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Classifying topoi I smis

Let in recall the idea of a classifying topos from the first lecture of
this seminar

.
We have still not precisely defined all the terms involved

( nor will we resolve this in today's lecture ) but  I still think it is useful .

Given a geometric theory T ( e. g. Groups , Rings ,
... ) we call a

top os PCT ) a classifying tops if we have a family of equivalences
parameterised by wwmpleletopoi E

Hom_ ( e
,

BLT ) ) ± Moot ( T
, E) ( i )

geometric mouphisms = models of Tin E

which is natural in E
.

A geometric morph is M E - BCT ) is an

adjoint pair of function

g-
*

E = Bt ) f
*

-1 f*
fix

in which f* preserves finite limit
.

The stated goal of these seminars was to study how geometric moophisms
of classifying topoi can be used to organise mathematical knowledge .

But we also want this organisation to be effective : for example , implementable
in a computer logic calculus such as Isabelle

.
Let us begin by sketching

why this a reasonable goal ,
then specify the obstacle

,
and then we will

spend the rest of the lecture studying the example of simplicial sets

which suggests this obstacle may be surmountable
.

T
Recall from Lecture 9 that the topos TH ) constructed from a type theory L has

for  its objects closed terms a :P A modulo a ~ a ' if .
t a =L ,
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The example given in my first lecture was the following :

Example Let tb
, Ping denote the theories of abelian groups and rings

respectively .

Since any ring is an abelian gwup ,
the Universal model

Vang E MOI ( Ping
,

3) Hing ) )

is also a model of abelian groups

Ukng E MOI ( Ab
, Bang ) )

and this model corresponds uniquely to a geometric morph ism

*

3) ( kng ) # Dltb )
.

t*

This is a prototypical example of geometric morph isms
"

organising
"

mathematical concepts.

Question : to what extent can the objects

D ( King )
,

B ( Sb ) ,
f*

,
f*

be described effectively ? ftfinsfttnetdeinateenrttobe

• B ( Ping )
,
)3 ( Ab ) may be constructed as categories Shs ( 8 )

of sheaves on categories 8 which are syntactic ,
i. e. their

objects and moophisms are equivalence classes of terms in

the underlying language of the theory .
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These topoi are sub canonical ( i.e. E - > Shot 8) via Yoneda )
so every object is a co limit of objects in 8

,
so SHHE ) is

"generated
"

by the objects and mouphisms of E ( which recall
,

have an effective

syntactic character )
.

This suggests that at least those sheaves which

are constructed by finite co limits from 8 should be amenable to

automated reasoning .

DEI Let Pfn ( Ab )
,
Pfin ( Ping ) denote the smallest subcategories

containing the representable sheaves ( te
. b) and closed under

finite w limits
.

We believe it should be possible to reason in an effective way in a

computational tool about Btinltb )
,
)3tn( Ring )

.

• f* , f* : here the situation is less clear
, a-priori .

The basic question
Is the following .

Consider the restrictions

f* : 3)
t  "

( Sb ) - 3) 12mg )
,

f* : B
tin (King ) - 131 Ab )

.

We imagine the input objects and morph isms to these function are

represented by terms in some formal language ( 1. e. they are explicitly
constructed from some basic data by specified rules ) .

Can we describe

the outputs on these inputs in a similar way
?

Or
, more succinctly : can we give an algorithmic description of the

action of f* and f* on objects and morph isms ? In the remainder

of this lecture we study this question .
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Tensor products

We begin with what may seem like a detour
.

Recall that the tensor

product MQRN of a right R - module M and a left R - module N

is an abelian gwup ,
and there is a function MXN → MQRN

which is the universal bilinear map . There is an alternative way of

characterising tensor pwducb which we will now explain ; for details see

Theorem 5.2 of Chapter IV of B
.

Mitchell
,

"

Theory of categories
"

.

Throughout rings are associative and unita I but not necessarily commutative
,

MOIRmeans the category of night R - modules and RMod_ the category
of left R - modules

.

A category 8 is additive if each 8 (a
, b) is an abelian

gwup and composition is bilinear
,

afunctor between additive categories is

additiveif  it preserves addition of Morphis Ms
.

