1 Quantifiers as adjoints

Let S(x,y) be a predicate, where x,y are elements of sets X and Y respectively. One can interpret S as a subset of $X \times Y$, namely the set of pairs for which S(x,y) is true.

For a set X, we write $\mathcal{P}X$ for the Boolean algebra of all subsets of X. This forms a category whose arrows are inclusions. Let $p: X \times Y \to Y$ denote the projection.

Definition 1.1. For a relation $S \subseteq X \times Y$, let

$$\forall_p S = \{ y \in Y \mid (x, y) \in S \text{ for all } x \in X \}.$$

For an inclusion $S \subseteq S'$, note that $\forall_p S \subseteq \forall_p S'$, and hence the above defines a functor $\forall_p : \mathcal{P}(X \times Y) \to \mathcal{P}Y$. Similarly, we define

$$\exists_{p} S = \{ y \in Y \mid (x, y) \in S \text{ for some } x \in X \}.$$

which gives a functor $\exists_p : \mathcal{P}(X \times Y) \to \mathcal{P}Y$.

Theorem 1.2. With p the projection, let $p^{-1}: \mathcal{P}Y \to \mathcal{P}(X \times Y)$ be the inverse image functor. Then the functors \exists_p and \forall_p are respectively the left and right adjoints of p^{-1} .

Proof. Recall that adjunctions $\exists_p \dashv p^{-1} \dashv \forall_p$ consist of bijections

$$\operatorname{Hom}(\exists_p S, T) \cong \operatorname{Hom}(S, p^{-1}T)$$
 and $\operatorname{Hom}(p^{-1}T, S) \cong \operatorname{Hom}(T, \forall_p S)$

natural in $S \subseteq X \times Y$ and $T \subseteq Y$. Since the Hom sets in question are either singletons or empty, this amounts to showing the following equivalences:

$$\exists_p S \subseteq T \Leftrightarrow S \subseteq p^{-1}T$$
 and $p^{-1}T \subseteq S \Leftrightarrow T \subseteq \forall_p S$.

We have:

$$p^{-1}T \subseteq S$$
 \Leftrightarrow if $p(x,y) \in T$ then $(x,y) \in S$
 \Leftrightarrow if $y \in T$ then $(x,y) \in S$ for all $x \in X$
 \Leftrightarrow $T \subseteq \forall_p S$.

$$S \subseteq p^{-1}T$$
 \Leftrightarrow if $(x,y) \in S$ then $p(x,y) \in T$
 \Leftrightarrow if $(x,y) \in S$ for some $x \in X$ then $y \in T$
 \Leftrightarrow $\exists_p S \subseteq T$.

By replacing the projection p with an arbitrary morphism $f: Z \to Y$, we obtain the following generalisation. For a subset $S \subseteq Z$, let

$$\forall_f S = \{ y \in Y \mid \text{ for all } z \in Z \text{ if } f(z) = y \text{ then } z \in S \},$$

$$\exists_f S = \{ y \in Y \mid \text{ there exists } z \in S \text{ such that } f(z) = y \}.$$

1

Theorem 1.3. Let $f: Z \to Y$ be a morphism, and let $f^{-1}: \mathcal{P}Y \to \mathcal{P}Z$ be the inverse image functor. Then the functors $\exists_f, \forall_f: \mathcal{P}Z \to \mathcal{P}Y$ are respectively the left and right adjoints of f^{-1} .

Proof. Essentially the same as Theorem 1.2.

The same idea applies to a topos \mathcal{E} , with the poset $\operatorname{Sub}_{\mathcal{E}}(X)$ taking the role of $\mathcal{P}X$. Recalling the natural isomorphism $\operatorname{Sub}_{\mathcal{E}}(X) \cong \operatorname{Hom}_{\mathcal{E}}(X,\Omega)$, and noting that $\operatorname{Sub}_{\mathcal{E}}(X)$ is a poset for any X we likewise obtain a poset structure on $\operatorname{Hom}_{\mathcal{E}}(X,\Omega)$.

Definition 1.4. Let Y, Z be objects in \mathcal{E} , and let $\varphi : \Omega^Y \to \Omega^Z$ and $\psi : \Omega^Y \to \Omega^Z$ be morphisms. We say that φ is **internally left adjoint** to ψ if, for each object $A \in \mathcal{E}$, the maps φ_* and ψ_* induced on Hom-sets form an adjoint pair, with $\varphi_* \dashv \psi_*$:

$$\operatorname{Hom}_{\mathcal{E}}(A, \Omega^{Y}) \xrightarrow{\varphi_{*} = \varphi \circ -} \operatorname{Hom}_{\mathcal{E}}(A, \Omega^{Z}).$$

Theorem 1.5. Let $f: Z \to Y$ be a morphism in \mathcal{E} . Then $\Omega^f: \Omega^Y \to \Omega^Z$ has internal left and right adjoints $\exists_f, \forall_f: \Omega^Z \to \Omega^Y$ respectively.

