
The Zariski Site

1. Motivation

We know that geometry over a commutative ring k is embodied, for a system of equations J ⊆ k[(xi)i∈I ],
by the varieties VJ(k′) in each k-algebra k′, and that this category of varieties is opposite to the category
k-alg (identifying VA with A). We think of the variety VA as being made manifest by all the varieties VA(k′).
In the classical case where k is an algebraically closed field, we can ignore all the k-algebras except for k itself
(see our Geometry notes), so that in this case the variety is the subset VA(k) of kI . We traditionally put a
topology on this variety, called the Zariski topology, by defining a subset of VA(k) ⊆ kI to be closed if it is
the locus in VA(k) of some ideal of A. This topology has a basis consisting of the open sets

D(f) = {t ∈ VA(k) | t(f) 6= 0} ∀f ∈ A
Recall that in the classical case the Nullstellensatz tells us that the points of VA(k) are in one-to-one cor-
respondence with the maximal ideals of A, that is, the maximal ideals of k[(xi)] containing J. Every point
t : A −→ k of VA(k) is uniquely determined by its kernel mt = t−1(0), so that the topology above has an
equivalent definition in terms of maximal ideals, where D(f) is identified with the set of all maximal ideals
m to which f does not belong.

Can we generalise the Zariski topology to the general case, where our collection of k-algebras must be
enlarged from the single object k to the entire category? Here, our varieties take their values in many algebras.
Can we define the analogue of Zariski topologies on these algebras? Let k′ be an arbitrary k-algebra. The
points of the variety in k′ are the morphisms of k-algebras t : A −→ k′. Each such point determines an ideal
t−1(0) of A, which we will denote I(t) (notice that, generally, we may have I(t) = I(t′) with t 6= t′). A naive
generalisation of the Zariski topology would lead us to define, for each ideal I of A, subsets

V (I) = {t ∈ VA(k′) | f(t) = 0 for all f ∈ I} = {t | I ⊆ I(t)}
D(f) = {t ∈ VA(k′) | f(t) 6= 0} = {t | f /∈ I(t)}

But these sets do not form a topology - the problem is that while V (I) ∪ V (J) ⊆ V (I ∩ J), the reverse
inclusion may not hold. In the classical case, where all the I(t) are prime, I ∩ J ⊆ I(t) would imply that
either I or J were in I(t), as required. Hence, provided that the algebra k′ is a domain, we can define the
normal Zariski topology on VA(k′). In particular, we can consider all the geometric points (points of VA in
fields) to exist in topologies of this form.

In the classical case, we know that a variety VA(k) is covered by open sets D(fj) iff. the fj generate the
ideal (1) of A. Generally, VA(k′) = ∪jD(fj) iff. (fj) is not contained in I(t) for any point t : A −→ k′ of
VA(k′). This would be equivalent to the fj generating (1) if we knew that the I(t) included all the maximal
ideals (which is true, classically). Now consider Df

A as a subfunctor of VA which picks out the points of
VA(k′) at which f is nonzero. Generalising the classical case, we should say that the Dfi

A covered VA if (fi)
generated the unit ideal of A, which is iff. (fi) is contained in no I(t) = t−1(0), for any geometric point
t : A −→ k′, which is iff. the Dfi

A cover each geometric point (in the sense that if t : A −→ k′ is such a point,
then t ∈ Dfj

A (k′) for some j). Let us remark upon this idea, noting that a finite number of the fj will always
suffice to generate (1), and hence to cover VA:

Remark 1 (First definition of a cover). A cover of a k-algebra A (equivalently, a variety VA) is a finite
collection f1, . . . , fn such that (f1, . . . , fn) = (1), or, equivalently, such that the collection of points Dfi

A (k′)
contains every geometric point of VA.

