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Recall from the last talk that for a small category C, the category PSh(C) of presheaves on
C is an elementary topos. Explicitly, PSh(C) has the following structure:

• Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects
C ∈ obC by

GF(C) = Hom(hC ×F ,G),

where hC = Hom(−, C) is the representable functor associated to C, and the product ×
is defined object-wise.

• Writing 1 for the constant presheaf of the one object set, the subobject classifier true :
1→ Ω in PSh(C) is defined on objects by

Ω(C) := {S | S is a sieve on C in C},

and trueC : ∗ → Ω(C) sends ∗ to the maximal sieve t(C).

The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves
on a site (C, τ) is also an elementary topos. To do this we must make use of the sheafification
functor defined at the end of the first talk:

Theorem 0.1. The inclusion functor i : Shτ (C)→ PSh(C) has a left adjoint

a : PSh(C)→ Shτ (C),

called sheafification, or the associated sheaf functor. Moreover, this functor commutes with
finite limits.

Explicitly, a(F) = (F+)
+

, where

F+(C) := colimS∈τ(C)Match(S,F),

where Match(S,F) is the set of matching families for the cover S of C, and the colimit is taken
over all covering sieves of C, ordered by reverse inclusion.

1 The basic structure of Shτ (C)
Recall that the category PSh(C) of presheaves of sets on a small category C has all small limits,
and that they are computed object-wise:

(limFi) (C) = limFi(C),

where the limit on the right hand side is taken in Set. This can be immediately extended to
the category of sheaves on a site. Suppose I → Shτ (C), i 7→ Fi, is a diagram of sheaves, and
F = limFi in the category of presheaves. If S is a covering sieve of an object C of C, then the
sheaf condition means that there is an equaliser
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Fi(C)
∏

f∈S Fi(dom(f))
∏

f◦g∈S Fi(dom(g))

for each i ∈ I. But from basic category theory we know that limits commute with limits, so
taking the limit of all such equalisers gives an equaliser

F(C)
∏

f∈S F(dom(f))
∏

f◦g∈S F(dom(g))

which implies that F is a sheaf. The upshot is that limits computed in the category of sheaves
are identical to limits computed in the category of presheaves.

Next, the adjunction of Theorem 0.1 gives a recipe to define all small colimits in Shτ (C):
first compute the colimit in the category of presheaves,using the inclusion ι, then take the
sheafifcation. This is indeed the limit because a left adjoint preserves colimits, so we may write

colimFi := a (colim ι(Fi)) .

Next note that morphisms in Shτ (C) are simply morphisms of presheaves. In fact, another con-
sequence of the adjunction is that a morphism of sheaves if a monomorphism if and only if it is
a monomorphism as a morphism of presheaves. This means that φ : F → G is a monomorphism
iff φC : F(C)→ G(C) is a monomorphism for every object C of C.

WARNING: The story is not the same for epimorphisms: a morphism of sheaves may be
an epimorphism when considered as a presheaf but may fail to be an epimorphism of sheaves.

2 Exponential objects in Shτ (C)
To show that Sh(C) is a topos we must show that it has exponential objects and a subobject
classifier. It will turn out that the exponential in sheaves is the same as the presheaf exponential,
but the subobject classifier is a more complicated story.

First we observe that if exponentials exist in Shτ (C) then they must be of the same form as
the exponentials in PSh(C).

Lemma 2.1. Let F and G be sheaves on C, and write GF for the conjectural exponential object
in Shτ (C). Then

ι
(
GF
)

= ι(G)ι(F),

where ι is the inclusion Shτ (C)→ PSh(C).

Proof. Let H be an arbitrary presheaf on C. Using Theorem 0.1, and definition of the expo-
nential, we have the following sequence of natural bijections:

HomPSh(C)

(
H, ι

(
GF
))
∼= HomShτ (C)

(
a(H),GF

)
∼= HomShτ (C)(a(H)×F ,G)
∼= HomShτ (C)(a(H× ι(F)),G)
∼= HomPSh(C)(H× ι(F), ι(G))

∼= HomPSh(C)
(
H, ι(G)ι(F)

)
.

On the third line we have used the fact that a preserves products and that a◦ι ∼= id. The
lemma then follows from the Yoneda lemma.
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As a result of the is lemma, we know that if exponential objects exist in Shτ (C), they must
be given by

GF(C) = HomShτ (C)(hC ×F ,G).

