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an )

with this contributing to pF(4ag*0" ' 04A '* ) undeuthemualrevebals
.

Each configuration -6 determines an operator ,
which can be understood

in terms of Feynman diagrams . Ourpuvposeinthisnokistodenve these

operators, whichtukeasinputfevmionstales

Yin : - Ya,*@ . . .aYag*eA=NkY*o . .ak4n* )
.

4.4

Now , the Feynman rules are

I

§
' ( 1.3 )

•%µ⇒
"

g

"

.

E.la .

\
,

,

T's

,W:
XY - interaction Ox . interaction TO - interaction

Our conventions areas in ainfmf9O
,

i.e. kisachar . 0 field ,WEm3 ,
all

trees are connected withachosenplanar embedding .
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Deft Given locations xiy in a tree T
, we mile y ex and say y

is about x if x occurs on the unique path between
y and

the not of the tree
.

We say y is strictly x
,

written y < a
,

if y
< x and ytx .

We say y is ab¥nght( mp .Left )

of x if y < x and on the
'

unique path from y to the not
,

the

internal vertex immediately preceding x ( which may be x itself )

appears after the internal edge or input above and to the right of the vertex
.

< x

e. .

"
"

I.¥¥
"

t.sn#:ii:k:omiF

the planar embedding )

D& Let T be a tree with
q72inputs and 8 a configuration ,

as defined on p.1@ainfmf9O.Anine
Eynmandiagrart F

of type 8 is a labelled oriented graph , whose set of vertices

consists precisely of :

• for each input vevkx or internal edge x
, a veutex of F

v( x , j ) for every je JTX )
,

called a 0×4*4 .

• for each internal vertex x in T
, a vertex of F a ( xij )

for every je JTX )
,

called a Y¥ex .

• for each internal edge x in T
,

a single vertex wcx ) of F

called a Ox-ver1#

we say a vertex vlxj )
, uk , j ) or wlx ) is located at x in T



ainfmflof

The edges of Fare subject to the conditions :

• Edges v→v' only connect vertices v located strictly above vertices v !

• Any YO - vertex u( xij ) has one incoming edge and a outgoing edges ,

with the incoming edge originating in a Ox - vertex wly ) or Oxitvevkx

My , K ) with y above and to the right of x
,

and resp .

j=t?(
D or j=aTly)

.

a¥9#" "

Tait:*:[ and "%§;€I " is

fermionliny 4
, ///

[ We label such an edge

Of
• Any Ox - vertex wk ) has one incoming edge which originates in a

0×4 -

redexvlsj
) ,

and one outgoing edge which terminatesin a

YO - vertex ulz ,
K ) ,

withth
**Ei#w:

" "

[ We label the incoming edge xj and the outgoing edge

OF
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. Any 0×4 - vertex vkij ) has ndincoming edges and IJTGD I

outgoing edges ,
one of which terminates at a XO - vertex and the

rest of which terminate at Ox - vertices :

.tw#IjIPaa:ein:nawa*;

There are two consistency constraints :

- the TO - vertex uly ,
k ) involved has aejk) - k

,
and

- the product of xk ( for the kjust defined ) with xt ,

as Xt ranges overall labels assigned to the incident

edges Hvminating at Ox . vertices
, equals XTPH

.

Thus every internal Feynman diagram has the same vertices
,

but

many possible configurations of edges .

Examine There exist configurations with ng Feynman diagrams, e.g.

%9 •  •
•

\f. ↳¥ nothing to connect to .