Proof. Let A be an object of \mathcal{E} , and consider the inverse image functor

$$(f \times \mathrm{id})^{-1} : \mathrm{Sub}_{\mathcal{E}}(Y \times A) \to \mathrm{Sub}_{\mathcal{E}}(Z \times A).$$

This is natural in A, since it is constructed by pullback. In addition, $(f \times id)^{-1}$ has left and right adjoints $\exists_{f \times id}$, $\forall_{f \times id}$ by (a generalisation of) Theorem 1.3. By composing with the natural isomorphism $\operatorname{Sub}_{\mathcal{E}}(-\times A) \cong \operatorname{Hom}_{\mathcal{E}}(-\times A, \Omega) \cong \operatorname{Hom}_{\mathcal{E}}(A, \Omega^{-})$, we therefore obtain natural transformations $(\exists_{f})_{*}, (\forall_{f})_{*} : \operatorname{Hom}_{\mathcal{E}}(-, \Omega^{Z}) \to \operatorname{Hom}_{\mathcal{E}}(-, \Omega^{Y})$, as in the following diagram:

Note that since we have adjoint pairs $\exists_{f \times id} \dashv (f \times id)^{-1} \dashv \forall_{f \times id}$, we also have adjoint pairs $((\exists_f)_*)_A \dashv (\Omega^f)_A \dashv ((\forall_f)_*)_A$ for all A.

Now, by the Yoneda lemma natural transformations $\operatorname{Hom}_{\mathcal{E}}(-,\Omega^Z) \to \operatorname{Hom}_{\mathcal{E}}(-,\Omega^Y)$ are in bijection with $\operatorname{Hom}_{\mathcal{E}}(\Omega^Z,\Omega^Y)$, and hence from $(\exists_f)_*,(\forall_f)_*$ we obtain uniquely determined maps

$$\Omega^Z \xleftarrow{ \qquad \qquad \beta_f \qquad \qquad } \Omega^Y.$$

The fact that these maps are internal left and right adjoints to Ω^f is by design. \Box

2 The Mitchell-Bènabou language

Throughout, let \mathcal{E} be a topos. Recall (Higher-order logic & topoi II) that a **type** theory consists of

- a class of types including special types $1, \Omega$,
- a class of terms of each type, including countably many variables of each type,
- for each finite set X of variables, a binary relation \vdash_X of entailment.

We will describe in this section a canonical type theory which arises from a topos. With the ability to encode logical formulas in a topos, this will allow us to specify subobjects of a topos through the use of set-builder notation.

If σ is a term, we write FV σ for its set of free variables, and if $S = \{x_1, ..., x_n\}$ is a finite set of variables, we write \overline{S} for the product $X_1 \times ... \times X_n$.

Definition 2.1. The Mitchell-Bènabou language $\mathcal{L}(\mathcal{E})$ associated to \mathcal{E} is defined as follows. The types of $\mathcal{L}(\mathcal{E})$ are the objects of \mathcal{E} . The terms of $\mathcal{L}(\mathcal{E})$ are defined recursively below. Associated to each term σ of type X is a morphism in \mathcal{E}

$$\overline{\sigma}: \overline{\mathrm{FV}\,\sigma} \to X$$
,

called its **interpretation**.

The term construction rules and their interpretations are as follows.

- For each type X there are variables $x_1, x_2, ...$ of type X, each of which are interpreted by the identity $\overline{x_i} = \mathrm{id}_X : X \to X$.
- Given terms σ of type X and τ of type Y, there is a term $\langle \sigma, \tau \rangle$ of type $X \times Y$. It is interpreted by the morphism

$$\overline{\langle \sigma, \tau \rangle} : \overline{\text{FV } \sigma \cup \text{FV } \tau} \xrightarrow{\langle \overline{\sigma}p, \overline{\tau}q \rangle} X \times Y,$$

where $p: \overline{\mathrm{FV}\,\sigma \cup \mathrm{FV}\,\tau} \to \overline{\mathrm{FV}\,\sigma}$ and $q: \overline{\mathrm{FV}\,\sigma \cup \mathrm{FV}\,\tau} \to \overline{\mathrm{FV}\,\tau}$ are the projections.

• Given terms σ and τ of type X, there is a term $\sigma = \tau$ of type Ω , interpreted by the composite

$$\overline{\sigma = \tau} : \overline{FV} \sigma \cup \overline{FV} \tau \xrightarrow{\langle \overline{\sigma}p, \overline{\tau}q \rangle} X \times X \xrightarrow{\delta_X} \Omega,$$

where p,q are as above, and δ_X is the characteristic map of the diagonal $X \to X \times X$.