Before we go any further, let us review the current setup: we have a fixed base ring k, the category k-alg
of k-algebras, the category Var(k) of varieties over k, realised as the full subcategory of all representable
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covariant functors k − alg −→ Sets, which is dual to k-alg . This last category can also be identified with
the category of all affine schemes over Spec(k), by the following:

A = VA = Spec(A)

We saw above that the obvious generalisation of the Zarsiki topology doesn’t work for varieties with points
in k-algebras that are not fields. To realise what the correct generalisation is, consider the following. Let A
be a k-algebra, with f ∈ A. Consider the morphism ϕ : A −→ Af of k-algebras. It induces a morphism of
varieties

Vϕ : VAf
−→ VA

Vϕ(k′) : Homk−alg(Af , k′) −→ Homk−alg(A, k′)

φ_

��
φϕ

Af
φ // k′

A

ϕ

OO >>}}}}}}}}

So far the discussion has been free of any particular affine immersion. Let VA −→ EI be such an
immersion, so that we identify A with k[(xi)]/J, and hence Af with the k-algebra

Af =
A[x]

(fx− 1)
=

(
k[(xi)]

J

)
[x]

(fx− 1)

=
k[(xi) ∪ x]
(J, fx− 1)

where the isomorphism is defined by

g + J

(f + J)n
7→ (g + J)xn + (fx− 1)

7→ gxn + (J, fx− 1)

Notice that since A −→ Af is an epimorphism, VAf
−→ VA is monic. In terms of this immersion, a k′-point

of VAf
is an I ∪ x tuple

((ti)i∈I , t) ti, t ∈ k′

satisfying the relations of J on the first I positions (together with polynomials in x with these relations as
coefficients), together with the relation

f ((ti)) t = 1 (1)

The morphism Vϕ projects this tuple onto its first I coordinates - that is, (ti)i∈I . That this is pointwise monic
is obvious, because the tuple (ti) completely determines t via (1). (of course, it is not necessarily onto since
f((ti)) may not always be invertible). Hnece the image of Vϕ(k′) is the set of all tuples (ti)i∈I , ti ∈ k′, for
which f((ti)) is a unit in k′. Alternatively, notice that morphisms Af −→ k′ are in one-to-one correspondence
with morphisms A −→ k′ that take f to a unit, which are precisely those tuples (ti) of k′I for which f((ti))
is a unit.

This tells us what the correct generalisation of the Zariski topology is. For a polynomial f ∈ A, ideal
I ⊆ A and k-algebra k′, we should define

Df
A(k′) = {t ∈ VA(k′) | f(t) is a unit }

DI
A(k′) = {t ∈ VA(k′) | some f ∈ I, f(t) is a unit }

Now notice that for a, b ∈ k′, ab is a unit iff. both a and b are units. Hence Df
A(k′) ∩ Dg

A(k′) = Dfg
A (k′)

so that the Df
A(k′) form the basis for a topology. We also have DI

A(k′) = ∪f∈IDf
A(k′), etc. If k′ is a field,

then f(t) 6= 0 is exactly the same as requiring f(t) to be a unit, so that in the classical case we just picked
the wrong condition (we really picked f(t) 6= 0 so that functions g/f would be defined at t, so it should be
obvious that requiring f(t) to be a unit is the correct condition, generally). Hence Df

A is the subfunctor of
VA with which VAf

is canonically identified.
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Notice that a k′-point t : A −→ k′ of VA is contained in Df
A iff. t factors through A −→ Af . So that

we might say a collection of subobjects Dfj

A , fj ∈ A, “covered” the variety VA if every k′-point t, for every
k-algebra k′, factored through some A −→ Afj . That is, iff.⋃

j

D
fj

A (k′) = VA(k′) ∀k′

However, note once again:

Proposition 1. A collection {fj}j∈J of elements of A generates the unit ideal if and only if every
geometric point factors through some A −→ Afj

Proof. Suppose that (fj) = A, and that t : A −→ k′ is a geometric point. Since t(1) = 1, t cannot take
all of A to 0, and hence cannot take every fj to 0. That means that some t(fj) is nonzero, and consequently
is a unit, since k′ is a field. Conversely, suppose that geometric points satisfied the condition but that (fj)
were proper. Let m be a maximal ideal containing (fj), so that t : A −→ A/m is a geometric point which
cannot factor through any A −→ Afj . �

That is, the fj generate the unit ideal iff. theDfj

A contain every geometric point. Notice that for geometric
points the two Zariski topologies (defined classically or with units) coincide, so that the above Proposition is
none other than our earlier Remark. For further evidence that this is the correct notion of a “cover”, consider
the category of affine schemes over Spec(k). We have the following identifications

morphism A −→ Af = inclusion of Df
A in VA = inclusion of Spec(Af ) in SpecA

so that the morphism A −→ Af corresponds to the inclusion of the primes of Af (those primes of A avoiding
powers of f) in the spectrum of A. These primes correspond to the geometric points (modulo the place
relation) - the primes of Af are the geometric points of VA which factor through Af (equiv. the geometric
points contained in Df

A) and the primes of A correspond to all the geometric points. In Aff(k), we would say
that Spec(Afj

) covered SpecA if their union (as sets) was all of SpecA. This leads us to our final notion of a
cover:

Proposition 2. The following conditions on a family f1, . . . , fn of elements of a k-algebra A are equiv-
alent:

• The ideal (f1, . . . , fn) is all of A;
• Each geometric point of VA is contained in some VAfi

;
• The union of the spaces Spec(Af ) is all of Spec(A).

Definition 1. A cover of a variety VA (resp. algebra A, resp. affine scheme SpecA) is a finite family
f1, . . . , fn of A such that (f1, . . . , fn) = A.

2. The Zariski Site

Before we can make use of this intuitive development, we need to prove some technical results.

Lemma 1. Let (C, J) be a site. If φ : A −→ B is an isomorphism, then the correspondences

φ : J(A) −→ J(B)

φ∗ : J(B) −→ J(A)

given for a sieve S on A and sieve T on B by φS = {φf | f ∈ S} and φ∗T = {g |φg ∈ T}, respectively, define
a bijection between J(A) and J(B).

Proof. By definition, if T is a covering sieve so is φ∗T . Suppose S ∈ J(A). Then it is easy to see
that φS = (φ−1)∗S, so that φS is a cover of B. Clearly φ∗φS = S for any S ∈ J(A), and φφ∗T ⊆ T . If
f : D −→ B ∈ T , then φ−1f is such that φ(φ−1f) ∈ T , so φ−1f ∈ φ∗T , and so f ∈ φφ∗T . Hence φφ∗T = T ,
also. �

Let A denote a full representative subcategory of a category B. We wish to show that any Grothendieck
topology J on A has a unique extension to a topology J ′ on B. First, notice that a sieve S on A in A need
not be a sieve in the category B. Hence we first define a function Ĵ on the objects of A

Ĵ(A) = {(S) |S ∈ J(A)}
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where the closure is taken in B. We now verify that Ĵ has the nice properties we expect. Whenever pullbacks
are taken in A, we will write f∗AS, and otherwise we assume the pullback is occurring in B. All closures are
taken in B (there is an unfortunate clash of notation here - “closure” has another meaning for sieves, but
we will only use it to refer to the smallest sieve containing a given collection of morphisms). Finally, for a
B-sieve R on A ∈ A, let R ∩ A denote all those morphisms of R belonging to A.

Lemma 2. With the above notation, the following hold:
(i) If (S) = (S′) for A-sieves S, S′ on A in A, then S = S′;
(ii) For any B-sieve R on an object A ∈ A, R = (R ∩ A);
(iii) For A ∈ A, the maximal B-sieve on A is in Ĵ(A);
(iv) If T ∈ Ĵ(A) and f : A′ −→ A is a morphism in A, then f∗T ∈ Ĵ(A′);
(v) If R is a B-sieve on A ∈ A and S ∈ J(A) is such that f∗R ∈ Ĵ(D) for all f : D −→ A in S, then

R ∈ Ĵ(A);
(vi) The correspondences S 7→ φS, T 7→ φ∗T for an isomorphism φ : A −→ A′ in A define a bijection

between Ĵ(A) and Ĵ(A′).

Proof. (iii) If g : B −→ A, let φ : B −→ C, C ∈ A, be an isomorphism. Then gφ−1 is in the
maximal sieve on A as defined in A, so that g ∈ (tA). Hence the maximal sieve in B is the closure
of the maximal sieve in A.

