutative
diagram with exact rows in A(S)

Hx, Hy; Hals —0

o

Hg,x; —— Hga, —— Hg, a,

s—>0

We know that the first two families of vertical morphisms form coproducts in A(S), and since
coproducts preserve cokernels we deduce that the morphisms H4,|s — Hg, a,|s are a coproduct
in A(S), as required.

Conversely, we suppose that 7 — A(S) preserves countable coproducts, and prove that (G2)
holds for S. Given a nonempty countable family of morphisms {X; — Y;};cr as in the statement
of (G2), by assumption the morphisms Hx,|s — Hy,|s are epimorphisms in A(S). Therefore
their coproduct Hg, x,|s — Hg,v,|s is an epimorphism, which is what we needed to show. [

Theorem 8 (Brown Representability). Let 7 be a triangulated category with coproducts and
a perfect generating set. Then an additive functor F : T°P — Ab is representable if and only if
it s homological and product preserving.

Proof. Equivalently, we are claiming that a contravariant additive functor F' : 7 — Ab is
naturally equivalent to Hy for some X € 7 if and only if it is cohomological (TRC,Definition 5)
and sends coproducts in 7 to products in Ab. By Remark 5 we can assume that 7 has a perfect
generating set S closed under suspension, and we set S = Add(S).

Let F: 7°? — Ab be a homological functor which preserves products. We construct induc-
tively a sequence of objects and morphisms in 7

X, ®o X, 1 X, (3)

together with a morphism m; : Hy, — F in Mod7 for each ¢ > 0. Given k € S and z € F(k)
we write k for the object k and set Xo = @ycg ,cr) ke (all coproducts are taken in 7). By
assumption we have a canonical isomorphism of abelian groups

F(Xg)= J] Fk)

keS,xeF (k)

so the sequence (2)es,.zep(k) in the right-hand product corresponds to an element 7o of F'(Xo),
and therefore to a morphism my : Hx, — F in Mod7 with

(moHu, )1 () = F(p)()
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for any T € 7 and morphism ¢ : T — wuy . Suppose we have already constructed objects
Xo, .., X; morphisms ¢q,...,¢;—1 and mg,...,m; for some i > 0. Set K; = Kerm; and define
T, = GBkGS,IGKi(k) k;. It is easy to check that K; sends coproducts in 7 to products in Ab, so
there is a canonical morphism Hy, — K;. Composing with the kernel morphism K; — Hx, we
have a morphism v; : T; — X; in 7. Extending this to a triangle

v; ®i i

T; Xi Xip1 —=XT;

defines the object X;;1 and morphism ¢;. Since F' is homological we have an exact sequence
F(ET) — F(Xit1) — F(Xi) — F(T3)

By construction F'(v;)(m;) = 0 so there is an element m;11 € F'(X;+1) such that F(¢;)(mi+1) = 7.
In other words, we can write m; : Hyx, — F' as the composite of m;4 : Hx, , — I and
Hy, : Hx, — Hx,, . This completes the construction of the sequence (3) and morphisms 7;.
For each i > 0 let k; : Hy, — K; be the morphism in Mod7 constructed above. By construc-
tion (k;)g is surjective for every k € S, and it follows that Hry,|s — Kj|s is an epimorphism in
ModS (the category of all w € 7 such that (k;)., is surjective is replete, closed under coproducts
and direct summands, therefore contains S). For the same reason, m;|s : Hx,|s — Fls is an
epimorphism. We therefore have an exact sequences in the portly abelian category ModS

7!'7;|
0 Kils Hy,|s —>F|s —>0 (4)
Hy,ls Tils
Hr|s — Hx,|s — Fls —=0 (5)

From which we deduce that F|s and K;|s are coherent. For each ¢ > 0 we have a commutative
diagram in A(S) with exact rows

Ti|S

0 ——— Kj|s —— Hx,|s Fls 0

R

0 — Kji|s — Hx Fls 0

ils
T rals

where we set ¢; = Hg,|s. The composite K;|s — Hx,|s — Hx,,,|s is zero since ¢; ov; = 0, so
there is a factorisation ¢; : F|s — Hx,,,|s. It is clear that mj;1|s 0 ¢; = 1, so the exact sequence
(4) splits for ¢ > 1 and there is an isomorphism Hx,|s & Fl|s @ K;|s. Consider the following
commutative diagram in A(S)

