
Sheaves of Sets: part two

Recall that in the last talk, we explored presheaves on a category C. We introduced the
Yoneda Lemma, and investigated the Yoneda embedding. In the course of this study, we used
sieves, which correspond to sub-objects of representable presheaves, to define sheaves on a
topological space purely in the language of presheaves and covering sieves. This lead us to
the conclusion that we may be able to define sheaves on an arbitrary category, not just on
the category of open subsets of a topological space. In this talk we will define the appropriate
notion of covering sieves for objects of an arbitrary category, finally realising the idea of defining
sheaves on a category.

To this end, we introduce the concept of a Grothendieck topology on a category, generalising
the definition of a topology on a set. We will end the talk by discovering how Grothendieck
topologies arise naturally in algebraic geometry. This is discovery will lead us define the Zariski
site.

1 Grothendieck topologies

In this talk, all categories will be small. We also assume that all rings are commutative with
unit.

Definition 1.1. Let C be a category and C ∈ ob(C). Given a sieve S on C and a morphism
h : D → C, the pullback of S along h is the sieve

h∗(S) := {g | cod(g) = D, h ◦ g ∈ S}

on D.

Definition 1.2. A Grothendieck topology, on a small category C is a function τ which
assigns to each object C ∈ ob(C) a set τ(C) of sieves on C satisfying the following axioms:

1. The maximal sieve tC = {f | cod(f) = C} ∈ τ(C).

2. (stability) If S ∈ τ(C), and if h : D → C is a morphism into C, then h∗(S) ∈ τ(D).

3. (transitivity) If R is a sieve on C such that, for every morphism h : D → C into C,
h∗(R) ∈ τ(D), then R ∈ τ(C).

A site is a pair (C, τ) consisting of a small category C and a Grothendieck topology τ on C. If
C ∈ ob(C) then we call a sieve S ∈ τ(C) a covering sieve of C.

Definition 1.3. Let τ be a Grothendieck topology on a small category C with pullbacks. A
basis for τ is a function B which assigns to each C ∈ ob(C) a set B(C) of sets of morphisms
into C satisfying the following properties:
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1. If f : D → C is an isomorphism, then {f : D → C} ∈ B(C).

2. If {fi : Ci → C}i∈I ∈ B(C), and h : D → C is a morphism into C, then {π2 : Ci ×C D →
D}i∈I ∈ B(D). Here π2 is the projection onto the second factor.

3. If {fi : Ci → C}i∈I ∈ B(C) and, for each iıI, {gij : Dij → Ci}j∈Ji ∈ B(Ci), then
{fi ◦ gij : Dij → C}i,j ∈ B(C).

The following example illustrates that Grothendieck topologies on categories are a general-
isation of topologies on sets.

Example 1.1. Let X be a topological space, and let O(X) be the category of open subsets
of X. Then the topology on X induces a Grothendieck topology τ on O(X). For each open
subset U ⊆ X, define

τ(U) = {sieves S on U |
⋃
f∈S

dom(f) = U}.

Elements of τ(U) are covering sieves, in the notation of the first talk, which motivates the
terminology for Grothendieck topologies.

We will show that τ is indeed a Grothendieck topology. First, observe that the maximal
sieve is obviously in τ(U) for each U . Next, recall that for any open subsets U, V ⊆ X, a
morphism h : V → U in O(X) is the inclusion V ⊆ U . By identifying a sieve S on U with a
a cover of U which is closed under taking open subsets, we can identify h∗(S) with {V ∩ Ui}.
This certainly covers V , to the stability axiom holds. The transitivity axiom follows similarly.

Remark 1.1. Given a category C with pullbacks and Grothendieck topology τ on C, there is a
maximal basis B which generates τ , given on objects C ∈ ob(C) by

R ∈ B(C)⇔ (R) ∈ τ(C)

where
(R) := {f ◦ g | f ∈ R and dom(f) = cod(g)}.

is the sieve generated by R.

Grothendieck topologies allow us to give a definition of sheaves on an arbitrary category C.

Definition 1.4. Let (C, τ) be a site, and let F be a presheaf on C. Then F is a sheaf if, for
every C ∈ ob(C) and every covering sieve S ∈ τ(C), the monomorphism iS : S → hU induces
an isomorphism

(iS)∗ : Hom(hU ,F)→ Hom(S,F).

We write Shτ (C) for the full subcategory of sheaves in SetC
op

.

2 Algebraic geometry

Algebraic geometry is the study of spaces carved out by system of polynomial equations. More
precisely, let k be a field, and let F = (f1, . . . , fm) ∈ k[x1, . . . , xn] be a system of polynomial
equations with coefficients in k. We want to study the set

Z(F ) = {p = (p1, . . . , pn) ∈ kn | f1(p) = · · · = fm(p) = 0} ⊆ kn.
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called the zero locus of F .

To do geometry, we need to put a topology on the zero locus.

Definition 2.1. The Zariski topology on kn is defined by declaring that the zero loci of
systems of polynomial equations are closed. Equivalently, the Zariski topology has a basis of
open sets of the form

D(g) := {p ∈ k | g(p) 6= 0}, g ∈ k[x1, . . . , xn].

We give the zero loci the subspace topology. Open covers are given by sets {D(g1), . . . , D(gk)}
where (g1, . . . , gk) = A.

Lemma 2.1. Let F = (f1, . . . , fm) be a system of polynomial equations. There is a bijection

Z(F )←→ HomRng(Z[x1, . . . , xn]/F, k).

Proof. First, recall that Z is the initial object in the category of commutative rings, so there is
a unique morphism Z → k. It follows that a morphism h : Z[x1, . . . , xn]/F → k is completely
determined by the images of the generators xi. Therefore, h is determined by a choice of points
p1, . . . , pm ∈ k satisfying the same relations as the generators xi. This is precisely the data of
a point p ∈ Z(F ).

Conversely a point p ∈ Z(F ) determines a morphism h : Z[x1, . . . , xn]/F → k by h(xi) = pi.

This lemma raises a question: how do we realise the Zariski topology on HomRng(Z[x1, . . . , xn]/F, k)?
In light of the lemma, a point in Z(F ) can be described as a morphism Z[x1, . . . , xn]→ k which
factors as

Z[x1, . . . , xn]→ Z[x1, . . . , xn]/F → k.
Now observe that the open sets D(g) can be realised as the image of the projection

Z(ug − 1) ⊆ kn+1 → kn

onto the first n coordinates. Using the lemma we can therefore understand the inclusion
D(g) ⊆ kn via the diagram

HomRng(Z[x1, . . . , xn, u]/(ug − 1),k)

D(g)

HomRng(Z[x1, . . . , xn],k)

kn

Here, the top arrow in induces from Z[x1, . . . , xn] ↪→ Z[x1, . . . , xn, u] → Z[x1, . . . , xn, u]/(ug −
1). Now to understand the Zariski topology on Z[x1, . . . , xn] → Z[x1, . . . , xn]/F , we need to
interpret the intersection D(g)∩Z(F ) as above. Since intersections are given by fiber products
in the ambient space, we need to understand the pullback of the following diagram:

HomRng(Z[x1, . . . , xn, u]/(ug − 1),k)

HomRng(Z[x1, . . . , xn,k)HomRng(Z[x1, . . . , xn]/F, k)
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This corresponds precisely to the following pushout in Rng:

Z[x1, . . . , xn, u]/(ug − 1)Z[x1, . . . , xn]

Z[x1, . . . , xn]/F

But pushouts in Rng are precisely given by tensor products. This means that a point in the
intersection D(g) ∩ Z(F ) corresponds to a morphism Z[x1, . . . , xn]→ k which factors as

Z[x1, . . . , xn]→ Z[x1, . . . , xn]/F ⊗Z[x1,...,xn] Z[x1, . . . , xn, u]/(ug − 1)→ k

Writing A = Z[x1, . . . , xn]→ Z[x1, . . . , xn]/F , the above morphism takers the form

A→ A[u]/(ug − 1) ∼= Ag

where Ag is the localisation of A at g. For non-experts, Ag can be though of as the ring A with
inverses to all powers of g attached.

Upshot: The inclusion D(g) ∩ Z(F ) corresponds to the morphism

A⊗Z[x1,...,xn] Ag.

Definition 2.2. A finitely presented Z-algebra is a ring of the form A = Z[x1, . . . , xn]/F for
some system of polynomials F . We denote the category of finitely presented Z-algebras by
(Z-alg)fp.

Form our investigation so far, it follows that the study of zero loci of systems of polynomials
takes place in (Z− alg)fp. The basis of the Zariski topology on Z(F ) is captured by the family
of morphisms

{{A→ Agi}g1,...,gk∈A∗ | (g1, . . . , gk) = A}.

which we call cocovers. In other words, suitable families of morphisms in (Z-alg)fp encode open
covers in the Zariski topology.

Theorem 2.1. The assignment B(A) = {{A→ A[u]/(ugi − 1)}g1,...,gk∈A∗ | (g1, . . . , gk) = A} is
a basis for a Grothendieck topology on (Z-alg)opfp.

Proof. We will leave the verification of the first two properties as an easy exercise. To show
that the third property is satisfied, we need to show that if we have a cocover

{A→ Agi}i=1,...,n, (g1, . . . , gn) = A

and, for each i ∈ I, cocovers

{Agi → (Agi)fi,j}j=1,...,mi
, (fi,1, . . . , fi,mi

) = Agi

then the composites
{A→ Agi → (Agi)fi,j}

are cocovers of A for each i, j.
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First we observe that each fi,j ∈ Agi can be written as

fi,j =
f̃i,j

g
ki,j
i

where f̃i,j ∈ A and ki,j ∈ Z≥0. It follows that there is an isomorphism

(Agi)fi,j
∼= Agif̃i,j .

Thus, we are reduced to showing that for each i, j,

{A→ Agi → Agif̃i,j}

is a cocover. We therefore need to show that ({gif̃i,j}i,j) = A, or equivalently, that this ideal
contains the unit 1 ∈ A.

Now by assumption there exist γi,j ∈ Agi such that

1 =

mi∑
j=1

γi,jfi,j =

mi∑
j=1

γ̃i,j

g
li,j
i

f̃i,j

g
ki,j
i

where γ̃i,j ∈ A and li,j ∈ Z≥0. Choose ki > maxj{ki,j + li,j}, so that multiplication with gkii
cancels out the denominators on the right hand side. This implies that

gkii ∈ (gif̃i,1, . . . , gif̃i,mi
) ⊆ A

Since (g1, . . . , gn) = A, there exist αi ∈ A such that

1 =
n∑
i=1

αigi,

so by choosing K > n ·maxi ki we have

1 =

(
n∑
i=1

αigi

)K

∈ (gk11 , . . . , g
kn
n ) ⊆ ({gif̃i,j}i,j)

in A. This finishes the proof.

Definition 2.3. The site ((Z-alg)fp, τ), where τ is the Grothendieck topology generated by B,
is called the Zariski site, and the associated category of sheaves is called the Zariski topos.
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