•
• /

mlx ) ⇒
,

all other locations no

|

•
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DII Given a tree T
, configuration 8 and internal Feynman

diagram F as above
,

and an input Lin ( which amounts to

sets

Aia
{ b. . . in } for

lei
eq ) a Feynman diagramit .

extendingF is a graph obtained from F by

• adding one new vertex for each element of # A i

÷• adding one new oriented edge for each

je
IIAI ,

ii

which originates in the corresponding new vertex and

terminates in either

• a YO - vertex of F a ( x
,

k ) with k=j ,
OR

•
a 0×4 . vertex of F vk ,

K ) with Kaj

suchthat every 40 - vertex and 0×4 - vertex of F is Hu endpoint
of exactly such new edge .
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; th q=6 ,

il iz is iy is  i6

•  • •  •  •  •

t -

\¥¥ • ,*:#4 ( locations  i
, we marked )fm

the configuration assigns ( only giving nonzero values )

m(i4 ) - 2
,

m(i6)=2 ,
mlvi ) = 2

,
mlvz )=2

,

m ( 113 ) - 1

, m(X4 ) - 1

, m( Vs. )=2
.

With lhewnnention blue --Y*
,

red -ik*
,

JC it ) - Jlib )= Jlx , ) - Jlxz ) - JC * ) - { 1,2 }
J( b) - { 13

,
JC 44 ) - { 2 }

and always

ajlxtj
, yj(×j={

12,03 5- I

( 0,2 ) j=z
.

for any
location ×

.

( as W=y3 .

Ia xl ) ty.cz )
W

'

w2

:
.

W 't )= - 1 for 8=( 2,0 ) W4o)=l for F( 012 )
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The internal Feynman diagram corresponding top .0ainfm# is

• •  •  •  •  •

W.;;;
↳

:€Et.lkinT.jo" a. ,¥D:÷'

•  • ÷
label 01

-
- * - label xi

7- label Oz
- -7 - -

label X2

One total Feynman diagram extending thistovtheinput

Tin - ( h*k*j06

13 the following lthisistheomonp .Qainfm# )

*  *  *  *  **  *  *  *  *  *  *

• •  • / .  •  

•|*!
X

;;D(×:€#t.EEam*÷/%"

( 7.2 )¥¥÷'
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A Feynman diagram for a configuration 8 of T and input tin

describes a choice of contractions in the evaluation of the operator
One ( T

, 8 ) ( Yin ) of p@ ainfmfaf .
For example , using the tree from

p . @ainfh# for n= 1
,

W=x3
,

y u v

•  •  •

T = ✓ ( 8.1 )
• z¥ •

The configuration 8 described there has (only nonzero entries given )

m(n)=m1v ) = mlz ) = I ( so Jis { it at all locations )

with 01×3=2 . There is only one possible internal Feynman diagram :

.  

¥÷::#
'

" "

\ , (8-2)
•

I
•
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Note that up to the penultimate step ,
the only role of the inputs was to

contribute signs ,
so Hnat modulo signs the same calculation shows

that as a functional on A•3
,

OMCT, e) f) = ± [ 4 , ,t a [ 4
, ,T a [ 4.

,

- ]
.

Contraction on trees
.

We detour for a moment to carefully define contraction
.

Let k be a

commutative ring ,
U the mono idol category of k - modules .

Tov this

subsection
,

a tree T is a connected tree whose qtl leaves have one

designated the net
,

and if we orient edges towards this not there

is a chosen linear ordering on the incoming edges at each vertex ( this

yields a planar embedding )
.

we allow vertices of any valency .

Let V

be a fixed 2- graded k - module and suppose there is an assignment
I of homogeneous linear maps to each internal vevlex of T

,
a  e .

I

ftp.E
"

) e Homa (V•a
,

V )
.

( ion )

This data determines a string diagram for U ( hole : ungraded )
.

\•(
.

, i.

:/ Heaves do not appear ( 10.2 )~
\q÷±µs

'

-
ateachvedexv
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The denotation of which is a linear map 1109 → V.

Examine Recall that OPYT , 8) : A 't → A is defined on p . @aihfm# by

assigning operators to vertices and then defining the resulting operator

algorithmically " i.e. feed ingredients in the top and compute on them
,

with no

interference of signs .
Contrast this to ainfn# applied to the same input

of operators - at . vertices
,

which produces the same linear map it 09 → A

with possibly different .

