Sheaves of Sets: part one

1 Presheaves

We begin by recalling the classical definition of a presheaf on a topological space:

Definition 1.1. Let X be a topological space, and let O(X) be the poset of open subsets of
X. A presheaf F on O then consists of the following data:

1. For each open set U C X, a set F(U),

2. For each inclusion of open subsets U C V, a function

resyy : F(V) — F(U).

This is subject to the requirements
1. if U C X then resyy = id,
2. it U CV C W then resyy oresyy = resyp.
Example 1.1. Let X be a smooth manifold. For each open subset of X, the correspondence

Uw—{f:U—R]| fsmooth}

defines a presheaf on X. In this case the restriction maps are given by classical restriction of
functions.

Remark 1.1. Motivated by the above example, we will refer to element of s € F(V') as sections
of F over V, and we will write resy(s) = s|y.

We can restate the definition of presheaves in a much cleaner and compact way, namely as

functors:

Definition 1.2. Let C be a category. A presheaf on C is a set valued functor F : C? — Set.

Remark 1.2. We can recover the classical definition of a presheaf on a topological space X by
taking C = O(X), the poset of open subsets of X. Using this abstract definition, we define a
morphism of preseaves F and G as a natural transformation F — G. The resulting category of
presheaves on C is denoted Set®”

Theorem 1.1. On any category C, the category of presheaves Set®” is a topos.



2 The Yoneda Lemma

Let C be a category and let C' € ob(C). We can define a contravariant functor
he - C— Set,

which acts on objects by h¢(D) = Home(D, C') and on morphisms f : D1 — Dy by he(f)(g) =
go f. Now suppose we have a morphism f : C' — C’ in C. We can then define a natural
transformation

hf . h6’1 — hcz,

given by
(hf)D:hC'1<D>_>hC2(D)7 g'_>fog

Upshot: There is a functor h_y : C — Set®”, called the Yoneda embedding.

Theorem 2.1 (Yoneda Lemma). Let C be a category, and F : C? — Set a presheaf. Then for
each object C' of C, the map

Ve r : Nat(he, F) = F(C), n +— ne(ide)

18 a bijection, and is natural in both variables.

Corollary 2.1. The functor h(_y : C — Set*” is fully faithful.

Proof. Let C, D € ob(C), and let F = hp. Then the Yoneda Lemma gives a bijection

\I’QD : Nat(hc,hD> — hD(C) = HOl’Ilc(C, D)

3 Sieves

Now that we have a natural way to embed C into the larger category Set®”, is is natural to ask
what new information we can obtain. A natural first question in this direction is the following:
given an object C' of C, what are the subobjects of he in Set®”? To answer this question, we
need to understand the monomorphisms in Set®” .

Lemma 3.1. A morphism ¢ : F — G in Set’” is a monomorphism if and only if d¢ - F(C)—
G(C) is a monomorphism in Set for every object C of C.

Proof. The morphism ¢ is a monomorphism precisely if

pohy = @oy = P =1y

for any ¥y, : H — F, where H is any object of Set®”. Unpacking the definitions, we see
that if ¢ is a monomorphism then for every C € ob(C),

#(C) o1 (C) = ¢(C) 0 s (C) = Y1 (C) = o (C).

This is precisely means that ¢(C') is a monomorphism in Set for every C' € ob(C).



Conversely, suppose that ¢(C) : F(C) — G(C) is a monomorphism for every object C' of C.
Then given any set S and any morphisms off, g : S — F(C),

¢(C)of=¢(Clog=f=g.
In particular, given a sheaf H and a pair of morphisms 1y, 1, : H — F,
$(C) 01(C) = ¢(C) 0 92(C) = ¥1(C) = ¢(C)
for every object C' of C. Thus
o = Qo = 1) =Py,

so ¢ : F — G is a monomorphism in Set®”.

]

Corollary 3.1. A subobject of he in Set’” can always be represented by a subfunctor of he.

To understand the subfunctors of h¢, it is helpful to introduce the auxiliary notion of sieves:

Definition 3.1. Let C' be an object of a category C. A sieve on C'is a set S of morphisms of C
into C' which is closed under pre-composition, i.e. if f € S and f o h is defined, then foh € S.

Proposition 3.1. Let C € ob(C). There is a bijection
{sieves on C'} <> {subfunctors of h¢}.
Proof. Let S be a sieve on C, and let D € ob(C). Define
F(D) = SnNHome(D,C).
This is clearly a subfunctor of hs. Conversely, given a subfunctor F C h¢, consider the set
S={f|3D eob(C), feF(D)}.

Here we identify F(D) with its image in he(D). If f: D - C € Sand h : D' — D is a
morphism such that f o h is defined, then f o hresp p/(f) = F(D'), so fog € S, making S a
sieve on C.