Remain Let PEMOIR be the full subcategory containing just
the object R ( as an R - module in the usual Way )

.

An additive

fun ctov F : P → 1404-5 is the data of

•

a rights - module B :  = F ( R )

• am orphism of rings

Far : R =P ( R
,

R ) - Homs ( B
, B)

( left multiplication )

If we define RXB → B by ( r
,

b) H Frr ( r ) ( b ) we

make B into an R - S - bi module
,

and in the fact there is abjection
between additive function F and such bi modules

.
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theorem Any additive fun ctor F :P → 14015 can be extended uniquely
(up to natural isomorphism ) to a co limit preserving functor

F : MOIR → MIS .

Sketch of proof For each R - module M we choose a presentation

x p
Otiet R → Ojo R -7 M → 0

with I
,

J allowed to be infinite
.

Observe that

di :  = R Li Ot i←±R € Ajes R

factors as

(Lij)jeJi
R - Otjesi R - Ojo R

for some finite Ji EJ
,

where dij ER
.

We define F ( M ) to be the wkevnel

( F Kimi ,j
Qiet FCR ) - Ojes FCR ) → FCM) → 0

÷
near map

An R - linear map f : M → M
'

can be lifted to the presentations and in this

way induces F ( f ) : FCM ) → FTM ' )
. One checks F

preserves oolimib

and Fo in c±F by construction
. D

Exercise What does uniqueness mean ? How is this related to the notion

of a Kan extension ?
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Given our previous remark
,

we know Fisieallijthedatuofabi module B
.

The functor

f) RQR rBs : MOIR → Moats

is co limit preserving and RORB ± B = FCR )
, so by uniqueness

we must have F = f) QRB .
To see this more intuitively

,
recall how

we construct MQRB for a right R - module M :

• MQRB is the quotient of the free abelian
group on the set M×B

by the relations

( mtm
'

, b) = ( m
, b) + ( ml

,
b )

( m
,

btb ' ) = ( m
, b) + ( m

,
b

' )

( Mr
, b) = ( m

,
rb ) re R

.

the exact sequence
20113

( Of # R ) or B - (OJETR ) or B → Mar B → 0

112 112

Otiet B - Otjes B

C i
, b) 1-7 § . ( j

, aij b) = Ejaij ( J
,

b )

presents the same abelian group as the quotient of the free R - module

on symbols ( j , b) , JEJ ,
be B by the relations

( j ,
btb

' ) = ( j , b) + ( j ,
b ' )

r ( j , b) = ( j
,

rb )

Epnrk ( k
, b) = Eere ( l

,
b ) whenever Ekrkehisereeein M .
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Upshot Thebilineanlyrelationswethinkofas characterising thelensorpwduct
arise via presentations by extending afunctorf :P → Midst

awlimitpresewingfnctor F : MOIR -714015 .

A finite presentation of an R . module M ( i. e. FJ above finite )

is an algorithm for constructing M from copies of R
, using finite

wlimitsthetensorpwduct - QB sends this to an algorithm
for constructing MQRB from copies of Basing finite wlimits

.

Nextwetimtothe non - additive analogue ,
and explain ultimately how

geometric realisation ofsimplicialsetsisanalogoustoalenuorpwduct .

Non - additive tensors

The analogy is as follows :

Additive Non - additive

Ring R
,

as additive cat .3 (ringoid ! ) Small category 8

left R - module
,

" e. additive P→A_bFunctorb-→ sets

right R - module
,

i. e. additive P°P→AI Functor 801
'

→ sets

RMOI Sets
MOIR B se±8°P

A

R - S - bimodule
,

i.  e.  additive P → Modes Functor E → Se±8°P

Tensor product HQRB :ModR→M±ds | ? setscip - sets
8 "

( think f* : )3( tb ) → 3) ( Png ) )
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theorem Letcbeasmallcategouyandeawwmplekcalegouy ,

A :b → Eafunctor . There is a unique ( uptonaturaliso )
extension of Atoacolimitpresewingfunctor

A- :se±8°P - E
.

Remain Hereby " extension " wemeanwmmutativitywptonaturaliso . of

A

8 - E

Yoneda ]
,

setseop
#

Pwofwesketehthepwoffwmtladanelmoerdijk Corollary 4in II. 5 ( p -43 )
.

