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1 Recall

Definition 1 (Subobject Classifier). Let C be a Category with a terminal object 1. A subobject classifier is a
monic true : 1→ Ω, such that for any monic m : S �M , there exists a unique φ : M → Ω such that

S 1

M Ω

m true

φ

is a pullback diagram.

Theorem 1. A Category C with finite limits has a subobject classifier if and only if there is an object Ω, and for
each object X ∈ C , a natural bijection,

Sub(X) ∼= Hom(X,Ω)

Definition 2 (Exponential). An exponential for an object E ∈ E is a collection of objects {ZE}Z∈E and a
collection of isomorphisms

Hom(E ×X,Z) ∼= Hom(X,ZE)

natural in X and Z.

ie, an exponential for E ∈ E is a right adjoint to the functor E × .

Definition 3 (Topos). A topos is a Cartesian Closed Category E which admits all finite limits, and a subobject
classifier.

2 Introduction

In the text [1], which we are following in this seminar, the notion of an elementary topos is used in the sections
relevent to Higher Order Logic. In particular, the notion of a power set operator is used, which is coming from how
functions are spoken about in the topos Set. The goal of this talk is to give this definition, and prove that it is
equivalent to the definition of a topos. One key family of objects in the proof will be morphisms into the subobject
classifier of an arbitrary topos, which can be viewed as predicates. This will motivate a small section on predicates
in arbitrary topoi before the proof is presented.

First, the definition of an elementary topos,

Definition 4 (Elementary Topos). An Elementary Topos is a Category E which admits

• all pullbacks

• a terminal object

• a subobject classifier Ω

• for every object E ∈ E , a collection of objects {ΩE}E∈E and a collection of bijections

Hom(E × Y,Ω) ∼= Hom(Y,ΩE)

which are all natural in Y .
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There are a few immediate notes to make.

This is not to say that E admits an exponential for Ω. This definition is not asking for Ω varying, so this is
not an adjunction, and so in particular is not an exponential. Also, the following notation and terminology will be
used,

Notation 1. The image of a map ϕ ∈ Hom(X×Y,Ω) will be notated by _ϕ^, and will be refered to as the transpose
of ϕ. The image of a map ψ ∈ Hom(Y,ΩX) will be refered to as the inverse transpose, and in fact there is an
explicit map for this direction,

ψ 7→ evX(idX × ϕ)

where evX : X × ΩX → Ω is inverse transpose of 1ΩX (for which there is no explicit map for).

3 Predicates

3.1 TrueB

The predicate

B −→ 1
true−→ Ω

can be thought of as being “true” for any value of B. This composition will be refered to as trueB .

3.2 Evaluation as membership

In the topos Set, a map from the terminal object to a set 1 → B picks out an element b ∈ B. This provides
intuition for maps out of the terminal object in an arbitrary topos. With this intuition, the evaluation map of the
form evB : B × ΩB → Ω, for some B ∈ E , can be seen as the membership predicate. Indeed, given b : 1→ B, and
a subobject B′ � B ∈ Sub(B), the following diagram commutes

1× 1 B × 1 B × ΩB

1 B Ω

∼=

b×11

∼=

1B×s

evB

b χB′

where s : 1→ ΩB is the transpose of χB′ . The square on the right commutes by definition of the transpose of χB ,
given any subobject χB′ : B → Ω, which is a map B × 1 → Ω as B ∼= B × 1, there exists a unique 1 → ΩB such
that the square on the right commutes. The square on the left commutes because the isomorphism B × 1 → B is
the map πB , and by definition, πB(bϕ−1 × 11) = bϕ−1, where ϕ : 1× 1→ 1 is an isomorphism.

The significance of the above diagram commuting, is that the map χB′b = true if and only if evB(b × s) = true,
and so interpretting this in the topos set, χB′b = true if and only if b ∈ B′, so evB(b× s) = true if and only if b ∈ s.
So evB can be thought of as the predicate “b ∈ s”.

3.3 The predicate “is a singleton”

For every object E ∈ E , where E is a topos, there is a diagonal map ∆E : E → E×E. Indeed this map is monic, so
there is a corresponding characteristic morphism χ∆E

: E×E → Ω. In the topos Set, this map sends (e1, e2) 7→ 1 if
and only if e1 = e2. So this map can be seen as the equality predicate. The transpose of this map, _χ∆E

^ : E → ΩE ,
sends an element e ∈ E to the map χ{e1} : E → Ω, this map will be notated δE , after the kronecker delta function.
In the topos Set, this function sends an element e ∈ E to the singleton subset {e} ⊆ E. For this reason, the notation
{·}B := _χ∆E

^ will be adopted.