]

Example 3.1. Let X be a topological space, and let C = O(X). For any open subset U C X,
a sieve on U is collection of inclusions of open subsets S = {V C U} such that if V' € S and
W C V is open, then the inclusion W C U € S.

Definition 3.2. A sieve on an open subset U C X is a covering sieve if

U domain(f) = U.

Remark 3.1. From the examples above, it is clear that sieves give a categorical generalisation
of the idea of an open cover of a topological space. The slogan to keep in mind is the following:
sieves encode the way in which objects of a category hang together.



4 Sheaves

By definition, presheaves of sets on a category C encode collections of sets parametrised by C.
Informally, this means that a presheaf can be thought of as a generalised object of C. This is
not sufficient if one wishes to have a notion of a generalised element which is locally modelled
on C, since very little information about the sections of a presheaf over C' can be obtained
from know about sections over other objects. General presheaves simply do not have enough
structure.

This is a problem in geometry, for instance, because we would like to be able to ”glue”
from local data: we would like our presheaves to ”"know” about the topology. As we now know,
sieves give a generalisation of the notion of open covers, and hence can be though of as keeping
track of local information on categories.

Idea: We need to specialise general presheaves to those which are sensitive to sieves. We
will call such presheaves sheaves.

Definition 4.1. Let X be a topological space. A presheaf of set F on O(X) is called a sheaf
if, given any open cover {U, };¢;, it satisfies the following two properties:

1. If r;s € F(X) are a pair of sections such that s|y, = r|y, for all i € I, then s = r.

2. Given a family of sections s;, one for each F(U;), such that

Silu;nu; = Siluinu; s Vi,jel,

there exists a section s € F(X) such that s|y, = s;.

Remark 4.1. It is worth unpacking this definition. The second condition says that sections on
X can be glued from sections on the open cover, provided they are compatible with the cover,
and the first condition ensures that this gluing is unique.

Example 4.1. Let X be a topological space and let F be the presheaf from example one:
FU)={f:U—R| fsmooth}.

Then F is a prototypical example of a sheaf. Certainly if two functions agree locally, then they
agree globally. Moreover, if one has locally defined functions f; which agree on overlaps of the
cover, then one can define a global function f by

f(z) = fi(x), el

Remark 4.2. We can actually rewrite the sheaf conditions purely in categorical terms. A
presheaf F is a sheaf if and only if for each open cover {U;};c; of an open subset U C X the
following diagram is an equaliser in Set:

d b

F(U) [Lic, F(U) 7

[Lier FUNU;)

Here d(s) = (s|v;)ier, p((s:)) = (silvinv;)ijer, and p((s;)) = (sjlvinv;)ijer. To see this, first
note that, by definition, any family (s;);c; such that p((s;)) = ¢((s;)), must agree on overlaps,
so the sheaf condition ensures there is a section s € F(U) such that d(s) = (s;)ies. This same
property also implies universality, with uniqueness a consequence of the first axiom.



The characterisation of the sheaf condition in terms of an equaliser diagrams provided a
convenient categorification of the sheaf axioms, but in order to generalise sheaves to arbitrary
categories we need a way to rephrase the sheaf condition in terms of sieves on objects. This is
provided by the next theorem.

Theorem 4.1. Let X be a topological space, and F a presheaf on O(C). Then F is a sheaf
if for every open subset U C X, and every covering sieve S of U, the inclusion ig : S — hy
mduces an isomorphism

(ig)" : Nat(hy, F) — Nat(S, F).
Proof. Identify S with the covering {U, };cs, and consider the equaliser diagram

E ‘ [Lic; F(U)

[Li e FUiNTG)

where B = {(si)icr € [[,e; F(Us)} | silvinv; = sjluinu; Vi, j € I}, For each i € I, replace U
with all open sets V' C U;, and write xy = z;|y. Because the z; in E agree on overlaps, xy is
independent of the choice of index with V' C U;. The equaliser E/ can then be described as

E={(zv)ves | xv|v = ay V' CV}.

Using Proposition 3.1, regard S as a functor O(X ) — Set,

S(V) = {1, Ves,

0, else.

Each section zy € F(V) can then be identified with a map S(V) — F(V), to E can be
reinterpreted as Nat(S, F). We can now augment the equaliser diagram to

e/

Nat (S, F) [Lic; F(Us) Hi,je[ F(U:;NUj)
(is)” d
Nat(hU,]-") p .F(U)

Here e(n) = (nu,(1));er. We claim that the square commutes. Indeed, proceeding from the
lower left corner, going clockwise we have

n— (is)*(n) = nois — ((nu, o (is)v,)(1))ier = (M, (1) )ier
and in the other direction we have
n = nu(1) = (u,(1))ier-

This shows that d always factors through the equaliser, and when (ig)* is an isomorphism this
implies that F is a sheaf.
m
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