(iv) Let T = (S), S ∈ J(A). We show that f∗(T ) = (f∗AS). Let g : B −→ A′ be such that fg ∈ (S), say
fg = sh where h : B −→ A′′ is a morphism of B and s : A′′ −→ A is in S. Let φ : B −→ C be an
isomorphism of B with an object C of A, as in

A′′
s // A

B

h

>>}}}}}}}}
g

//

φ
$,PPPPPPPPPPPPPPP

PPPPPPPPPPPPPPP A′
f

>>~~~~~~~~

C

k

OO

where everything commutes. Then g = kφ, so to show g ∈ (f∗AS) it would suffice to show that
fk ∈ S. But fk = fgφ−1 = shφ−1 = s(hφ−1) ∈ S, since S is a sieve and hφ−1 ∈ A. The converse
is easy.

(v) Notice we say S ∈ J(A) because at this stage Ĵ(D) for D not in A doesn’t mean anything. Suppose
the conditions are satisfied. Let f∗R = (Sf ) for a cover Sf ∈ J(D), and let R′ = R ∩ A. Then for
f ∈ S, by (ii) and (iv)

(Sf ) = f∗R = f∗((R ∩ A)) = (f∗A(R ∩ A))

Hence by (i), f∗A(R ∩ A) = Sf ∈ J(D). Hence since J is a topology, R ∩ A ∈ J(A), which implies
that R = (R ∩ A) ∈ Ĵ(A).

�

Proposition 3. Let A be a full representative subcategory of B. Then any Grothendieck topology J on
A has a unique extension to a Grothendieck topology J ′ on B.

Proof. Let Ĵ be the function defined above. Given B ∈ B, let A ∈ A be such that A ∼= B via
φ : B −→ A. We define J ′(B) by the following condition on sieves S on B:

S ∈ J ′(B) iff S = φ∗T for some T ∈ Ĵ(A) (2)

We need to show that (2) is independent of the object A and the isomorphism φ chosen. Suppose φ, ψ : B −→
A are both isomorphisms, and that S is a sieve on B, with S = φ∗T , T ∈ Ĵ(A). Let

T ′ = (φψ−1)∗T

= {g |φψ−1g ∈ T}

which is clearly in Ĵ(A). Then ψ∗T ′ = φ∗T = S, since φk ∈ T iff. ψk ∈ T ′. By symmetry J ′ is independent
of the chosen isomorphism. If B is isomorphic to both A,A′ in A, then A ∼= A′, so by the lemma and the
fact that (φψ)∗T = ψ∗φ∗T , J ′(B) is independent of all our choices. Notice that for A ∈ A, J ′(A) = Ĵ(A).
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We now check that, thus defined, J ′ is a Grothendieck topology on B. By Lemma 2, (iii), tB ∈ J ′(B)
for all B, and if S ∈ J ′(B) and f : B′ −→ B is a morphism of B, we pick A,C ∈ A and isomorphisms
ψ : B′ −→ C, φ : B −→ A and T ∈ Ĵ(A) such that S = φ∗T . Then let f ′ : C −→ A be such that φf = f ′ψ.
Then

f∗(S) = f∗(φ∗T ) = (φf)∗T = (f ′ψ)∗T = ψ∗(f ′∗T )
and hence f∗S ∈ J ′(C). Finally, let R be a sieve on B, T ∈ J ′(B) with A,φ, S as before. Let ψf : D −→ Cf
be an isomorphism, Cf ∈ A, for each f : D −→ B in T . Let f ′ : Cf −→ A be such that

B
φ−−−−→ A

f

x xf ′
D

ψf−−−−→ Cf

commutes. If f∗R ∈ J ′(D) for each f ∈ T , let Sf = (Qf ) ∈ Ĵ(Cf ) be such that f∗R = ψ∗fSf . Since S ∈ Ĵ(A),
let S′ ∈ J(A) be such that S = (S′). Then since S = (S ∩A), by the Lemma, S′ = S ∩A ∈ J(A). For g ∈ S′,
let f ∈ T be such that g = f ′ψf . Then

g∗(φR) = (f ′ψf )∗(φR)

= (φ−1f ′ψf )∗R

= f∗R

= ψ∗fSf ∈ Ĵ(D)

Hence by Lemma 2(v), φR ∈ Ĵ(A), and so R = φ∗φR ∈ J ′(B), as required. Hence J ′ defines a Grothendieck
topology (one checks the above works equally well for objects of A and B mixed together), and uniqueness is
clear. �

Lemma 3. In the situation of the previous proposition, a presheaf P : Bop −→ Sets is a J ′-sheaf if and
only if the restriction P |A of P to A is a J-sheaf.