This ' 'algorithmic
" def " of OMCT, 8 ) is simply the linear map assigned

to the operator labelled tree viewed as a diagram in the category of
(ungraded ) vector spaces . That is

,

!1! From the "

operator
" tree T with internal vertices of  only

valency 3
,

we construct T
'

with new vertices of valency 2

inserted at internal edges and as immediate descendant

of every input vertex
.

!2! with V - Sok Endr ( this ) associate to the internal

vertices of T
'

the operation prescribed by ainfmf90 p .
@ , 190

.

!3! Let p : ( Sok Endh ( kstab ) )•9 → Sgkendklhstab )

be the resulting linear map from he denotation of 110.2 )
.

Then by

define
( Te ) = top . 609 : A '

→ A
.
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Given a general operator - dew ruled tree T whole denotation is

( ⇒ : 11*9 → V
, we draw manipulations locally on T using diagrams :

a€E¥i )
For example ,

if dp - pt as maps V→ V
,

Killip - film a "

With s =A( ko , a . . . a Kon )
,

kstab - NKY , a. . - a ktn ) , R=k[ × ,
. . Nn ]

,

V = Sak Endrlkstab ) ± A ( KO
, a . . . aka )

QK End k( NKY , a . . . a Kk ) )
@k k[ Xy . -

-

I XD ( 12.2 )

The standardisation on V are the homogeneous operators V→Y

G
,

X
,

A
,

Oo*
,

[ Yi
,

- ]
,

xi
,

2. . le is n
,

XEK ( 12.3 )
a (d) - a )

" '
x

1¥ we call an operator - decorated tree as in 40.2 ) standard if ( V as above )

Ci ) all non - leaf vertices have valency 2 or 3

C ii ) the operators at each vakncy 2 vertex andstandard
,

l iii ) the operator at each valency 3 vertex is mz : V*→V
.



AinfmfT3Oginthesenseofainfmf@DefIGirenalneeTwithwnfigurationQ.Dtie is the operator . decorated

tree defined above whose denotation < Dt
, ex is related to OPY 'T 8 ) via

OPM ( T
, 8) =  to ( Dt

,

Do
609

.

( 13 .
I )

DEI we now define a standard operator - decorated tree Ste such that

< St
, e > - < Dt

,
e )

.

( 13.2 )

This construction is based on the following calculation
,

with MHJI

Ilham . 9*3 - thktjtlltfitohgtfaa 9*3 .

as )

We define Ste using a method similar top . @ . Beginning with T we

!1!
given an input vertex assigned m

,
Jett . .  in } by 6 we insert

in T immediately below the input the following decorated vertices

⇒st " '

Iowans;xa , Is.Cami
" ) " 3 "

where the product means we connect these segments ( orientation as

shown towards the not )
,

and 2g. ( i. ) stands for numerous x - type
vertices with single variables

,
and at - type veulex with the wetf .
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!2! To an internal edge we assign in the same fashion
( k .

.

)

⇒st " '

Irwin , sa;* , Is. c:$ ,j " )°EtE 't

!3! To an internal vertex we assign the decorated subtree ( using ( 13.3 ) )

'

'

- (-1 ) MGM ,

.

'

( 14.2 )•

Item
•t¥oY••

•
ms

^
this stands

EKE
in some order .

:

where the products are in any order ( as long as they match )
.

Lent ST
, e is a standard operator - decorated tree and < Ste >=(D¥o7

.

Pnyof Clear
. D

Lemmas Let K be a standard operator - decorated tree
,

so < 1<7 : V•9→V
.

We say K is vacuumtiviaf if To < 1<>0809 = 0
.
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troy
K denotes a standard operator - decorated tree

. locally
in such a tree we have an obvious relation

:
,

.

.

•
Oi .

( 15.1 )

• mz
=

•

Mz

• Oi

; :
.

dopt Oidp xapt oixp

and since Oiantiwm mules with everything in V - Sakendrlksth )
,

also

.
,

'

•a
.

