
1 Quantifiers as adjoints

Let S(x, y) be a predicate, where x, y are elements of sets X and Y respectively. One
can interpret S as a subset of X × Y , namely the set of pairs for which S(x, y) is true.

For a set X, we write PX for the Boolean algebra of all subsets of X. This forms
a category whose arrows are inclusions. Let p : X × Y → Y denote the projection.

Definition 1.1. For a relation S ⊆ X × Y , let

∀pS = {y ∈ Y | (x, y) ∈ S for all x ∈ X} .

For an inclusion S ⊆ S ′, note that ∀pS ⊆ ∀pS ′, and hence the above defines a functor
∀p : P(X × Y )→ PY . Similarly, we define

∃pS = {y ∈ Y | (x, y) ∈ S for some x ∈ X} .

which gives a functor ∃p : P(X × Y )→ PY .

Theorem 1.2. With p the projection, let p−1 : PY → P(X × Y ) be the inverse image
functor. Then the functors ∃p and ∀p are respectively the left and right adjoints of p−1.

Proof. Recall that adjunctions ∃p a p−1 a ∀p consist of bijections

Hom(∃pS, T ) ∼= Hom(S, p−1T ) and Hom(p−1T, S) ∼= Hom(T,∀pS)

natural in S ⊆ X ×Y and T ⊆ Y . Since the Hom sets in question are either singletons
or empty, this amounts to showing the following equivalences:

∃pS ⊆ T ⇔ S ⊆ p−1T and p−1T ⊆ S ⇔ T ⊆ ∀pS.

We have:

p−1T ⊆ S ⇔ if p(x, y) ∈ T then (x, y) ∈ S
⇔ if y ∈ T then (x, y) ∈ S for all x ∈ X
⇔ T ⊆ ∀pS.

S ⊆ p−1T ⇔ if (x, y) ∈ S then p(x, y) ∈ T
⇔ if (x, y) ∈ S for some x ∈ X then y ∈ T
⇔ ∃pS ⊆ T.

By replacing the projection p with an arbitrary morphism f : Z → Y , we obtain
the following generalisation. For a subset S ⊆ Z, let

∀fS = {y ∈ Y | for all z ∈ Z if f(z) = y then z ∈ S} ,
∃fS = {y ∈ Y | there exists z ∈ S such that f(z) = y} .
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Theorem 1.3. Let f : Z → Y be a morphism, and let f−1 : PY → PZ be the inverse
image functor. Then the functors ∃f ,∀f : PZ → PY are respectively the left and right
adjoints of f−1.

Proof. Essentially the same as Theorem 1.2.

The same idea applies to a topos E , with the poset SubE(X) taking the role of PX.
Recalling the natural isomorphism SubE(X) ∼= HomE(X,Ω), and noting that SubE(X)
is a poset for any X we likewise obtain a poset structure on HomE(X,Ω).

Definition 1.4. Let Y, Z be objects in E , and let ϕ : ΩY → ΩZ and ψ : ΩY → ΩZ be
morphisms. We say that ϕ is internally left adjoint to ψ if, for each object A ∈ E ,
the maps ϕ∗ and ψ∗ induced on Hom-sets form an adjoint pair, with ϕ∗ a ψ∗:

HomE(A,Ω
Y ) HomE(A,Ω

Z).

ϕ∗=ϕ◦−

ψ∗=ψ◦−

Theorem 1.5. Let f : Z → Y be a morphism in E . Then Ωf : ΩY → ΩZ has internal
left and right adjoints ∃f ,∀f : ΩZ → ΩY respectively.

Proof. Let A be an object of E , and consider the inverse image functor

(f × id)−1 : SubE(Y × A)→ SubE(Z × A).

This is natural in A, since it is constructed by pullback. In addition, (f × id)−1 has
left and right adjoints ∃f×id,∀f×id by (a generalisation of) Theorem 1.3. By composing
with the natural isomorphism SubE(− × A) ∼= HomE(− × A,Ω) ∼= HomE(A,Ω

−), we
therefore obtain natural transformations (∃f )∗, (∀f )∗ : HomE(−,ΩZ) → HomE(−,ΩY ),
as in the following diagram:

SubE(Y × A) SubE(Z × A)

HomE(A,Ω
Y ) HomE(A,Ω

Z)

(f×id)−1

∼= ∼=

∃f×id

(Ωf
∗)A

((∃f )∗)A

(and similarly for (∀f)∗)

Note that since we have adjoint pairs ∃f×id a (f × id)−1 a ∀f×id, we also have adjoint
pairs ((∃f )∗)A a (Ωf )A a ((∀f )∗)A for all A.

Now, by the Yoneda lemma natural transformations HomE(−,ΩZ)→ HomE(−,ΩY )
are in bijection with HomE(Ω

Z ,ΩY ), and hence from (∃f )∗, (∀f )∗ we obtain uniquely
determined maps

ΩZ ΩY .

∃f

∀f

Ωf

The fact that these maps are internal left and right adjoints to Ωf is by design.
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2 The Mitchell-Bènabou language

Throughout, let E be a topos. Recall (Higher-order logic & topoi II) that a type
theory consists of

• a class of types including special types 1,Ω,

• a class of terms of each type, including countably many variables of each type,

• for each finite set X of variables, a binary relation `X of entailment.

We will describe in this section a canonical type theory which arises from a topos. With
the ability to encode logical formulas in a topos, this will allow us to specify subobjects
of a topos through the use of set-builder notation.

If σ is a term, we write FV σ for its set of free variables, and if S = {x1, ..., xn} is a
finite set of variables , we write S for the product X1 × ...×Xn.

Definition 2.1. The Mitchell-Bènabou language L(E) associated to E is defined
as follows. The types of L(E) are the objects of E . The terms of L(E) are defined
recursively below. Associated to each term σ of type X is a morphism in E

σ : FV σ → X,

called its interpretation.
The term construction rules and their interpretations are as follows.

• For each type X there are variables x1, x2, ... of type X, each of which are inter-
preted by the identity xi = idX : X → X.

• Given terms σ of type X and τ of type Y , there is a term 〈σ, τ〉 of type X × Y .
It is interpreted by the morphism

〈σ, τ〉 : FV σ ∪ FV τ
〈σp,τq〉−−−−−−−→ X × Y,

where p : FV σ ∪ FV τ → FV σ and q : FV σ ∪ FV τ → FV τ are the projections.

• Given terms σ and τ of type X, there is a term σ = τ of type Ω, interpreted by
the composite

σ = τ : FV σ ∪ FV τ
〈σp,τq〉−−−−−−−→ X ×X δX−−−−−−−→ Ω,

where p, q are as above, and δX is the characteristic map of the diagonal X →
X ×X.
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• Given terms σ of type Y X and τ of type X, there is a term σ(τ) of type Y whose
interpretation is

σ(τ) : FV σ ∪ FV τ
〈σp,τq〉−−−−−−−→ Y X ×X

evX,Y−−−−−−−→ Y.

where evX,Y is the evaluation map. In the particular case where Y = Ω, we write
this term as τ ∈ σ instead.

• Given a term σ of type X and a morphism f : X → Y in E , there is a term f ◦ σ
of type Y , with the interpretation

f ◦ σ : FV σ
σ−−−−−−−→ X

f−−−−−−−→ Y.

• Given a term σ of type Z containing a free variable of type X, and given a variable
x of type X, there is a term λx.σ of type ZX , which is interpreted as the transpose
of the map σ:

λx.σ : FV σ \ {x} → ZX .

Note that x no longer occurs free in the term λx.σ.

A term of type Ω is called a formula. A formula σ : U → Ω is true if it factors through
true : 1→ Ω.

Part of the appeal of defining the internal language of a topos in this way is that
the logical connectives are immediately dealt with via the internal Heyting algebra
structure of Ω. For example, conjunction: given B ∈ E , define ∧B : HomE(B,Ω×Ω)→
HomE(B,Ω) as the map making the following commute, where ∩B is the (external)
meet defined on subobjects.

SubE(B)× SubE(B) SubE(B)

HomE(B,Ω)× HomE(B,Ω)

HomE(B,Ω× Ω) HomE(B,Ω)

∩B

∼=

∼=

∼=

∧B

Since ∧B is composed of maps which are natural in B, we obtain a natural transforma-
tion ∧ : Hom(−,Ω× Ω)→ Hom(−,Ω), and hence (by Yoneda) a morphism

∧ : Ω× Ω→ Ω

explicitly given by ∧ = ∧Ω×Ω(id). Given two formulas σ : U → Ω, τ : V → Ω, one can
then define their conjunction as the obvious composite

σ ∧ τ : W
〈σp,τq〉−−−−−−−→ Ω× Ω

∧−−−−−−−→ Ω.
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In particular, if σ, τ are the characteristic maps for subobjects S, T ∈ E , then σ ∧ τ
is the characteristic map of their intersection. The other propositional connectives are
defined in much the same way.

We now move to the task of defining quantifiers. Suppose that σ : X × U → Ω
is a formula containing a free variable x of type X, together with possibly other free
variables. The formula ∀x σ should therefore be interpreted by an arrow U → Ω. Let
p : X → 1 be the unique map, and consider the induced map Ωp : Ω → ΩX and its
internal adjoints from Theorem 1.5:

ΩX Ω

∃p

∀p

Ωp

The interpretation of ∀x σ is given by the composite

∀x σ : U
λx.σ−−−−−−−→ ΩX ∀p−−−−−−−→ Ω,

and ∃x σ is the same except with ∃p replacing ∀p.

Definition 2.2. If σ is a formula with a free variable x of type X, we write

{x ∈ X | σ(x)}

for the subobject classified by its interpretation. Explicitly, this means that we have a
pullback square

{x ∈ X | σ(x)} 1

X Ω.

true

σ

Upshot: this allows us to specify subobjects of a given object X ∈ E just ‘as if’ they
have elements x!

Example 2.3. One can define the ‘object of epimorphisms’ Epi(X, Y ) � Y X as the
following subobject

Epi(X, Y ) =
{
f ∈ Y X | ∀y ∈ Y ∃x ∈ X f(x) = y

}
.
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