Proof. Suppose P is a J ′-sheaf on B, and let S ∈ J(A) be an A-cover of A ∈ A. If (xf )f∈S is a matching
family for P on S, then we can extend it to a matching family on the B-cover (S) ∈ J ′(A) by defining, for
g = fh ∈ (S),

xg = xf · h
This is well defined since if g = fh = f ′h′, for f, f ′ ∈ S and h, h′ : D −→ A, let ψ : D −→ A′ be an
isomorphism of D with an object of A, and let k = hψ−1, k′ = h′ψ−1. Then fk = f ′k′, and since (xf ) is
matching for S,

xf · h = xf · (kψ)

= (xf · k) · ψ
= xfk · ψ
= xf ′k′ · ψ
= xf · (k′ψ)

= xf · h′

It is clear that this extended family is matching for P on (S) in B. Hence let x ∈ P (A) be unique such that
x · g = xg for all g ∈ (S), so in particular for f ∈ S, x · f = xf . Clearly if x′ ∈ P (A) also gave x′ · f = xf ,
then for g = fh in (S), x′ · g = xf · h = xg, so x = x′.

Conversely, suppose that P : Bop −→ Sets is a presheaf which restricts to a J-sheaf on A. Let B be an
object of B, ψ : B −→ A an isomorphism of B with an object of A, T ∈ J ′(B) with S ∈ Ĵ(A) such that
T = ψ∗S, and let (xg)g∈T be a matching famliy for P on T . Let S′ ∈ J(A) be S ∩A. For f : A′ −→ A ∈ S′,
ψ−1f ∈ ψ∗S = T , so let yf = xψ−1f ∈ P (A′). Then (yf )f∈S′ are a matching family for the restriction of P
to A on the cover S′, since for k : A′′ −→ A′ in A,

yf · k = xψ−1f · k
= xψ−1fk

= yfk
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hence there is a unique y ∈ P (A) with the property that y · f = yf = xψ−1f for all f ∈ S′. We claim
x = y · ψ ∈ P (B) is the unique amalgamation of (xg). For g ∈ T ,

x · g = (y · ψ) · g
= y · (ψg)
= yψg

= xψ−1ψg

= xg

The amalgamation is unique, since if x′ ∈ P (B) satisfies x′ · g = xg, then x′ · ψ−1 ∈ P (A) satisfies

(x′ · ψ−1) · f = x′ · (ψ−1f) = xψ−1f = yf

Hence x′ · ψ−1 = y, and so x = y · ψ = x′, as required. �

We know that in k-alg , the coproduct of two algebras A and B is the tensor product A ⊗k B, with
injections a 7→ a⊗ 1 and b 7→ 1⊗ b. Consider the diagram

k −−−−→ Ay y
B −−−−→ A⊗k B

where the maps from k are the structure maps. Recall that

Lemma 4. Let k be a commutative ring. Then the category of k-algebras k-alg is isomorphic to the
category k/Rng of rings under k.

Hence, since coproducts in k/Rng must correspond to pushouts in Rng, we have the following result

Lemma 5. In the category Rng, the pushout of a pair of ring morphisms A −→ B, A −→ C is the
diagram

A −−−−→ By y
C −−−−→ B ⊗A C

that is, the pushout is the tensor product of B and C considered as A-algebras via the two maps A −→ B,
A −→ C.

Now let φ : A −→ B be a morphism of rings, f ∈ A. Then there is an induced morphism ϕ : Af −→ Bφ(f)

making the following diagram commute
A −−−−→ Af

φ

y yϕ
B −−−−→ Bφ(f)

It is not difficult to check that this diagram is a pushout (of rings). Also, if A and B are k-algebras, so too
are Af and Bφ(f), and if B −→ C is a k-algebra morphism taking φ(f) to a unit, the induced morphism of
rings Bφ(f) −→ C is also a morphism of k-algebras. Hence, the above diagram is also a pushout of algebras.
Notice that the above implies that there is a canonical isomorphism of rings B ⊗A Af ∼= Bφ(f).