• Oi
=

• mz
( 15.2 )

•

Mz
•c.
:

a@pi→ aoip xaptoitisklap
= C tjkloidp

( 15.3 )
And finally

.

,

i=
a

q*
• •

•q*=
• mz +

• mz
•

Mz

• cE. :#
* Cap ) = ditkptthklaaitlp )
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Lemmt If there are distinct vertices in K labelled Oi
,

and the

path between these vertices does not contain a vertex labelled

Q*
,

then < 1<7--0 .

-

Pw# We can commute the two Oils towards the unique vertex where

the paths meet
, vialherelations ( it .

1)
, ( 15.2 )

,
where they

annihilate
. D

Lemmas Suppose that

Kish
vacuum - trivial and let O be the

set of all vertices of K
,

Oi  EO the set of all vertices labelled Oi
,

and 0i*e 0 the vertices labelled Q*
.

The function

f : @ ,
 → @ 's ( 16.1 )

iffv) = the fintvevlexv '
on the path v→ not with x 'e@i*

is well - defined and bijectiven .

Punt Suppose the path v → root contains no Oi*
.

Then since Qi ( anti ) commutes

with the other operators in 112.3 ) we can use ( 15.1 )
,

( 15.2 ) to see that

K is vacuum - trivial
, contradicting our hypothesis . Sof is well - defined .

If there is a path

÷in ( 16 . 2)

*

.jp.

it
"

q
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with two distinct Oi vertices having

t.tv
) -

fik
' ) - q

,
and with z

denoting the first common vertex of the two paths ,
then by the

previous lemma we must have Ztq .

But then ( it .
D ,

( IF 2) allow

us to annihilate the Oi 's between q ,
Z .

This proves ti is inject .

To prove f is sujectire let we.0i* be given . We may without loss of

generality assume all WE 'Oi* above W are in the image of fi (possibly
them are no such us)

. Suppose wet ftO' i ) .
We begin commuting the

OF at w up the tree using ( 15.3 )
.

In each summa nd we must

encounter either an input or another Oi* before a di ( by hypothesis)
.

But Oi*8=O and di*di*= 0
, so we would have to < K > ° 809=0

,

a contradiction .

Hence WEFICOI )
,

and fi is abjection . D

D# Now let IT 8 be a tree ( as in ainfmfC ) with configuration ,
take

K = St
,

8
,

so that OPYI 8) = To ( Stio > ° 609
.

We can compute
OPYT , 8 ) as follows

. Firstly
, we may assume fi : Oi - 0 it is

bijectire for each i ( otherwise OPMCI 83=0 by the lemma )
.

!1! Set K
'

= K
.

!2! For lei En DO until no Oi*- vertices in K
'

:

• Choose a Oi*' vertex w in K
'

which is " maximal
"

in the sense that

there is no other Oitvevkx between our chosen one and the root
.

Let v be the matching Oi - vertex in K
'

via fi . Then

( 15.1 ) ffomv .

(
15.2¥

-

"

How =

"

if

,

-

"

foe in .is

/
w

w • Oi

^

I
( re . commuted ; to Oi* ) ( all this K

"
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Since w was chosen maximal
,

*.

( 18.1 )
To < K ' > ° 809 = To § of 09

:
,

where K
"

is as in 117.1 )
.

We now replants
"

and continue
.

So at

each step To < K
'

> °8•9 is unchanged ,
but pain ( ×

, filx ) ) are

removed ( contacted ) and some G 's from ( 15.2 ) are introduced
.

!3! Since all fi are bijech 've step !2! terminates with a standard - operator
- decorated tree K

'
such that

li ) K
'

contains no Oi or Oi* ' vertices

( ; ;) one ( T
, e) = to < K ' 70609

.

Similarly we apply all Jxi 's to the xi 's
,

and the result is either zero or

a standard operator - decorated tree Kf  with

li ) Kf contains no Oi
,

Ock
,

xi
,

Zxi vertices

( re . only X
,

a and [ Yi 'T vertices )
C ii ) OPYT , 8) = To < Kf ) ° 809

.

Call the above the wnbactionalgoathm .
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'
- ti ,W2=y2 )

⇒st " '

Irwin;) sa;xa,•og.

Cxnj" )

= . . .

 •  •  •  • < •  •  •  • . . .

I 2×1×4 O , [ 4,7 - tz 342 ) 02 [ 45 ]

( 19.1 )
- "

; ;
, a;]

' :
,

•

, :< In
'

"

Andthesameatib
.

Atvinkwehavethe insertions ( ciaid )

%45 ] •

•q*•
( 19.2 )

[ 45 ] •a*
•

Mz

:

whileate , for example Weinert ( He , ) - l )

. . -  •  • .
-

- ( 19.3 )
01 Zx

Thefinalrcsultis shown overleaf :



Ainfmfol
@

( fwmp . 7)
,

-

•  •  •  •  •  •

W.;;;\xEE¥11amDaft" kop,h÷÷'

k
45 ]

• 02

k
45 ]

•

y
• Oz

•
- 1

• y
• [ 4 , ,t

•
- 1

• o ,
• [ 45 ]

[ ⇒ . • ,£*

[45 ] •

•

01
[ 4 , ,t •

••q* x••a , ,
. ] • •9*•

- a • •2×OP

•o ,

•

[ 4 , ,-] •

•

. ,*

••
•3 ( 20.2 )

Try
• 02 •

02
• -

•6
[45 ]

•q*•

•

•

Zx
-

•

a k - S -

[42
,

- ]
• •a* #|

•

•o,*
Chi ]

•
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Themappingsfyfz are shown below ( vespinblueandred )

K
45 ]

• Oz /
-

•[
45 ]

•

y
• Oz

•
. , -

• y•[y
, ,t

•
- 1

•on•[45 ]
[ ⇒ .

•x
• 70

•g
,h* [42,7 •

- !8!
[ hit • •q* -

•x••-40[y , , ] •

•0z*• ~
- a . •2×OF

•
• - !3!

Q -

[ 4 , ,-] • •q*!2!
-

•Jy

•@
Try
• 02 •q ( 21.1 )on•6

[45 ]
•q* !6!

• -

•

•

j×

•o,

[ 45 ]
• •a* \

•

•a*
\

Mnt
•

nil
maximal !5!

(
maximal !1!

Auovdingtoour contraction algorithm ,
the contractions are performed in

the order shown
, yielding ( note the new G 's and signs ) .

Note sometimes

there are multiple maximal llitvevtiosandwehaue arbitrarily chosen one
.
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k
45 ]

/

•#h
, ]or /

• y
• [ 4, ,t

•
- 1

/
• [ 45 ]

[ ⇒ .

•x
•

[ 45 ] •
/

ch
,
-7 •

•
•

. ,
xeo[y , ,

. ] •

•
- 1

•

- a • •

2×-1•

[ 4 , ,
. ] • / ( 22.1 )

••
•2y

Try
•

- - a

• [ 42,7
•

•

•

z×

/

[ 45 ]
• •

,

•
•

Chi ]
•

"

Thenextskpisto apply 2.2g ,
which schematically comes down to the following

count ( bluemavhsx - degree flowing along an edge , redy - degree )

a  @  @  @  a  a

°°t.IT
' '

lot•:\¥E m "¥2
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We conclude that contracting the xi ,2i pain does not contribute

any constant . Performing these contractions and cancelling signs
yields

Qi ] • •

[ 45 ]flu ' ] •

• [ hi ]
a , ;]

•

•[ 4,7
Ehi ] • •[q

, ] •

a •

•

Kf =
at •

•

•

- 1

• ; 4,7 ( 23.1 )
Chi ]

•

•

[ 4 , ;]
•

•

Henie we conclude

OPMCT, 8) = To < Kf ) . 2006

= ti ) [ 4 , ,[ 42,7 ]•[k,a([ 4
, ,aH ] . [ 4

, .tk
,

- I ) . [4%1457])]
• ( 4 , ,[h

,

- I ] . Eh ,
[ 42,7 ]

of course this may be simplified further ( the [ 45 ] in the second term

can be moved to input 2)
,

to obtain ( [ 42,7 : - [ 4 , ,[ 42,7 ] )

OMCT , 8) = [ Yr
,

- ] . [ 42
,

[ 4 , ,T•[ 4 , ,[k ,
ah ) ] . [ 4

, ,k,aH]] ]
. [ 4,2

, -1 . [ 412
,

- ]
=  - [ Yiz

, -3 . [ 4,2
, -7 . [ Yiz

,
at ) ]•[ 4,2

,
GH ]

. [ 4,2
,

- ] . [ 412
,

- ]
.
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As explained on p0aihfmf@thepwdnctoftheFfucton4.e .

the coefficients in ( 20.1 ) of ainfmf€ ) in this case is 48
.

So we

wndu

:
( T

, 8) = I [ Yiz
, -3 . [42

, -7 . { Yiz
,

at ) ] . [ Yiz
,

GH ]
. [ 4h

,

- ] . [ 412
,

- ]
.

Observations about enumeration

We have now shown that for any T 8 the operator 0178 ) is
, up

to scalars and a 's
, constructed from [ 4in insertions on the edges of T

,

both internal and external . The possible patterns of these insertions

are heavily constrained
,

since for example

[ 4g ]
•

•

[4i
, -7

=  0 ( 24.1 ):[
4. ;-]

Weak mpt to describe these constraints using boolean formulas ,
and

thus equations over Zz[ 91 ,
. . . in ]

,
for some N .

Let E be the set

of locations in T ( meaning : input vertices
,

internal vevhies and

internal edges ) .

We introduce a family of boolean variables

Q = { 9iC× ) } , .  ien
,

xee 124.23

where qicx) = 1 means
"

[ Yi
,

7 is inserted at location x
"

,
or more

precisely IEJK )
.



ainfmfQ@ThesetEispaAiaHyordeoedbythere1ationyexCyisabovesD.TheideaisthatQdependsonTandweuviledounasetFofbooleanfovmu1asoverQ.A

ny configuration 8 determines values of all the

variables 9iCx)eZz ,

lcndwedesignfsothat

FFEF with f( 8) -0 ⇒ O( 78 ) - 0
.

( 25.1 )
.

where ft ) has the obvious meaning : f evaluated with the qilx ) www.t 8
.

( so qKx)=Sieje( D.)
.

!1! The generalisation of 124.1 ) is the following : if qiCx)=1 then there

must exist some path from xtoaninput ( taking the leftbranchatx
,

ifx is an internal vertex ) with the pwperlythatqily )=0 for all y¥x
on the path .

Otherwise
, using ( 15.3 ) for [ 4 ;-] Newill have somewhere

[4i , -7=0 .
Foreach location x :

@ xisan input : no constraint

@ xisan internal vertex : fx
,

,
:= qilx ) > V A '

gift
"

. .

: PGPCY) ZEP
y

/

tyisunint . edge •x Ply ) - { setofpathsfwminputstoy ,
inclusive

,

oraninputj given an sequences of locations
, excluding

:

mt.vevtiusweenlevfwmtheright3@xis.anintemd.edu
"

9xn÷9iH;K¥⇒Aj%#
)

n
' •ytr

- qily ) N HD
Yrikmay

- x
peplygtzdp "%

beint . edges
or  inputs
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Note For xaninkwalvevlex
,

qifx )=1<⇒ IEJLD ⇒ in the standard operator decorated

tcewehavefhtonlheedgeshoombdow :

"

•[4i,"
(

c
.

•

( 26.1 )

i

This is why MY ) excludes intvevtiesweenkrfwm the right . Apathin T is

determined by its starting point ,
sowewuldunte My )={ inputs as .t . there

is a path a→yinT } and then restrict Az
.