Next we must show that these prototypical exponentials are actually sheaves.

Theorem 2.1. Let F and G be presheaves on C. If G is a sheaf, then so is GF .

Proof. We will proceed in two steps: first we will show that if G is a separated presheaf then so
is GF . Using that, it will suffice to show the existence of amalgamations for matching families
of elements of GF , since the uniqueness of any amalgamation follows from GF being separated.

Recall that an element θ ∈ GF(C) is a natural transformation θ : hC×F → G which assigns
to any g : D → C in hC(D) and any x ∈ F(D) an element θ(g, x) ∈ F(D). The naturatity
condition means that, for any h : E → D, we have the identity

θ(g, x)|h = θ(gh, x|h).

Moreover, given any morphisms f : C ′ → C and g′ : D′ → C ′, and any x ∈ F(D′), the
restriction map gives

θ|f (g′, x) = θ(fg′, x).

In other words, θ|f = θ ◦ (hf × 1).
Fix a covering sieve S ∈ τ(C) and suppose that θ, σ ∈ GF(C) satisfy

θ|f = σ|f , ∀f ∈ S.

This means that θ(fg′, x) = σ(fg′, x) for all g′ and x as above, so in the case when g′ = 1 we
have

θ(f, x) = σ(f, x), ∀f ∈ S, x ∈ F(dom(f)).

Next take a morphism k : C ′ → C and x ∈ F(C ′). Then for any g′ ∈ k∗(S) we have

θ(k, x)|g′ = θ(kg′, x|g′)
= σ(kg′, x|g′)
= σ(k, x)|g′ .

But k∗(S) is a cover of C ′, so if we assume that G is separated then the matching family
{σ(k, x)|g′}g′∈k∗(S) must have a unique amalgamation. Both θ(k, x) and σ(k, x) amalgamate
this matching family, so this implies that θ(k, x) = σ(k, x). Since we chose k and x arbitrarily,
this means that θ = σ. Hence GF is separated whenever G is.

It remains now to show that amalgamations of matching families of elements of GF exist.
Fix a covering sieve S ∈ τ(C) and, matching family {θf ∈ GF(dom(f))}f∈S. The matching
property means that

θfg(h, x) = θf |g(h, x) = θf (gh, x), x ∈ F(dom(g))

whenever the composition makes sense.
To find an amalgamation of this matching family, we will construct from S a natural trans-

formation θ′ : hC ×F → G+ such that, for all f ∈ S, the following diagram commutes:

hD ×F

hC ×F G+

G

hf × 1

θf

θ′

ηcG

3



Indeed, the hypothesis that G is a sheaf means that ηG is an isomorphism, so θ′ will provide
an amalgamation θ = (ηG)

−1 ◦ θ′ of {θf}f∈S.
For k : B → C and x ∈ F(B), define

θ′(k, x) := {θkh(1, xh)}h∈k∗(S).

It is immediate the that right hand side is a matching family. All that remains is to check that
this makes the above diagram commute. Pick f ∈ S, so that f ∗(S) is a maximal sieve. Then
for any (k, x) as above, going anticlockwise around the square gives

θ′|f (k, x) = (θ′ ◦ (hf × 1))(k, x)

= θ′(fk, x)

= {θfkh(1, xh)}h∈(fk)∗(S)
= {θfkh(1, xh)}h∈tB .

On the other hand, going clockwise gives

(ηG ◦ θf )(k, x) = ηG(θfk(1, x)) = {θfkh(1, xh)}h∈tB ,

so the diagram commutes.

This confirms that GF is a sheaf whenever G and F are sheaves, so it gives an exponential
object in Shτ (C).

3 A subobject classifier in Shτ (C)
See the success in adapting the exponential objects from presheaves to sheaves, we may be
tempted to believe that the same holds for the subobject classifier. Unfortunately, sieves do
not glue locally, so the assignment of all sieves does not form a sheaf in general.

Recall that on any site (C, τ), and for any sieve S on C and any morphism f : D → C,
f ∈ S iff f ∗(S) = tD. We say that S covers f if f ∗(S) ∈ τ(D). Obviously if f ∈ S then S
covers f , but the converse is not true in general.

It turns out that this fact is the key obstruction to the presheaf of sieves forming a sheaf.
It is therefore natural to restrict our set of sieves.

Definition 3.1. A sieve S on C is closed with respect to τ if for every morphism f in C, S
covers f iff f ∈ S.

Remark 3.1. The nomenclature here is an unfortunate artefact of history, and a sieve being
closed has no connection to the topological notion of a closed set.

Observe that if S is a closed sieve on C, and h : B → C is a morphism, then h∗(S) is also
closed on B. This means that the assignment of closed sieves to an object is functorial, so we
can define a presheaf

Ωcl(C) := {S | S a closed sieve on C}.

Definition 3.2. If S is a sieve on C, its closure is

Ŝ := {h | cod(h) = C, S covers h}.
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We leave it as an exercise to confirm that the closure of a sieve is indeed a closed sieve, and
that it is actually the smallest closed sieve containing S. As a consequence of this universal
property, we see that taking closure and pullbacks of sieves commute, so

ĝ∗(S) = g∗
(
Ŝ
)

for any morphism g into C.

Lemma 3.1. The presheaf Ωcl is a sheaf.

Proof. We will prove first that Ωcl is a separated presheaf. Fix a covering sieve on C. Take two
closed sieves M,N ∈ Ωcl(C) such that

g∗(M) = g∗(N), ∀g ∈ S.

Then in particular, M ∩ S = N ∩ S. If f ∈ M then M covers f , and S covers f because S
covers C, and hence M ∩ S covers f . But M ∩ S = N ∩ S ⊆ N , so N covers f and, since N is
closed, f ∈ N . Therefore M ⊆ N . Running this argument again with N in place of M shows
that N ⊆ N , so M = N and Ω is separated.

It remains to show that every matching family has an amalgamation. Let S ∈ τ(C), and
pick a matching family {Mf ∈ Ω(dom(f))}f∈S. The matching property means that

g∗Mf = Mfg

whenever the composition is defined. Now consider the sieve

M := {f ◦ g | g ∈Mf , f ∈ S}.

This is not generally a closed sieve, but we will show that its closure M̂ is an amalgamation of
{Mf}f∈S.

It is immediate that Mf ⊆ f ∗(M). Conversely, if g ∈ f ∗(M), so fg ∈ M , then there
exists some f ′ ∈ S and g′ ∈ Mf ′ such that fg = f ′g′, so Mfg = Mf ′g′ . It follows that
g∗Mf = g′∗Mf ′ . But g′ ∈ Mf ′ , so g′∗Mf ′ is a maximal sieve, hence so is g∗Mf . Therefore
g ∈Mf , and Mf = f ∗(M). Finally, since Mf is closed,

f ∗(M̂) = f̂ ∗(M) = M̂f = Mf ,

so M̂ is indeed an amalgamation of {Mf}f∈S.

Now maximal sieves are obviously closed, so as in the presheaf case, define a natural trans-
formation true : 1→ Ωcl by trueC : ∗ → Ωcl(C), ∗ 7→ tC .

Lemma 3.2. The monomorphism true : 1→ Ωcl is a subobject classifier in Shτ (C).

Proof. Let F be a sheaf and G ⊆ F a sub-sheaf. We define a characteristic function φ : F → Ω
in the same was as the presheaf case:

φC(x) := {f ∈ tC | x|f ∈ G(dom(f))}.

The fact that true : 1→ Ωcl is a subobject classifier will follows identically to the presheaf case
once we show that φC(c) is a closed sieve for all C in C and x ∈ F(C).
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Fix f : D → C and suppose that φC(x) covers f . Then f ∗(φC(x)) ∈ τ(D). Now

f ∗(φC(x)) = {h ∈ tD | f ◦ h ∈ φC(D)}
= {h ∈ tD | (x|f )|h ∈ G(dom(h))}.

It is easy to see that {(x|f )|h}h∈f∗(φC(x)) now forms a matching family with amalgamation xf .
Moreover, since G is a sheaf it follows that xf ∈ G(dom(f)) is the unique amalgamation, and
so xf ∈ φC(x). Hence φC(x) is closed.

Putting all of these results together, we have proven the following:

Theorem 3.1. For any site (C, τ) with C a small category, the category Shτ (C) of sheaves of
sets on C is a topos.
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