OnedefinesforapvesheafpTHP)

:=wlim(feP=e±E
)

objectsave⇐s (

( c ,x ) ,xEP( c) ' ends tusesthateveuypvesheat
andmophisms

( Cpc )HC

( c ,x)→( csy ) ftf isawlimitof representable

areawowsf :c → (
' pvesheavesj

st
. PC f) ( y ) =x .

andchecksallthedesiredpwpevties . D

ExampIE=Se±8
"

,soA :b ->Se±8°Pisa ' ' bimudwle "

,
and

wethinkof # asaatensorpwduot
"

with A .
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Ftside Recall that wewnstmctthewlimitofadiagramt : 9 ' *

using

wpwduclsandwequalisersasthewequaliserofpre

LIFE ) =3 IIFCD(f) post iE9f :c'→ilnI
i niff-

Fickes
- Fli ' )

Fl f) -1

To strengthen this analogy letus recall that Pitselfisthewlimitof

fep - e -h>se±8 "

which means that Pisthew equaliser
prethe=

,11ha - P

c ,c' e 8 Post CEG

XEPK ) ,yEP( C
' ) XEPCC )

f :c → c
'

^|
tthinkofhcas "R

"

st
. P (f) ( y ) =x

T
vevtiasin in the additive case ]

arowsinthediagram
the diagram

Butobsewelhat maps hc → hc ' are images of maps in 8
, some

may apply A to them
,

and define A ( P ) asthewequaliserof

IIAK)= ,IIAK ) - ATP ) ← in E

f , y C
,

x

which is precisely what the definition on the previous page says .
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Observe that

I AK ) = { ( C
,

x
, a) I Ceb

,
XEPC 8)

,
at AK ) )

.

C ,
x

and the w equaliser , intuitively speaking , imposes the relation
,

for every fi C→C
'

in E and ye PCC ' )

( C
,

PH ) I y )
, a) ~ ( C

'

,
y ,

A (f) (a) )
1. e

. ( y f ,
a ) ~ ( y ,

f. a)

In categories like E= Sets or E=T0f ,
where the w equaliser is obtained by

quotientng by an equivalence relation
,

this is a complete description of Alp )

and not just an intuition
.

Example Let E = Tof ,
the category of topological spaces and continuous maps .

This Is a w complete category .

Let E =D be the simplex category ,

whose object are he IN ={ 0,1 ,
.

.  . } and where E ( n
, m ) is the set

of all morphisms of poets

[ n ] = { 0<-1 € . .  . en } - { 0<-1 e .  - . em }

.=
[ m ]

We define

A :b → ⇒ { As
"⇒" Henze

.

" III ,yao
:[ n ] → [ m] AH ) : Dn → Dm

At( f ) ( ei ) oeien Fyn.IR?n+i
A- ( f )

= Efli )
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By the theorem A extends ( essentially uniquely ) to a co limit preserving functor

A : sets
'5P

- top .

The category # := Sets NP
is called the category of simplicial sets

.
what

is this functor ?

"

 
.

Recall that a simplicial complex is a set K of nonempty finite subsets of

some set K
,

s .
t.it XEK and Y E X is nonempty ,

then YEK
.

For example ,

take I = { 0,112 ) and
c- { 2 }

{ 0,2 } - ,
- { 1,2 }

Ktnanye
- { { 91,23

,
. . . } #t¥{ our )49¥30

,
,

Kcirde = { { 0,1 } ,
{ 42 }

,
10,2 }

,
... } •#¥

The geometric realisation of K is 114 = Uzekw ( Z )
,

where co (6) denotes

the convex hull in RE
. We may generale from a oimplicial complex

K
, assuming K partially ordered

, asimplicialtet

S ; DOP → sets

Sk ( n ) = { ( as ... ,
an ) c- In

"

1 aoe . :< an

and { ao
,

...