.

Examp= T= \÷#f÷ with n⇒ , some have variables

qlabqlbl ,
.

.
. .

, 9 1 f )
.

The constraints are :

@ qld ) > 7 q(a) ( 26.2 )

@ qlej > ( 7 qlbvtqld)^ 'q( a) ) )

ID 9Ho¥µ, ,Aj9H

PkHa→e,b→e
}

= qH)o[ ( ' qthmqld )^ , qle ) )v( ^ qlb )^7q1eD ]
y

n± no 7 qcd ) here ,

as explained above
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Continuing this example ,
wewnvert these constraints to polynomial equations

in Zz[ { ril 'D }kien,xeF ] as follows .
Given a boolean formula Fwe

define

these
of polynomials PF  via the recursive def "

given below
,

such

that there is abjection for any F
,

{ solutions of Pf in Be } -7 { satisfying assignments off }

Deft We define ( assume only atoms are negated in F)
'we also unite PCF ) foray

• Pg ,µ= { rife ) - I } for Hien ,xeE .

• P
,

= { ritx ) } for Kian ,xeE .
qil

Frat P+U Pa
.

• Pp
, ,a

- { fg I ftp..ge Pa }
.

Exarte In the situation of 126.2 ) we have

@ Pga) >nq( a)
= Rqld

)y7q(
a)

= { vcd )r( a) }

@

P(
qlej > ( ' qlbvtqld)^ 'q( a) ) ) )

= { r(e)9}gep( nqlbvtqld)n 'q( a ) ) )

= { r( e) rlb )9}gep( nqld )^ ' qla ) )
= { r(e)r(b)r( d)

,
He )rCb)r( a) }
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ff P(qH)o[( ' qthmqld )^ , qle ) )v( ' qlb )r7q|eD ] )
= { rug I geP(( rqlajmqldkrqle ) )v( ^ qlb )^7q1eD) }

={ rug ,gz| g ,EP( ' q(a)^^qH)^ ' qk ) )
gzepfiqlb )^ . qle ) ) }

= { rff )g,gz| g ,
c- { rla )

, rld )
,

rl e) }
, gze{ rcb ) ,r( e) } }

.

Using the mapping rCa)<→r( 1)
,

. . . ,
r(H<→r( G) we can find

the auobner basis of the above constraint
, together with rliptrli )

,

in Z< [ r( 11
,

. . . , r( 6) ]
.

It is :

> ring rr=z
, ( ra . . 6) ) ,dp ;

(ksdas! ]
> ideal I = r( 4 )r( 1)

,
r( s )v( Dr (4)

,
rls )r(z)r( l )

,

r( G) r( I )r( 2)
,

r( 6 )r( 1 )r( 5)
,

r( 6 )r(4)r( 2)
,

rl 6 )r( 4)rl5 )
,

r (6) r( 5 )v( 2)
, r( 6 )v(5)r(

s )
,

r(i}tr( l )
,

.
. .

, r( 6 )2tr( 6 ) ;

The Gnibner basis of Iwntains l in addition to rliptrlil )
,

r(S)r( 6)
, r(|)r( 4)

,
v(2)✓(4)r( 6)

,
r( 1 )r12)v16 )

,{
r(zjr( 4 )vl5 )

,
rHrl2)rl5 ) }

So r( 5) = 0
,

r( D= 0 ⇒ either rk ) or  r( 4=0

r(5)=O , r( D= I ⇒ r( 41=0 ,
either (2) or r( 61=0

¥i¥%¥¥iY÷,.mx;;±o÷o}ma"¥
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without additional constraints this is not very useful .

Summary
Above ,

we made progress on the conversion of the operator
decorated trees of aihfmf@ into " normal forms

" involving only [ Yi
,

- ]

operators ( and a
,

and constants )
.

we left unresolved the signs ,
and

also the symmekyfacton ( both the FK ) fromainfmf@andthefactonfom2x.xannihilation in the contraction . to - normal form )
.