We now return to the subject of interest: the Zariski site. Let V ar(k) denote the full, replete subcategory
of Setsk−alg containing the functors VA for k-algebras A, and all isomorphic functors. Let V ar′(k) temporarily
denote the subcategory consisting of just these functors VA and the morphisms between them (so that V ar′(k)
is the opposite category of k-alg ). A geometric point of VA is morphism Vq −→ VA, q a field. We say a
V ar′(k)-sieve S on VA ∈ V ar′(k) is closed under geometric points if every geometric point of VA belongs to
S. Since representing objects are unique up to isomorphism, it makes sense to say a functor W ∈ V ar(k)
represents a field. We call morphisms f : W −→ V , where W represents a field, geometric points of V , and
define closure under geometric points for V ar(k)-sieves in the obvious way.

Suppose for a moment we are doing classical geometry, so that the only points of interest are the mor-
phisms A −→ k, k the algebraically closed base field, and we identify the variety VA with its values VA(k) in
kI (after choosing a particular affine immersion VA −→ EI). Then a sieve on VA consists of the inclusion of
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various subvarieties of VA, and a sieve is closed under geometric points iff. every point of k belongs to one of
the subvarieties. But that isn’t what we normally mean by a “cover”. A cover of VA should be formed by a
union of sets like VAfi

= D(fi) ⊆ VA ⊆ kI with the property that every VA-point of k belongs to this union.
Clearly a cover in this sense is closed under geometric morphisms. We are now ready to define a basis for a
topology, called the Zariski topology, on V ar′(k).

Proposition 4. For an object VA of V ar′(k), the function K defined by

M ∈ K(VA) iff M = {φi : VAfi
−→ VA | 1 ≤ i ≤ n, φi = VA−→Afi

and (fi)i = A}

is a basis for a Grothendieck topology on V ar′(k).

Proof. That is, we take all finite collections of elements f1, . . . , fn ∈ A which generate the unit ideal
in A, and take the duals of the canonical morphisms A −→ Afi . Recall from Proposition 1 that f1, . . . , fn
generate the unit ideal iff. every k-algebra morphism from A to a field q factors through one of the morphisms
A −→ Afi

(with the canonical k-algebra structure).
If φ : VB −→ VA is an isomorphism, then it is the dual of an isomorphism f : A −→ B. Let f1 = 1 ∈ A.

Then f can be considered as the canonical morphism of k-algebras f : A −→ Af1 = B. Hence {φ} ∈ K(VA).
Now suppose that {φi}i are a cover of VA, and let ϕ : VB −→ VA be any morphism, say ϕ = Vg. Consider
the two diagrams

VA VAfi

φioo

VB

ϕ

OO

VBg(fi)

OO

oo

A //

g

��

Afi

��
B // Bg(fi)

Let t : B −→ q be any geometric point of B. Then tg is a geometric point of A, and hence factors through
some Afj

, since {φi}i is a cover of VA. But then using the second pullback, t factors through Bg(fj). This
verifies the stability axiom.

Suppose a family A −→ Afi covers A, and that for each i, Afi −→ (Afi)cij covers Afi . Let A −→ k′

be a geometric point of VA. Then A −→ k′ factors through some Afj
, so that we have a geometric point

Afj
−→ k′. Hence this morphism factors through some (Afj

)cjk
, so that the original morphism A −→ k′

factors as A −→ (Afj
)cjk

−→ k′, as required. �

We call the Grothendieck topology on V ar(k) induced by this basis the Zariski topology. Notice that if
O : V ar(k)op −→ Sets is a presheaf, to show that O is a sheaf it suffices to check that O|V ar′(k) is a sheaf,
so that we can just show it is a sheaf with respect to the above basis.

3. Sheaves subsume Schemes

Notice that a presheaf on V ar′(k) is just a covariant functor k− alg −→ Sets, so that the representable
functors Hom(A,−) for k-algebras A, are presheaves. In particular the presheaf O = Hom(k[x],−) =
Hom(−, Vk[x]), which takes a variety VA to the set A, is called the structure sheaf :

Lemma 6. The presheaf O is a sheaf for the Zariski site.