• Given terms σ of type Y^X and τ of type X, there is a term $\sigma(\tau)$ of type Y whose interpretation is

$$\overline{\sigma(\tau)}: \overline{\mathrm{FV}\,\sigma \cup \mathrm{FV}\,\tau} \xrightarrow{-\langle \overline{\sigma}p, \overline{\tau}q \rangle} Y^X \times X \xrightarrow{\mathrm{ev}_{X,Y}} Y.$$

where $\operatorname{ev}_{X,Y}$ is the evaluation map. In the particular case where $Y=\Omega$, we write this term as $\tau\in\sigma$ instead.

• Given a term σ of type X and a morphism $f: X \to Y$ in \mathcal{E} , there is a term $f \circ \sigma$ of type Y, with the interpretation

$$\overline{f \circ \sigma} : \overline{FV \sigma} \xrightarrow{\overline{\sigma}} X \xrightarrow{f} Y.$$

• Given a term σ of type Z containing a free variable of type X, and given a variable x of type X, there is a term $\lambda x.\sigma$ of type Z^X , which is interpreted as the transpose of the map σ :

$$\overline{\lambda x.\sigma}: \overline{\mathrm{FV}\,\sigma\setminus\{x\}} \to Z^X.$$

Note that x no longer occurs free in the term $\lambda x.\sigma$.

A term of type Ω is called a **formula**. A formula $\sigma: U \to \Omega$ is **true** if it factors through true: $\mathbb{1} \to \Omega$.

Part of the appeal of defining the internal language of a topos in this way is that the logical connectives are immediately dealt with via the internal Heyting algebra structure of Ω . For example, conjunction: given $B \in \mathcal{E}$, define $\wedge_B : \operatorname{Hom}_{\mathcal{E}}(B, \Omega \times \Omega) \to \operatorname{Hom}_{\mathcal{E}}(B, \Omega)$ as the map making the following commute, where \cap_B is the (external) meet defined on subobjects.

Since \wedge_B is composed of maps which are natural in B, we obtain a natural transformation \wedge : Hom $(-, \Omega \times \Omega) \to \text{Hom}(-, \Omega)$, and hence (by Yoneda) a morphism

$$\wedge: \Omega \times \Omega \to \Omega$$

explicitly given by $\wedge = \wedge_{\Omega \times \Omega}(id)$. Given two formulas $\sigma : U \to \Omega$, $\tau : V \to \Omega$, one can then define their conjunction as the obvious composite

$$\sigma \wedge \tau : W \xrightarrow{\langle \overline{\sigma}p, \overline{\tau}q \rangle} \Omega \times \Omega \xrightarrow{\wedge} \Omega.$$

In particular, if σ, τ are the characteristic maps for subobjects $S, T \in \mathcal{E}$, then $\sigma \wedge \tau$ is the characteristic map of their intersection. The other propositional connectives are defined in much the same way.

We now move to the task of defining quantifiers. Suppose that $\sigma: X \times U \to \Omega$ is a formula containing a free variable x of type X, together with possibly other free variables. The formula $\forall x \, \sigma$ should therefore be interpreted by an arrow $U \to \Omega$. Let $p: X \to \mathbb{1}$ be the unique map, and consider the induced map $\Omega^p: \Omega \to \Omega^X$ and its internal adjoints from Theorem 1.5:

The interpretation of $\forall x \, \sigma$ is given by the composite

$$\overline{\forall x \, \sigma} : U \xrightarrow{\overline{\lambda x. \sigma}} \Omega^X \xrightarrow{\forall_p} \Omega,$$

and $\exists x \, \sigma$ is the same except with \exists_p replacing \forall_p .

Definition 2.2. If σ is a formula with a free variable x of type X, we write

$$\{x \in X \mid \sigma(x)\}$$

for the subobject classified by its interpretation. Explicitly, this means that we have a pullback square

$$\begin{cases} x \in X \mid \sigma(x) \rbrace & \longrightarrow \mathbb{1} \\ \downarrow & \downarrow \text{true} \\ X & \longrightarrow \Omega. \end{cases}$$

Upshot: this allows us to specify subobjects of a given object $X \in \mathcal{E}$ just 'as if' they have elements x!

Example 2.3. One can define the 'object of epimorphisms' $\mathrm{Epi}(X,Y) \rightarrowtail Y^X$ as the following subobject

$$\mathrm{Epi}(X,Y) = \left\{ f \in Y^X \mid \forall y \in Y \,\exists x \in X \, f(x) = y \right\}.$$