, an ) e K }
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Themorphismsin Dave generated by

Ei :[ n - i]→[n ] Zi :[ n+i]→[ n ]

0 I .  - . i - l I itl .  - -

n - l o 1 .  . . . i it , - .  - . n ntl

11 I \\ \ 11 111 . . /
o , ...

i - l i itl . .  - n - I n o 1 .  . . i iti n

Soto define SK :D°P→ set we need only give

di :=Sk( Ei ) : sk([n ] ) - Sk( [ n - it ) ( faaopeiaor )

( ao ,
... ,an ) - ( ao

,
... ,aI ,

... ,
an )

so. := SKCZI ) :Sk( [ n ] ) - Sk([nH] ) ( cigar )

( ao
,

...

, an ) # ( Go
,

. . ,ai,ai ,
aiti

,
... ,an )

Lemmas Skisasimplicialset .

Letusnuw carefully analyse tnevalueofthefunctor At : stet → top

onthissimplicialsetsk :D 's
→ sets

. Bywhatwesaid earlier

- C x a

p A ( Sk ) = { ( n ,x , a) In >io
,

xeskcn ) .ae/Dn }/~

where the relations were (C) PHXY )
, a) ~ ( C

'

,
y ,

Al f) (a) ) i.e.

( n -1
,

( xo
. ... ,oE,

. . ,xn).ae/Dm)~(n,(xo,...,xn ) ,
Aki )( a) )

( ntl
,

( xo
,

.  - . ,xi,xi ,
. . ,xn ).ae/Dn+)~tn,(xo,...,xn )

,
Anika ) )
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Examine Letus take Ktiangle ,
Kcirde from above :

=)
degenerates implies

[K=Kcirae_ 51<(0) - { 10 )
,

( 11
,

(2) ) -

Sk ( 1) ={ ( 0,1 )
,

( 1,2 )
, 10,2 )

,
( 0,0 ) ,( 1,1 ) , 12,2 ) }

Skln ) only contains degenerates implies for n > 1
.

A- ( Sk ) = IIAC

c)
/~

/

Bnotadenoled

( nixsa )

:1-
n 70

,
xeska )

AG )/~

=(A(0 ) # A( o ) # A ( o , /
degenerate stuff .

it All ) ± A ( i ) # A ( 1) I. . . ) 1-
( o ) ( l ) ( 2)

= #it HI ±1D° 3 points

± D
'

it D
'

± D
'

I - .
- ' ) /~ 3 lines

( 0  1) ( 12 ) ( o  2 )

where the relations are

( 0
,

( o ) ,aHD°)~(I , ( o ,D ,
AK ' )la)eD

' )

Co. c " iaeas ) - ( i. ( an ,a( e) (a) easy .

.
.%÷¥I÷.

.

•Is%
,

%s°a
,

( o
,

( o ) ,aeB° ) - ( 1,102 ) , A (E) (a) EID
' ) B°czF

( o
,

(2) ,aeB° ) - ( i
, ( 0,2 )

,
Aleo )( a) eyjj

" 5¥.¥¥÷¥±
.

ek .  . . Enemy : understand why the degenerates implies can be ignored .
.

.



140

Upshot Once we choose a
' ' standard model

"

A : A → T¥ of all the

n - simple xes
,

" tensioning
"

with A gives a w limit preserving functor

A- : sets s0P→T#

which is nothing else than geometric realisation
. Writing A as D•

and the geometric realisation as I - I
we may summarise this by

1 s 1 = S as D• @=D is like our ring R )

Observe that a simplicial complex K on a finite set E is an algorithm
for constructing a topological space 1 K / ( indeed a K s . t.lk/=X

is called a triangulation of X )
.

The functor At ( Sk ) takes this algorithm
and " executes " it using the data of 115

,
D '

,
115

,
. .  . and how they

fit together,
as defined by A  =D•

.

This analogy will be made precise using the equivalence

ssets = 13 ( Lip theory of linear orders

since objects on the right hand side are sheaves on a syntactic category ,
and

the representable sheaves are closed terms in some formal language ( the

language of Lin ) .
These terms formalise the idea of simplicial complexes

as algorithms ,
as we will tee . Finally ,

in the next lecture we will return to

consider f* : B ( Ab ) → 13 ( Pnng ) as a tensor product , analogous to

f) a ,sD• : B ( Lin ) assets - top
.

i. e . f* I
'

f) Qab Utnng