P p: P
Hx,|s ' Hx,|s - Hx,|s -
F|5€BK1‘3 50 F‘s@Kﬂngb@Kﬂg 50

Taking colimits of the rows we deduce that the morphisms {7;|s : Hx,|s — F|s}i>1 are a colimit
in A(S) of the direct system in the first row. In the usual way (DTC,Remark 23) we deduce an
exact sequence in A(S)

1—v
S —— 69121 HXi

0 —— D>1 Hx, s—=F|ls——=0 (6)

where the coproducts are taken in A(S). We should observe that 1 — v is a monomorphism by
virtue of being a coretraction. To see this, note that 1 — v can be written as a direct sum of the
corresponding morphisms for the following two sequences

0 0 0
K1|5 HKQ‘S HK3|5*>~-~
1

1 1

Fls F|s Fls
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In the first case 1 —v = 1 and in the second case 1 — v is easily checked to be a coretraction, so the
direct sum of these two morphisms is a coretraction, which justifies exactness of (6). Now take
a homotopy colimit (TRC,Definition 34) of the sequence (3) in 7 (with the first term deleted).
That is, we have a triangle

1—p

@ilei*) i21X7LL>X*>E®i21 X (7)
and since F' is homological, an exact sequence

F(q) F(1—-p)

F(X) F(@Dix1 Xi)

F(D;>1 Xi)
Under the isomorphism [[,+; F(X;) = F(@,-; X;) the sequence (m;);>1 corresponds to an ele-
ment j € F(,~, X;). Since m; = mp1Hy, for every ¢ > 1, it is clear that F(1 — p)(j) = 0, so
there is 7 € F(X) with F(q)(w) = j. That is, we have a morphism 7 : Hx — F with 7H,, = m;
for every ¢ > 1, where we let ¢; be the ith component of the morphism ¢ defined above.

Since S is a perfect generating set, it follows from Lemma 7 that the functor T — A(S)
is homological and preserves countable coproducts. Applying this functor to (7) yields an exact

sequence in A(S)

Hs(_wls

1—v
D1 Hxils — Di>1 Hx, s ———— Hsg.., x,

54>HX|S 4>H2®i21xi S

We claim that A\ = Hx(;_,)|s is a monomorphism. It suffices to prove this pointwise, so we take
the category of all w € S such that A, is injective. This is replete, closed under coproducts and
direct summands, and contains S since we know the morphism 1 — v of (6) is a monomorphism,
and by assumption S is closed under suspension. It follows that our subcategory is all of S, and
A is a monomorphism. Comparing with (6) we infer that n|s : Hx|s — F|s is an isomorphism.
Moreover the full subcategory of all Y € 7 such that 7y is an isomorphism is replete, closed under
coproducts and mapping cones, and contains S.

Let Q be any full subcategory of 7 with all these properties. We claim that @ = 7. To see
this let Y € 7 be given and apply the construction in the first part of the proof to the functor
F = Hy : T°® — Ab. In the construction of the sequence (3) for F' = Hy we take coproducts
of objects in S and mapping cones of morphisms between such objects, so it is clear that every
X; belongs to Q. From (7) we conclude that X € Q, so we have a morphism 7 : Hx — Hy with
X € Q which restricts to an isomorphism on §. Extend the corresponding morphism 7 : X — Y
to a triangle
W-—X—>Y — XYW

Given k € S we apply Hom(k,—) to this triangle and obtain a long exact sequence of abelian
groups. Using the fact that S is closed under suspension and 7 restricts to an isomorphism on S,
we deduce that Hom(k,W) = Hom(k,XW) = 0. By (G1) we have W = 0 and ¥W = 0, which
implies that X — Y is an isomorphism, from which we deduce Y € Q as claimed. Applying
this conclusion to the first part of the proof, we see that 7 : Hx — F' is an isomorphism, and
therefore F' is representable. O

Corollary 9. Let T be a triangulated category with coproducts and S a perfect generating set.
Then (S)y =T.

Proof. That is, the smallest localising subcategory of 7 containing the objects of S is the whole
category. This follows from the observation made in the last part of the proof of Theorem 8. [

Definition 6. Let 7 be a triangulated category with coproducts. We say that the representabil-
ity theorem holds for T if an additive functor 7°? — Ab is representable if and only if it is
homological and product preserving.

Corollary 10. Let T be a triangulated category with coproducts for which the representability
theorem holds. Then T also has products.
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Proof. Given a nonempty family of objects {X;};e; of 7, the additive functor

[[Homz (- X;): T — Ab
el

is homological and preserves products. It is therefore representable, and any representing object
is clearly a product of the family {X;}ic;. O

Lemma 11. Let F : C — D be a functor. Then F has a right adjoint if and only if for every
D € D the contravariant functor HpF : C — Sets is representable.

Proof. If F' has a right adjoint G then HpF' = Hg(p) so one implication is obvious. For the other,
suppose we are given for each D € D an object G(D) € C representing HpF. That is, there is a
bijection natural in X

Home(X,G(D)) — Homp(F(X), D)

A morphism « : D — D’ in D induces a natural transformation H,F : HpF — Hp/F and
therefore a unique morphism G(«) : G(D) — G(D’) making the following diagram commute for
each X € C

Homp(F(X),D) Homp(F(X),D")

ﬂ ﬂ

Home (X, G(D)) Home(X,G(D"))

This makes G into a functor, which is clearly right adjoint to F'. O

Corollary 12. Let T be a triangulated category with coproducts for which the representability
theorem holds. Then a triangulated functor T — S is coproduct preserving if and only if it has
a right adjoint.

Proof. Let F : T — S be a coproduct preserving triangulated functor. Given D € C the
composite HpF' : T — Ab is homological and product preserving, therefore representable. It
follows from Lemma 11 that F' has a right adjoint. O

Lemma 13. Let 7 be a triangulated category with coproducts, S C 7T a thick localising subcategory
satisfying the representability theorem. Then S is a bousfield subcategory of T .

Proof. The inclusion S — 7 is a triangulated functor preserving all coproducts, which by Corol-
lary 12 must have a right adjoint. O

1.1 Dwual Notions

Definition 7. Let 7 be a triangulated category with products. A nonempty set of objects S C T
is a perfect cogenerating set for T (or perfectly cogenerates T) if it perfectly generates 7°P. That
is, the following conditions hold:

(H1) Given X € T if we have Hom(X, k) = 0 for every k € S then X = 0.

(H2) Given a nonempty countable family of morphisms {X; — Y;};cr in 7 such that the map
Hom(Y;, k) — Hom(X;, k) is surjective for every i € I,k € S, the induced map

Hom(H Yi k) — Hom(H X, k)
i€l i€l
is also surjective for any k € S.

If S is a perfect cogenerating set then so is the set {3"k | n € Z}, so T has a perfect cogenerating set
if and only if it has a perfect cogenerating set closed under suspension. If a perfect cogenerating set
exists for 7 then we say that T is perfectly cogenerated (equivalently, 7°P is perfectly generated).



Theorem 14 (Representability for the Dual). Let T be a triangulated category with products
and a perfect cogenerating set. Then an additive functor F' : T — Ab is representable if and
only if it is homological and product preserving.

Definition 8. Let 7 be a triangulated category with products. We say that the dual repre-
sentability theorem holds for T if an additive functor 7 — Ab is representable if and only if it
is homological and preserves products. That is, the representability theorem holds for 7°P.

Corollary 15. Let T be a triangulated category with products for which the dual representability
theorem holds. Then T also has coproducts.

Corollary 16. Let T be a triangulated category with products for which the dual representability
theorem holds. Then a triangulated functor T — S is product preserving if and only if it has a
left adjoint.

2 Compactly Generated Triangulated Categories

Definition 9. Let 7 be a triangulated category with coproducts. A nonempty set of objects
S C 7T is a compact generating set for T (or compactly generates T) if it satisfies (G1) and every
object k € S is compact (AC,Definition 18).

If 7 admits a compact generating set, then we say that 7 is compactly generated. It follows from
Remark 1 that a compact generating set is a perfect generating set, so any compactly generated
triangulated category 7 satisfies Brown representability.

In the case of compactly generated triangulated categories, the next result is very useful in
identifying the compact objects.

Lemma 17. Let T be a compactly generated triangulated category and suppose S is a family of
compact generators. Then T°€ is the smallest thick triangulated subcategory of T containing the
objects of S.

Proof. By Corollary 9 we have 7 = (S) so this is an immediate consequence of (TRC2,Lemma
49). O

Definition 10. Let 7 be a triangulated category. A nonempty set of objects S C 7T is a symmetric
generating set for 7T if it is satisfies (G1) and if there exists a nonempty set of objects T'C 7 with
the following property:

(G3) For any morphism X — Y the induced map Homy(k,X) — Hom7(k,Y) is surjective
for every k € S if and only if Hom¢ (Y, m) — Homz (X, m) is injective for every m € T.

If 7 has coproducts then it is clear that (G3) implies (G2), so any symmetric generating set for
a triangulated category with coproducts is a perfect generating set.

Lemma 18. If 7 is a triangulated category then T has a symmetric generating set if and only if
T°P does.

Proof. Tt suffices to show that if 7 has a symmetric generating set then so does 7°P. Let S be
a symmetric generating set for 7 with 7" as in the definition. We claim that T' is a symmetric
generating set for 7°P. To prove (G1), suppose that X € 7 is such that Homz(X,m) = 0
for every m € 7. Then Homys(X,m) — Homy(0,m) is injective for every m € T and so
Homy(k,0) — Homg(k, X) is surjective for every k € S. Therefore X =0 by (G1) for S.

For (G3), suppose we are given a morphism ¥ — X in 7 which we extend to a triangle

Y — X —7—3%YY
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Writing out the corresponding long exact sequences, we deduce the following chain of equivalences

Homz (X, m) — Hom7z (Y, m) surjective for every m € T

0

Homz(271Z,m) — Homs (271X, m) injective for every m € T

)

Homy(k,X7'X) — Homz(k,X"'Z) surjective for every k € S

)

Homy(k,Y) — Homyz(k, X) injective for every k € S
which proves that T is a symmetric generating set for 7 °P. O

Proposition 19. Let T be a triangulated category with coproducts. Then any compact generating
set for T is also a symmetric generating set.

Proof. Let S be a compact generating set for 7. Consider the abelian group Q/Z, which is an
injective cogenerator for the abelian category Ab. For each k € S we have a homological product
preserving functor

QF:T°° — Ab
Q"(X) = Homaw(Homr(k, X),Q/Z)

Since 7 is perfectly generated it satisfies the representability theorem, and we can find objects
T, € T representing these functors and define T = {Tj}res. Using the fact that Q/Z is an
injective cogenerator, it is now easy to check that S satisfies (G3) and is therefore a symmetric
generating set. O

So given a triangulated category 7 with coproducts the different types of generating sets fit
into the following implication: compact = symmetric = perfect.

Corollary 20. If a triangulated category T is compactly generated, then T is perfectly cogenerated.
In particular T has products.

In particular if 7 is a compactly generated triangulated category, then the representability
theorem and the dual representability theorem hold for 7. That is, if F' is an additive functor
T — Ab or 7°° — Ab then F' is representable if and only if it is homological and preserves
products.

Corollary 21. Let F: T — S be a triangulated functor with T compactly generated. Then
(i) F has a right adjoint if and only if it preserves coproducts.
(i) F has a left adjoint if and only if it preserves products.

Lemma 22. Let FF: T — §,G : S — T be triangulated functors with T compactly generated,
and suppose that F is left adjoint to G. Then F preserves compactness if and only if G preserves
coproducts.

Proof. Suppose that G preserves coproducts, and let k € 7 be compact. For any coproduct €, Y;
in § we have an isomorphism

Homgs(F(k), ®:Y;) = Hom (k, G(@z i)
= Homg (k, ®:G(Yi))
= @ZHomT(k G( )
= @;Homs(F(k),Y)

11



from which it follows that F'(k) is compact in §. Note that this direction does not need 7 to be
compactly generated. Now suppose that F' preserves compactness and let ®;Y; be a coproduct in
S. The canonical morphism &;G(Y;) — G(@;Y;) induces a morphism

Homg (k, ®:G(Y;)) — Homg (k, G(®;Y;))

for every object k € 7, which one checks as above is an isomorphism provided & is compact (since
we know F'(k) is also compact). But then in the triangle

©;G(Y;) — G(@Y;) — Z — X3 G(Y))

we must have Homy(k, Z) = 0 for every compact object k. Since 7 is compactly generated this
implies Z = 0, from which we deduce that G preserves coproducts. O

Lemma 23. Let F : T — S be a triangulated functor with T compactly generated, and let S be
a compact generating set for T. Then F preserves compactness if and only if F(k) is compact for
every k € S.

Proof. The compact objects of S form a thick triangulated subcategory, and therefore so does the
subcategory of objects in 7 mapping into compacts of S. The claim now follows from Lemma
17. O

3 Portly Considerations

Let 7 be a portly triangulated category with coproducts. It is clear what we mean by a perfect
generating set, a perfect cogenerating set, a compact generating set and a symmetric generating set
for 7, and therefore what we mean when we say that 7 is perfectly generated, perfectly cogenerated
or compactly generated. A compact generating set is a perfect generating set.

Definition 11. Let C be a portly category. We say that C is mildly portly if the object conglom-
erate of C is actually a class, and every morphism conglomerate of C is small. Replacing each
morphism conglomerate by a bijective set, we can define a (noncanonical) category D together
with an isomorphism of categories C — D which is the identity on objects. In particular if a
portly triangulated category 7 is mildly portly, then it is triisomorphic to a triangulated category.

The only difference between a mildly portly triangulated category and a triangulated category
is some pedantic distinction between small conglomerates and sets (which many authors simply
ignore). So one would expect Brown representability to hold under appropriate hypotheses. How-
ever, since the morphism conglomerates may not be sets, we have to modify what we mean by a
representable functor.

Definition 12. Let C be a preadditive mildly portly category and F' : C — Ab an additive
functor. We say that F' is representable if there is an additive isomorphism of portly categories
T :D — C with D a preadditive category (not just a portly category) such that the functor F'T'
is representable. Equivalently, F'T is representable for every additive isomorphism D — C with
D a preadditive category. If C happens to be a category, this agrees with the usual definition.

If F:C — Ab is representable and Q : ' — C an additive equivalence of mildy portly
preadditive categories, then QF is also representable. Representability is also stable under natural
equivalence of functors C — Ab.

Lemma 24. Let C be a mildly portly preadditive category and F : C — Ab an additive functor.
Then F is representable if and only if there exists X € C together with an isomorphism of (large)
abelian groups natural in'Y

Home(X,Y) — F(Y)

We say that the object X represents F, and this representing object is unique up to isomorphism.
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Definition 13. Let 7 be a mildly portly triangulated category with coproducts. We say that
the representability theorem holds for T if an additive functor 7°? — Ab is representable if and
only if it is homological and product preserving. This property is stable under triequivalence of
mildly portly triangulated categories.

If 7 is a mildly portly triangulated category with products we say that the dual representability
theorem holds for T if the representability theorem holds for 7°P, that is, an additive functor
F : T — Ab is representable if and only if it is homological and product preserving. This
property is also stable under triequivalence.

Theorem 25. Let 7 be a mildly portly triangulated category with coproducts and a perfect gen-
erating set. Then the representability theorem holds for T .

Proof. With the definition of a representable functor given in Definition 12 this follows at once
from Theorem 8. O

Corollary 26. Let T be a mildly portly triangulated category with coproducts for which the rep-
resentability theorem holds. Then T also has products.

Corollary 27. Let T be a mildly portly triangulated category with coproducts for which the rep-
resentability theorem holds. Then a triangulated functor T — S into another mildly portly
triangulated category is coproduct preserving if and only if it has a right adjoint.

Dually

Corollary 28. Let 7 be a mildly portly triangulated category with products for which the dual
representability theorem holds. Then a triangulated functor T — S into another mildly portly
triangulated category is product preserving if and only if it has a left adjoint.

Lemma 29. Let T be a mildly portly triangulated category with coproducts, S C T a thick local-
1sing portly subcategory satisfying the representability theorem. Then S is a bousfield subcategory
of T.

Lemma 30. If T is a mildly portly triangulated category then T has symmetric generating set if
and only if T°P does.

Proposition 31. Let T be a mildly portly triangulated category with coproducts. Then any com-
pact generating set for T is also a symmetric generating set.

Corollary 32. If a mildly portly triangulated category T is compactly generated, then T is perfectly
cogenerated.

In particular if 7 is a compactly generated mildly portly triangulated category, then the
representability theorem and the dual representability theorem hold for 7. That is, if F is an
additive functor 7 — Ab or 7°? — Ab then F' is representable if and only if it is homological
and preserves products.

Corollary 9 is still true with 7 a mildly portly triangulated category. Lemma 17 is still true
with 7" a mildly portly triangulated category. Clearly Lemma 22 and Lemma 23 are still true with
S, 7 both mildly portly.
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4 Representability for Linear Categories

Throughout this section let & be a commutative ring. Recall the definition of a k-linear category
from (AC,Definition 35) and a k-linear triangulated category (TRC,Definition 32). Given a k-
linear category A an additive functor T : A°? — kMod is said to be k-linear if for every pair
A, B € A the map

Hom (A, B) — Homy(TB,TA)

is a morphism of k-modules. The k-linear functors form a portly abelian subcategory Mod.A of
the portly abelian category (A°P, kMod) of all additive functors A°® — kMod. A sequence in
Mod; A of the form

M/ — M SN M//

is exact if and only if for the following sequence in kMod is exact for every A € A
M'(A) — M(A) — M"(A)

Similarly kernels, cokernels and images in Mody.A are computed pointwise. A morphism ¢ :
M — N in ModjA is a monomorphism or epimorphism if and ony if ¢4 : M(4A) — N(A)
has this property for every A € A. For any object A € A the functor Hq = Hom(—, A) defines
an object of Modg.A. In order to avoid a clash of notation with earlier results, we denote the
morphism sets in Modg.A by Homga (M, N). It is clear that Modg.A is a k-linear portly category.

Proposition 33. If A is a k-linear category, then

(i) For any object A € A and T in ModygA there is a canonical isomorphism of k-modules
Homypa(Ha, T) — T(A) defined by v — v4(1), which is natural in A and T.

(i) The functor A — H, defines a full k-linear embedding A — Mody.A.
(iii) The objects {Ha}aca form a (large) generating family of projectives for ModyA.

Definition 14. Let S be a k-linear category. We say that an object F' of ModyA is coherent if
there exists an exact sequence in Mody.A of the following form

Hy — Hg — F — 0 (8)

Clearly any representable functor is coherent. We denote by A (S) the full replete subcategory of
Modj A consisting of the coherent functors. At the moment we only know that this is a k-linear
portly category.

If S is a k-linear category and ¢ : M — N a morphism of Mod;S then given two presentations
of the form (8) we can lift ¢ to a morphism of the presentations. Asin Lemma 2 a coherent functor
F € Mod;S preserves products as a functor S°® — kMod. The observation of Remark 3 is also
still valid.

Lemma 34. Let S be a k-linear additive category. If ¢ : M — N is a morphism in Ap(S) then
any cokernel of ¢ in ModyS also belongs to Ap(S).

Lemma 35. Let S be a k-linear additive category with weak kernels. If o +: M — N is a
morphism in Ap(S) then any kernel of ¢ in ModyS also belongs to Ag(S).

Proposition 36. Let S be a k-linear additive category with weak kernels. Then A (S) is a portly
abelian category. If S has coproducts then Ak(S) is cocomplete and the induced Yoneda functor

H(_) S — Ak(S)
preserves COp?“OdUCtS.

Lemma 37. Let T be a k-linear additive category with coproducts and weak kernels, S C 7T a
nonempty set of objects of T, and define S = Add(S). Then
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(i) The additive category S has weak kernels, and Ax(S) is a cocomplete portly abelian category.
(i) The map F — Fls gives an exact functor Ap(T) — Ak(S).

Lemma 38. Let T be a k-linear triangulated category with coproducts, S C T a nonempty set of
objects, and define S = Add(S). Then the functor

T — A(S), X+ Hxls

is homological. It preserves countable coproducts if and only if (G2) holds for S.

Theorem 39 (Linear Brown Representability). Let T be a k-linear triangulated category
with coproducts and a perfect generating set. Then a k-linear functor F : T°? — kMod is
representable if and only if it is homological and product preserving.

Clearly if 7 is a k-linear mildly portly triangulated category with coproducts then the analogue
of Theorem 39 holds for 7', once we define a k-linear functor F' : 7°P — kMod to be representable
if there is X € 7 together with an isomorphism of (large) k-modules natural in Y’

Homz(Y,X) — F(Y)
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