Proof. Let VA be a variety, and {A −→ Afi}i∈I a cover of VA. It is not difficult to check that the
canonical commutative square

A −−−−→ Afiy y
Afj −−−−→ Afifj

is a pushout of k-algebras for i, j ∈ I. Hence given a matching family xi ∈ Afi , set xi = yi/f
m
i for some

yi ∈ A and all i, for m sufficiently large. Then xi = xj in Afifj means that

yif
m
j (fifj)k = yjf

m
i (fifj)k
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for some sufficiently large k > 0. Now 1 ∈ (f1, . . . , fn) in A; by raising the implied equation to the power
n(m+ k) we may write 1 =

∑
tif

m+k
i for suitable ti. Let x =

∑
tiyif

k
i . Then

fm+k
j =

∑
i

tiyif
k
i f

m+k
j

=
∑
i

tif
m+k
i fkj yj

= fkj yj

Therefore in Afi
, we have x = fkj yj/f

m+k
j = yj/f

m
j = xj . This shows that x is an amalgamation of the xi’s.

To show uniqueness, suppose x = 0 in Afi for each i. Then for sufficiently large m, we have fmi x = 0 in A
for each i. But since 1 ∈ (f1, . . . , fn), one can write 1 =

∑
sif

m
i , and hence x =

∑
sif

m
i x = 0. �

Corollary 1. Every representable presheaf Q = Hom(B,−) = Hom(−, VB) for a k-algebra B, is a
sheaf for the Zariski site. That is, the Zariski site is subcanonical.

Proof. Let A be a k-algebra with a cover ϕi : A −→ Afi , i ∈ I. A matching family for Q is a family of
I-indexed morphisms φi : B −→ Afi

such that for each i, j ∈ I, the square

B
φi−−−−→ Afi

φj

y y
Afj −−−−→ Afifj

commutes. We define φ : B −→ A as follows: let x ∈ B, then φi(x) form a matching family for O, and hence
have a unique amalgamation φ(x) ∈ A. This defines a function φ : B −→ A defined by the property that for
each x ∈ B, φ(x) uniquely satisfies ϕiφ(x) = φi(x). Hence, since

ϕi (φ(x) + φ(x′)) = ϕiφ(x) + ϕiφ(x′) = φi(x+ x′)

we see that φ(x+x′) = φ(x)+φ(x′). Checking similarly the other conditions, we see that φ defines a morphism
of k-algebras, and it is clearly a unique amalgamation of the φi for Q. �

Recall that the representable presheaves on V ar(k) are the representable functors on k-alg , which are
precisely the elements of V ar(k)! For example, O = Hom(k[x],−) is the variety Vk[x]. But while this means
that we can think of the varieties as sheaves, not all such sheaves correspond to varieties. In fact, just as we
identify the affine schemes over Spec(k) with the representable functors on k-alg , we can identify the schemes
over Spec(k) with certain functors k−alg −→ Sets, and unsurprisingly, such schemes also determine sheaves
on the Zariski site. However, not even all the schemes over Spec(k) can exhaust the category of sheaves!

It is this Grothendieck topos of sheaves over the Zariski site that will allow us to generalise algebraic geom-
etry to noncommutative rings. While the internal language of a topos makes an appearance in commutative
algebraic geometry, it only becomes essential when we pass to noncommutative geometry.

Proposition 5. The function J which assigns to VA ∈ V ar′(k) the collection of all sieves on VA which
are closed under geometric points, is a Grothendieck topology on V ar′(k).

Proof. Clearly the maximal sieves are in the topology. Suppose that S ∈ J(VA) and that f : VB −→ VA
is a morphism of V ar′(k). Let φ : Vq −→ VB be a geometric point of VB . Then fφ is a geometric point of
VA, and hence belongs to S. This implies that f∗S is closed under geometric points, and so f∗S ∈ J(VB).
Finally, let R be a sieve on VA, and S ∈ J(VA) a cover. Suppose that f∗R ∈ J(VC) for every f : VC −→ VA
in S. Suppose that φ : Vq −→ VA is a geometric point of VA. Then since S is a cover, φ belongs to S. Notice
that J(Vq) = {tVq}, and hence φ∗R ∈ J(Vq) implies φ∗R = tVq , and so φ ∈ R, as required. �


