## Sheaves of Sets: part one

## 1 Presheaves

We begin by recalling the classical definition of a presheaf on a topological space:

**Definition 1.1.** Let X be a topological space, and let  $\mathcal{O}(X)$  be the poset of open subsets of X. A presheaf  $\mathcal{F}$  on  $\mathcal{O}$  then consists of the following data:

- 1. For each open set  $U \subseteq X$ , a set  $\mathcal{F}(U)$ ,
- 2. For each inclusion of open subsets  $U \subseteq V$ , a function

$$\operatorname{res}_{V,U}: \mathcal{F}(V) \to \mathcal{F}(U).$$

This is subject to the requirements

- 1. if  $U \subseteq X$  then  $res_{U,U} = id$ ,
- 2. if  $U \subseteq V \subseteq W$  then  $res_{W,V} \circ res_{V,U} = res_{W,U}$ .

**Example 1.1.** Let X be a smooth manifold. For each open subset of X, the correspondence

$$U \mapsto \{f: U \to \mathbb{R} \mid f \text{ smooth}\}\$$

defines a presheaf on X. In this case the restriction maps are given by classical restriction of functions.

Remark 1.1. Motivated by the above example, we will refer to element of  $s \in \mathcal{F}(V)$  as sections of  $\mathcal{F}$  over V, and we will write  $\operatorname{res}_{V,U}(s) = s|_{U}$ .

We can restate the definition of presheaves in a much cleaner and compact way, namely as functors:

**Definition 1.2.** Let  $\mathcal{C}$  be a category. A presheaf on  $\mathcal{C}$  is a set valued functor  $\mathcal{F}: \mathcal{C}^{op} \to \mathbf{Set}$ .

Remark 1.2. We can recover the classical definition of a presheaf on a topological space X by taking  $\mathcal{C} = O(X)$ , the poset of open subsets of X. Using this abstract definition, we define a morphism of preseaves  $\mathcal{F}$  and  $\mathcal{G}$  as a natural transformation  $\mathcal{F} \to \mathcal{G}$ . The resulting category of presheaves on  $\mathcal{C}$  is denoted  $\mathbf{Set}^{\mathcal{C}^{op}}$ 

**Theorem 1.1.** On any category C, the category of presheaves  $Set^{C^{op}}$  is a topos.

## 2 The Yoneda Lemma

Let  $\mathcal{C}$  be a category and let  $C \in ob(\mathcal{C})$ . We can define a contravariant functor

$$h_C: \mathcal{C} \to \mathbf{Set}$$
,

which acts on objects by  $h_C(D) = \operatorname{Hom}_{\mathcal{C}}(D,C)$  and on morphisms  $f: D_1 \to D_2$  by  $h_C(f)(g) = g \circ f$ . Now suppose we have a morphism  $f: C \to C'$  in  $\mathcal{C}$ . We can then define a natural transformation

$$h_f: h_{C_1} \to h_{C_2},$$

given by

$$(h_f)_D: h_{C_1}(D) \to h_{C_2}(D), \qquad g \mapsto f \circ g.$$

Upshot: There is a functor  $h_{(-)}: \mathcal{C} \to \mathbf{Set}^{\mathcal{C}^{op}}$ , called the Yoneda embedding.

**Theorem 2.1** (Yoneda Lemma). Let C be a category, and  $F: C^{op} \to \mathbf{Set}$  a presheaf. Then for each object C of C, the map

$$\Psi_{C,\mathcal{F}}: \operatorname{Nat}(h_C,\mathcal{F}) \to \mathcal{F}(C), \qquad \eta \mapsto \eta_C(\operatorname{id}_C)$$

is a bijection, and is natural in both variables.

Corollary 2.1. The functor  $h_{(-)}: \mathcal{C} \to \mathbf{Set}^{\mathcal{C}^{op}}$  is fully faithful.

*Proof.* Let  $C, D \in ob(\mathcal{C})$ , and let  $\mathcal{F} = h_D$ . Then the Yoneda Lemma gives a bijection

$$\Psi_{C,D}: \operatorname{Nat}(h_C, h_D) \to h_D(C) = \operatorname{Hom}_{\mathcal{C}}(C, D).$$

3 Sieves

Now that we have a natural way to embed  $\mathcal{C}$  into the larger category  $\mathbf{Set}^{\mathcal{C}^{op}}$ , is is natural to ask what new information we can obtain. A natural first question in this direction is the following: given an object C of  $\mathcal{C}$ , what are the subobjects of  $h_C$  in  $\mathbf{Set}^{\mathcal{C}^{op}}$ ? To answer this question, we need to understand the monomorphisms in  $\mathbf{Set}^{\mathcal{C}^{op}}$ .

**Lemma 3.1.** A morphism  $\phi : \mathcal{F} \to \mathcal{G}$  in  $\mathbf{Set}^{\mathcal{C}^{op}}$  is a monomorphism if and only if  $\phi_{\mathcal{C}} : \mathcal{F}(\mathcal{C}) \to \mathcal{G}(\mathcal{C})$  is a monomorphism in  $\mathbf{Set}$  for every object  $\mathcal{C}$  of  $\mathcal{C}$ .

*Proof.* The morphism  $\phi$  is a monomorphism precisely if

$$\phi \circ \psi_1 = \phi \circ \psi_2 \Rightarrow \psi_1 = \psi_2.$$

for any  $\psi_1, \psi_2 : \mathcal{H} \to \mathcal{F}$ , where  $\mathcal{H}$  is any object of  $\mathbf{Set}^{\mathcal{C}^{op}}$ . Unpacking the definitions, we see that if  $\phi$  is a monomorphism then for every  $C \in \text{ob}(\mathcal{C})$ ,

$$\phi(C) \circ \psi_1(C) = \phi(C) \circ \psi_2(C) \Rightarrow \psi_1(C) = \psi_2(C).$$

This is precisely means that  $\phi(C)$  is a monomorphism in **Set** for every  $C \in ob(C)$ .

Conversely, suppose that  $\phi(C): \mathcal{F}(C) \to \mathcal{G}(C)$  is a monomorphism for every object C of C. Then given any set S and any morphisms of  $f, g: S \to \mathcal{F}(C)$ ,

$$\phi(C) \circ f = \phi(C) \circ g \Rightarrow f = g.$$

In particular, given a sheaf  $\mathcal{H}$  and a pair of morphisms  $\psi_1, \psi_2 : \mathcal{H} \to \mathcal{F}$ ,

$$\phi(C) \circ \psi_1(C) = \phi(C) \circ \psi_2(C) \Rightarrow \psi_1(C) = \psi_2(C)$$

for every object C of C. Thus

$$\phi \circ \psi_1 = \phi \circ \psi_2 \Rightarrow \psi_1 = \psi_2$$

so  $\phi: \mathcal{F} \to \mathcal{G}$  is a monomorphism in  $\mathbf{Set}^{\mathcal{C}^{op}}$ .

Corollary 3.1. A subobject of  $h_C$  in  $Set^{C^{op}}$  can always be represented by a subfunctor of  $h_C$ .

To understand the subfunctors of  $h_C$ , it is helpful to introduce the auxiliary notion of sieves:

**Definition 3.1.** Let C be an object of a category C. A sieve on C is a set S of morphisms of C into C which is closed under pre-composition, i.e. if  $f \in S$  and  $f \circ h$  is defined, then  $f \circ h \in S$ .

**Proposition 3.1.** Let  $C \in ob(\mathcal{C})$ . There is a bijection

$$\{sieves\ on\ C\} \leftrightarrow \{subfunctors\ of\ h_C\}.$$

*Proof.* Let S be a sieve on C, and let  $D \in ob(\mathcal{C})$ . Define

$$\mathcal{F}(D) = S \cap \operatorname{Hom}_{\mathcal{C}}(D, C).$$

This is clearly a subfunctor of  $h_C$ . Conversely, given a subfunctor  $\mathcal{F} \subseteq h_C$ , consider the set

$$S = \{ f \mid \exists D \in ob(\mathcal{C}), f \in \mathcal{F}(D) \}.$$

Here we identify  $\mathcal{F}(D)$  with its image in  $h_C(D)$ . If  $f: D \to C \in S$  and  $h: D' \to D$  is a morphism such that  $f \circ h$  is defined, then  $f \circ h \operatorname{res}_{D,D'}(f) = \mathcal{F}(D')$ , so  $f \circ g \in S$ , making S a sieve on C.

**Example 3.1.** Let X be a topological space, and let  $\mathcal{C} = \mathcal{O}(X)$ . For any open subset  $U \subseteq X$ , a sieve on U is collection of inclusions of open subsets  $S = \{V \subseteq U\}$  such that if  $V \in S$  and  $W \subseteq V$  is open, then the inclusion  $W \subseteq U \in S$ .

**Definition 3.2.** A sieve on an open subset  $U \subseteq X$  is a covering sieve if

$$\bigcup_{f \in S} \operatorname{domain}(f) = U.$$

Remark 3.1. From the examples above, it is clear that sieves give a categorical generalisation of the idea of an open cover of a topological space. The slogan to keep in mind is the following: sieves encode the way in which objects of a category hang together.

## 4 Sheaves

By definition, presheaves of sets on a category  $\mathcal{C}$  encode collections of sets parametrised by  $\mathcal{C}$ . Informally, this means that a presheaf can be thought of as a generalised object of  $\mathcal{C}$ . This is not sufficient if one wishes to have a notion of a generalised element which is locally modelled on  $\mathcal{C}$ , since very little information about the sections of a presheaf over  $\mathcal{C}$  can be obtained from know about sections over other objects. General presheaves simply do not have enough structure.

This is a problem in geometry, for instance, because we would like to be able to "glue" from local data: we would like our presheaves to "know" about the topology. As we now know, sieves give a generalisation of the notion of open covers, and hence can be though of as keeping track of local information on categories.

<u>Idea:</u> We need to specialise general presheaves to those which are sensitive to sieves. We will call such presheaves sheaves.

**Definition 4.1.** Let X be a topological space. A presheaf of set  $\mathcal{F}$  on O(X) is called a sheaf if, given any open cover  $\{U_i\}_{i\in I}$ , it satisfies the following two properties:

- 1. If  $r, s \in \mathcal{F}(X)$  are a pair of sections such that  $s|_{U_i} = r|_{U_i}$  for all  $i \in I$ , then s = r.
- 2. Given a family of sections  $s_i$ , one for each  $\mathcal{F}(U_i)$ , such that

$$s_i|_{U_i\cap U_j} = s_j|_{U_i\cap U_j}, \quad \forall i, j \in I,$$

there exists a section  $s \in \mathcal{F}(X)$  such that  $s|_{U_i} = s_i$ .

Remark 4.1. It is worth unpacking this definition. The second condition says that sections on X can be glued from sections on the open cover, provided they are compatible with the cover, and the first condition ensures that this gluing is unique.

**Example 4.1.** Let X be a topological space and let  $\mathcal{F}$  be the presheaf from example one:

$$\mathcal{F}(U) = \{ f : U \to \mathbb{R} \mid f \text{smooth} \}.$$

Then  $\mathcal{F}$  is a prototypical example of a sheaf. Certainly if two functions agree locally, then they agree globally. Moreover, if one has locally defined functions  $f_i$  which agree on overlaps of the cover, then one can define a global function f by

$$f(x) = f_i(x), \qquad x \in U_i.$$

Remark 4.2. We can actually rewrite the sheaf conditions purely in categorical terms. A presheaf  $\mathcal{F}$  is a sheaf if and only if for each open cover  $\{U_i\}_{i\in I}$  of an open subset  $U\subseteq X$ , the following diagram is an equaliser in **Set**:

$$\mathcal{F}(U) \xrightarrow{d} \prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{p} \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j)$$

Here  $d(s) = (s|_{U_i})_{i \in I}$ ,  $p((s_i)) = (s_i|_{U_i \cap U_j})_{i,j \in I}$ , and  $p((s_j)) = (s_j|_{U_i \cap U_j})_{i,j \in I}$ . To see this, first note that, by definition, any family  $(s_i)_{i \in I}$  such that  $p((s_i)) = q((s_i))$ , must agree on overlaps, so the sheaf condition ensures there is a section  $s \in \mathcal{F}(U)$  such that  $d(s) = (s_i)_{i \in I}$ . This same property also implies universality, with uniqueness a consequence of the first axiom.

The characterisation of the sheaf condition in terms of an equaliser diagrams provided a convenient categorification of the sheaf axioms, but in order to generalise sheaves to arbitrary categories we need a way to rephrase the sheaf condition in terms of sieves on objects. This is provided by the next theorem.

**Theorem 4.1.** Let X be a topological space, and  $\mathcal{F}$  a presheaf on O(C). Then  $\mathcal{F}$  is a sheaf if for every open subset  $U \subseteq X$ , and every covering sieve S of U, the inclusion  $i_S : S \to h_U$  induces an isomorphism

$$(i_S)^* : \operatorname{Nat}(h_U, \mathcal{F}) \to \operatorname{Nat}(S, \mathcal{F}).$$

*Proof.* Identify S with the covering  $\{U_i\}_{i\in I}$ , and consider the equaliser diagram

$$E \xrightarrow{e} \prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{p} \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j)$$

where  $E = \{(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i)\} \mid s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \ \forall i, j \in I\}$ . For each  $i \in I$ , replace  $U_i$  with all open sets  $V \subseteq U_i$ , and write  $x_V = x_i|_V$ . Because the  $x_i$  in E agree on overlaps,  $x_V$  is independent of the choice of index with  $V \subseteq U_i$ . The equaliser E can then be described as

$$E = \{(x_V)_{V \in S} \mid x_V|_{V'} = x_{V'} \ V' \subseteq V\}.$$

Using Proposition 3.1, regard S as a functor  $O(X)^{op} \to \mathbf{Set}$ ,

$$S(V) = \begin{cases} 1, & V \in S, \\ 0, & \text{else.} \end{cases}$$

Each section  $x_V \in \mathcal{F}(V)$  can then be identified with a map  $S(V) \to \mathcal{F}(V)$ , to E can be reinterpreted as  $Nat(S, \mathcal{F})$ . We can now augment the equaliser diagram to



Here  $e(\eta) = (\eta_{U_i}(1))_{i \in I}$ . We claim that the square commutes. Indeed, proceeding from the lower left corner, going clockwise we have

$$\eta \mapsto (i_S)^*(\eta) = \eta \circ i_S \mapsto ((\eta_{U_i} \circ (i_S)_{U_i})(1))_{i \in I} = (\eta_{U_i}(1))_{i \in I}$$

and in the other direction we have

$$\eta \mapsto \eta_U(1) \mapsto (\eta_{U_i}(1))_{i \in I}.$$

This shows that d always factors through the equaliser, and when  $(i_S)^*$  is an isomorphism this implies that  $\mathcal{F}$  is a sheaf.