
Sheaves of Sets: part one

1 Presheaves

We begin by recalling the classical definition of a presheaf on a topological space:

Definition 1.1. Let X be a topological space, and let O(X) be the poset of open subsets of
X. A presheaf F on O then consists of the following data:

1. For each open set U ⊆ X, a set F(U),

2. For each inclusion of open subsets U ⊆ V , a function

resV,U : F(V )→ F(U).

This is subject to the requirements

1. if U ⊆ X then resU,U = id,

2. if U ⊆ V ⊆ W then resW,V ◦ resV,U = resW,U .

Example 1.1. Let X be a smooth manifold. For each open subset of X, the correspondence

U 7→ {f : U → R | f smooth}

defines a presheaf on X. In this case the restriction maps are given by classical restriction of
functions.

Remark 1.1. Motivated by the above example, we will refer to element of s ∈ F(V ) as sections
of F over V , and we will write resV,U(s) = s|U .

We can restate the definition of presheaves in a much cleaner and compact way, namely as
functors:

Definition 1.2. Let C be a category. A presheaf on C is a set valued functor F : Cop → Set.

Remark 1.2. We can recover the classical definition of a presheaf on a topological space X by
taking C = O(X), the poset of open subsets of X. Using this abstract definition, we define a
morphism of preseaves F and G as a natural transformation F → G. The resulting category of
presheaves on C is denoted SetC

op

Theorem 1.1. On any category C, the category of presheaves SetC
op

is a topos.
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2 The Yoneda Lemma

Let C be a category and let C ∈ ob(C). We can define a contravariant functor

hC : C → Set,

which acts on objects by hC(D) = HomC(D,C) and on morphisms f : D1 → D2 by hC(f)(g) =
g ◦ f . Now suppose we have a morphism f : C → C ′ in C. We can then define a natural
transformation

hf : hC1 → hC2 ,

given by
(hf )D : hC1(D)→ hC2(D), g 7→ f ◦ g.

Upshot: There is a functor h(−) : C → SetC
op

, called the Yoneda embedding.

Theorem 2.1 (Yoneda Lemma). Let C be a category, and F : Cop → Set a presheaf. Then for
each object C of C, the map

ΨC,F : Nat(hC ,F)→ F(C), η 7→ ηC(idC)

is a bijection, and is natural in both variables.

Corollary 2.1. The functor h(−) : C → SetC
op

is fully faithful.

Proof. Let C,D ∈ ob(C), and let F = hD. Then the Yoneda Lemma gives a bijection

ΨC,D : Nat(hC , hD)→ hD(C) = HomC(C,D).

3 Sieves

Now that we have a natural way to embed C into the larger category SetC
op

, is is natural to ask
what new information we can obtain. A natural first question in this direction is the following:
given an object C of C, what are the subobjects of hC in SetC

op

? To answer this question, we
need to understand the monomorphisms in SetC

op

.

Lemma 3.1. A morphism φ : F → G in SetC
op

is a monomorphism if and only if φC : F(C)→
G(C) is a monomorphism in Set for every object C of C.

Proof. The morphism φ is a monomorphism precisely if

φ ◦ ψ1 = φ ◦ ψ2 ⇒ ψ1 = ψ2.

for any ψ1, ψ2 : H → F , where H is any object of SetC
op

. Unpacking the definitions, we see
that if φ is a monomorphism then for every C ∈ ob(C),

φ(C) ◦ ψ1(C) = φ(C) ◦ ψ2(C)⇒ ψ1(C) = ψ2(C).

This is precisely means that φ(C) is a monomorphism in Set for every C ∈ ob(C).
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Conversely, suppose that φ(C) : F(C)→ G(C) is a monomorphism for every object C of C.
Then given any set S and any morphisms off, g : S → F(C),

φ(C) ◦ f = φ(C) ◦ g ⇒ f = g.

In particular, given a sheaf H and a pair of morphisms ψ1, ψ2 : H → F ,

φ(C) ◦ ψ1(C) = φ(C) ◦ ψ2(C)⇒ ψ1(C) = ψ2(C)

for every object C of C. Thus

φ ◦ ψ1 = φ ◦ ψ2 ⇒ ψ1 = ψ2,

so φ : F → G is a monomorphism in SetC
op

.

Corollary 3.1. A subobject of hC in SetC
op

can always be represented by a subfunctor of hC.

To understand the subfunctors of hC , it is helpful to introduce the auxiliary notion of sieves:

Definition 3.1. Let C be an object of a category C. A sieve on C is a set S of morphisms of C
into C which is closed under pre-composition, i.e. if f ∈ S and f ◦ h is defined, then f ◦ h ∈ S.

Proposition 3.1. Let C ∈ ob(C). There is a bijection

{sieves on C} ↔ {subfunctors of hC}.

Proof. Let S be a sieve on C, and let D ∈ ob(C). Define

F(D) = S ∩ HomC(D,C).

This is clearly a subfunctor of hC . Conversely, given a subfunctor F ⊆ hC , consider the set

S = {f | ∃D ∈ ob(C), f ∈ F(D)}.

Here we identify F(D) with its image in hC(D). If f : D → C ∈ S and h : D′ → D is a
morphism such that f ◦ h is defined, then f ◦ hresD,D′(f) = F(D′), so f ◦ g ∈ S, making S a
sieve on C.

Example 3.1. Let X be a topological space, and let C = O(X). For any open subset U ⊆ X,
a sieve on U is collection of inclusions of open subsets S = {V ⊆ U} such that if V ∈ S and
W ⊆ V is open, then the inclusion W ⊆ U ∈ S.

Definition 3.2. A sieve on an open subset U ⊆ X is a covering sieve if⋃
f∈S

domain(f) = U.

Remark 3.1. From the examples above, it is clear that sieves give a categorical generalisation
of the idea of an open cover of a topological space. The slogan to keep in mind is the following:
sieves encode the way in which objects of a category hang together.
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4 Sheaves

By definition, presheaves of sets on a category C encode collections of sets parametrised by C.
Informally, this means that a presheaf can be thought of as a generalised object of C. This is
not sufficient if one wishes to have a notion of a generalised element which is locally modelled
on C, since very little information about the sections of a presheaf over C can be obtained
from know about sections over other objects. General presheaves simply do not have enough
structure.

This is a problem in geometry, for instance, because we would like to be able to ”glue”
from local data: we would like our presheaves to ”know” about the topology. As we now know,
sieves give a generalisation of the notion of open covers, and hence can be though of as keeping
track of local information on categories.

Idea: We need to specialise general presheaves to those which are sensitive to sieves. We
will call such presheaves sheaves.

Definition 4.1. Let X be a topological space. A presheaf of set F on O(X) is called a sheaf
if, given any open cover {Ui}i∈I , it satisfies the following two properties:

1. If r, s ∈ F(X) are a pair of sections such that s|Ui
= r|Ui

for all i ∈ I, then s = r.

2. Given a family of sections si, one for each F(Ui), such that

si|Ui∩Uj
= sj|Ui∩Uj

, ∀i, j ∈ I,

there exists a section s ∈ F(X) such that s|Ui
= si.

Remark 4.1. It is worth unpacking this definition. The second condition says that sections on
X can be glued from sections on the open cover, provided they are compatible with the cover,
and the first condition ensures that this gluing is unique.

Example 4.1. Let X be a topological space and let F be the presheaf from example one:

F(U) = {f : U → R | fsmooth}.

Then F is a prototypical example of a sheaf. Certainly if two functions agree locally, then they
agree globally. Moreover, if one has locally defined functions fi which agree on overlaps of the
cover, then one can define a global function f by

f(x) = fi(x), x ∈ Ui.

Remark 4.2. We can actually rewrite the sheaf conditions purely in categorical terms. A
presheaf F is a sheaf if and only if for each open cover {Ui}i∈I of an open subset U ⊆ X, the
following diagram is an equaliser in Set:

F(U)
∏

i∈I F(Ui)
∏

i,j∈I F(Ui ∩ Uj)
d p

q

Here d(s) = (s|Ui
)i∈I , p((si)) = (si|Ui∩Uj

)i,j∈I , and p((sj)) = (sj|Ui∩Uj
)i,j∈I . To see this, first

note that, by definition, any family (si)i∈I such that p((si)) = q((si)), must agree on overlaps,
so the sheaf condition ensures there is a section s ∈ F(U) such that d(s) = (si)i∈I . This same
property also implies universality, with uniqueness a consequence of the first axiom.
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The characterisation of the sheaf condition in terms of an equaliser diagrams provided a
convenient categorification of the sheaf axioms, but in order to generalise sheaves to arbitrary
categories we need a way to rephrase the sheaf condition in terms of sieves on objects. This is
provided by the next theorem.

Theorem 4.1. Let X be a topological space, and F a presheaf on O(C). Then F is a sheaf
if for every open subset U ⊆ X, and every covering sieve S of U , the inclusion iS : S → hU
induces an isomorphism

(iS)∗ : Nat(hU ,F)→ Nat(S,F).

Proof. Identify S with the covering {Ui}i∈I , and consider the equaliser diagram

E
∏

i∈I F(Ui)
∏

i,j∈I F(Ui ∩ Uj)
e p

q

where E = {(si)i∈I ∈
∏

i∈I F(Ui)} | si|Ui∩Uj
= sj|Ui∩Uj

∀i, j ∈ I}. For each i ∈ I, replace Ui

with all open sets V ⊆ Ui, and write xV = xi|V . Because the xi in E agree on overlaps, xV is
independent of the choice of index with V ⊆ Ui. The equaliser E can then be described as

E = {(xV )V ∈S | xV |V ′ = xV ′ V ′ ⊆ V }.

Using Proposition 3.1, regard S as a functor O(X)op → Set,

S(V ) =

{
1, V ∈ S,
0, else.

Each section xV ∈ F(V ) can then be identified with a map S(V ) → F(V ), to E can be
reinterpreted as Nat(S,F). We can now augment the equaliser diagram to

Nat(S,F)
∏

i∈I F(Ui)
∏

i,j∈I F(Ui ∩ Uj)

Nat(hU ,F) F(U)

e′ p

q

(iS)∗

ΦU,F

d

Here e(η) = (ηUi
(1))i∈I . We claim that the square commutes. Indeed, proceeding from the

lower left corner, going clockwise we have

η 7→ (iS)∗(η) = η ◦ iS 7→ ((ηUi
◦ (iS)Ui

)(1))i∈I = (ηUi
(1))i∈I

and in the other direction we have

η 7→ ηU(1) 7→ (ηUi
(1))i∈I .

This shows that d always factors through the equaliser, and when (iS)∗ is an isomorphism this
implies that F is a sheaf.
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