1 Quantifiers as adjoints

Let S(z,y) be a predicate, where z,y are elements of sets X and Y respectively. One
can interpret S as a subset of X x Y, namely the set of pairs for which S(x,y) is true.

For a set X, we write PX for the Boolean algebra of all subsets of X. This forms
a category whose arrows are inclusions. Let p: X XY — Y denote the projection.

Definition 1.1. For a relation S C X x Y, let
VpS={yeY|(z,y) e Sforallz € X}.

For an inclusion S C ', note that V,5 C V,,S’, and hence the above defines a functor
V, : P(X xY) — PY. Similarly, we define

3,5={yeY|(z,y) €S for some z € X}.

which gives a functor 3, : P(X xY) — PY.

Theorem 1.2. With p the projection, let p™' : PY — P(X x Y)) be the inverse image

functor. Then the functors 3, and V,, are respectively the left and right adjoints of p~'.

Proof. Recall that adjunctions 3, < p~! -V, consist of bijections
Hom(3,S,T) = Hom(S,p 'T) and Hom(p~'T, S) = Hom(T, V,5)

natural in S C X x Y and T C Y. Since the Hom sets in question are either singletons
or empty, this amounts to showing the following equivalences:

3,SCT & SCp'T and p T CSeTCY,S.
We have:

p T cCsS if p(x,y) € T then (z,y) € S

if y € T then (z,y) € Sforallz € X
T CV,8.

Tt ¢

SCp'T if (z,y) € S then p(z,y) € T
if (x,y) € S for some x € X theny € T

3,5 CT.

t ¢

]

By replacing the projection p with an arbitrary morphism f : Z — Y, we obtain
the following generalisation. For a subset S C Z, let

ViS={yeY | forall z € Zif f(z) =y then z € S},
3;S ={y € Y| there exists z € S such that f(z) =y}.
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Theorem 1.3. Let f : Z — Y be a morphism, and let f~!: PY — PZ be the inverse
image functor. Then the functors 3;,V; : PZ — PY are respectively the left and right
adjoints of f~1.

Proof. Essentially the same as Theorem 1.2. O]

The same idea applies to a topos £, with the poset Subg (X)) taking the role of PX.
Recalling the natural isomorphism Subg(X) = Home (X, 2), and noting that Subg(X)
is a poset for any X we likewise obtain a poset structure on Homg (X, €2).

Definition 1.4. Let Y, Z be objects in &€, and let ¢ : Q¥ — Q7 and ¢ : Q¥ — QZ be
morphisms. We say that ¢ is internally left adjoint to v if, for each object A € &,
the maps ¢, and 1, induced on Hom-sets form an adjoint pair, with ¢, = ,:

prx=gpo—
Homg (A, QY) Homg (A, Q7).

<—
u=tpo—

Theorem 1.5. Let f: Z — Y be a morphism in £. Then €/ : Q¥ — Q% has internal
left and right adjoints 37,V : Q7 — QY respectively.

Proof. Let A be an object of £, and consider the inverse image functor
(f xid)™' : Subg(Y x A) — Subg(Z x A).

This is natural in A, since it is constructed by pullback. In addition, (f x id)~! has
left and right adjoints 3yiq, Vfxia by (a generalisation of) Theorem 1.3. By composing
with the natural isomorphism Subg(— x A) = Homg(— x A, Q) = Homg(A,Q7), we
therefore obtain natural transformations (3;)., (V¢). : Homg(—, Q%) — Homg(—,QY),
as in the following diagram:

(fxid)~1t

Subg(Y x A) 3<:> Subg(Z x A)
fxid

(and similarly for (Vf),)

1R
1R

Q)4

Homg (4, QY) F Homg (4, Q%)
E|f *)A

Note that since we have adjoint pairs Jyyiq - (f X id)™" - Vx4, we also have adjoint
pairs ((35))a = ()4 = ((V4)s)a for all A.

Now, by the Yoneda lemma natural transformations Homg (—, 2%) — Homg(—, Q)
are in bijection with Homg(Q7,QY), and hence from (3)., (V). we obtain uniquely

determined maps
3y
—>
of
0 ————— QY
\7
—>

The fact that these maps are internal left and right adjoints to )/ is by design. O]
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2 The Mitchell-Benabou language

Throughout, let £ be a topos. Recall (Higher-order logic & topoi II) that a type
theory consists of

e a class of types including special types 1, €,
e a class of terms of each type, including countably many variables of each type,
e for each finite set X of variables, a binary relation x of entailment.

We will describe in this section a canonical type theory which arises from a topos. With
the ability to encode logical formulas in a topos, this will allow us to specify subobjects
of a topos through the use of set-builder notation.

If o is a term, we write FV o for its set of free variables, and if S = {z1,...,2,} is a
finite set of variables , we write S for the product X; x ... x X,,.

Definition 2.1. The Mitchell-Bénabou language £(&) associated to £ is defined
as follows. The types of L(£) are the objects of £. The terms of £(€) are defined
recursively below. Associated to each term o of type X is a morphism in £

og:FVo— X,

called its interpretation.
The term construction rules and their interpretations are as follows.

e For each type X there are variables x1, x», ... of type X, each of which are inter-
preted by the identity 7; =idy : X — X.

e Given terms o of type X and 7 of type Y, there is a term (o, 7) of type X x Y.
It is interpreted by the morphism

(0,7) : FVoUFVT — 7% 4 x x Y,

where p: FVoUFV 7T - FVo and q: FVo UFV 7T — FV 1 are the projections.

e Given terms o and 7 of type X, there is a term o = 7 of type €2, interpreted by
the composite

a:T:FVUUFVT%XXXL)Q,

where p,q are as above, and dx is the characteristic map of the diagonal X —
X x X.



e Given terms o of type YX and 7 of type X, there is a term o(7) of type Y whose
interpretation is

evxy

U(T)ZFVO’UFVTM——)YXXX Y.

where evx y is the evaluation map. In the particular case where Y = (2, we write
this term as 7 € o instead.

e Given a term o of type X and a morphism f: X — Y in £, there is a term foo
of type Y, with the interpretation

foo:FVo — 2 wx — 1 vy

e Given a term o of type Z containing a free variable of type X, and given a variable
z of type X, there is a term Az.o of type Z¥, which is interpreted as the transpose
of the map o:

Ae.o:FVo\{z} — zx.

Note that = no longer occurs free in the term Az.o.

A term of type € is called a formula. A formula o : U — € is true if it factors through
true : 1T — €.

Part of the appeal of defining the internal language of a topos in this way is that
the logical connectives are immediately dealt with via the internal Heyting algebra
structure of ). For example, conjunction: given B € &, define Ap : Homg(B, Q2 x Q) —
Homg (B, 2) as the map making the following commute, where Npg is the (external)
meet defined on subobjects.

Np

Subg(B) X Subg(B) > Subg(B)
Homg (B, Q2) x Homg (B, ) =
Homg (B, x Q) ------- R > Homg (B, )

Since Ap is composed of maps which are natural in B, we obtain a natural transforma-
tion A : Hom(—, 2 x Q) — Hom(—, ), and hence (by Yoneda) a morphism

AN:QxQ—=Q

explicitly given by A = Aqxq(id). Given two formulas o : U — Q, 7: V — ), one can
then define their conjunction as the obvious composite

op,Tq

oAT W T oA Q.



In particular, if 0,7 are the characteristic maps for subobjects S, T € &, then o A T
is the characteristic map of their intersection. The other propositional connectives are
defined in much the same way.

We now move to the task of defining quantifiers. Suppose that ¢ : X x U —
is a formula containing a free variable = of type X, together with possibly other free
variables. The formula Vx o should therefore be interpreted by an arrow U — €). Let
p : X — 1 be the unique map, and consider the induced map Q7 : Q — Q¥ and its
internal adjoints from Theorem 1.5:

HP
_

0X ¥ 0

Vo
_

The interpretation of Vx o is given by the composite

— oo v
Veo:U SN O R L 5 Q,

and Jdz o is the same except with 3, replacing V,,.
Definition 2.2. If ¢ is a formula with a free variable x of type X, we write
{reX|o(x)}

for the subobject classified by its interpretation. Explicitly, this means that we have a
pullback square

{reX|olx)} — 1

X s Q.

g

Upshot: this allows us to specify subobjects of a given object X € &£ just ‘as if’ they
have elements x!

Example 2.3. One can define the ‘object of epimorphisms’ Epi(X,Y) — Y as the
following subobject

Epi(X,Y)={feY¥|VWeYIreX flz)=y}.
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