In fact, as lemma 1 (below) states, this map too is monic, and so has a corresponding map χ{·}E . To avoid
cumbersome notation, σE : ΩE → Ω will be written in place of χ{·}E . So to summaries the notation,

σE = χ{·}E = χ_χ∆E
^ : ΩE → Ω

Lemma 1. The map {·}E is monic, for any object E ∈ E .
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Let b, b′ : B → E be two maps such that {·}Eb = {·}Eb′. The proof will use that the following square is a
pullback diagram,

B E

B × E E × E

b

〈1B ,b〉 ∆E

b×1E

Commutativity comes from the fact that 〈idB , b〉 is the map such that diagrams

B B × E

E

〈1B ,b〉

b
π2 and

B B × E

E

〈1B ,b〉

b
bπ1

commute. Thus
∆Eb = 〈1E , 1E〉b = 〈b, b〉 ∗= 〈bπ1, π2〉〈1B , b〉 = (b× 1E)〈1B , b〉

where the equality labeled by ∗ is the where commutativity of the diagrams has been used.

For universality, say α : C → E and 〈β1, β2〉 : C → B × E are such that the outside square of the diagram

C

B E

B × E E × E

α

〈β1,β2〉

γ

b

〈1B ,b〉 ∆E

b×1E

commutes. Commutativity will hold once the three equations

γ = β1, β2 = bγ, α = bγ

have been shown to hold. The first equation shows that if γ exists, then it must be β1, thus the proof is reduced to
showing the second two equations with β1 substituted in for γ. Since the outer square commutes,

∆Eα = (b× 1E)〈β1, β2, 〉

which implies
π1∆Eα = π1(b× 1E)〈β1, β2, 〉

from which it follows that α = bβ1, which gives the third equation. As for the second equation,

π2∆Eα = π2(b× 1E)〈β1, β2, 〉

from which it follows that α = β2, and as already seen, α = bβ1, thus β2 = bβ1.

Now onto the proof of the lemma. Since this square is a pullback diagram, it then follows that the square

B E 1

B × E E × E Ω

b

〈1B ,b〉 ∆E true

b×1E
χ∆E

is a pullback diagram. Running the same argument for b′, it follows that 〈1B , b〉 and 〈1B , b′〉 represent the same
subobject of B × E, so by the definition of the equivalence relation on subobjects, there exists an isomorphism
h : B → B such that 〈1B , b〉h = 〈1B , b′〉. Projecting onto the first component shows that h = 1B , and projecting
onto the second shows that b = b′. �
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4 The Theorem

Theorem 2. A Category E is a topos if and only if it is an elementary topos.

Before proving the theorem, consider the case when E = Set for intuition. Let B,C be sets, then

CB = {functions f : B → C}

which can be seen as the subset CB ⊆ B × C consisting of graphs, ie, CB is the subset

CB = {Γ ⊆ B × C | Γ is a graph}

Since Sub(ΩB×C) ∼= Hom(ΩB×C ,Ω), this can be realised as a function,

CB : ΩB×C → Ω

Γ 7→

{
1, Γ is a graph

0, else

ie,

CB : ΩB×C → Ω

Γ 7→

{
1, ∀b ∈ B, ∃!c ∈ C, (b, c) ∈ Γ

0, else

There is a clever trick to describe the ∀ in terms of a preimage of a function, consider the function

u : ΩB×C → ΩB

Γ 7→
(
b 7→

{
1, ∃!c ∈ C, (b, c) ∈ Γ

0, else

)
then Γ ∈ ΩB×C is a graph if and only if u(Γ) = 1B . Asking for the collection of objects Γ ∈ ΩB×C for which u to
maps Γ into 1B is the same as asking for the pullback of the diagram

CB 1

ΩB×C ΩB

m _trueB ^

u

Notice that m is the pullback of a monic, and so is itself monic. So, to generalise this construction to an arbitrary
topos, it remains only to come up with a general way of describing the morphism u.

As already seen, the map evB×C can be seen as the membership predicate, the transpose of this map is

B × ΩB×C → ΩC

(b,Γ) 7→
(
c 7→

{
1, (b, c) ∈ Γ

0, else

)
which is very close to u, but it needs to be checked that the function that (b,Γ) is mapped to maps exactly one
c ∈ C to 1 and everything else to 0. That is, it needs to be checked that the subobject (b,Γ) is mapped to is a
singleton. So composing this with σC (the predicate “is a singleton”) yields the function

B × ΩB×C → ΩB → Ω

(b,Γ) 7→
(
f : c 7→

{
1, (b, c) ∈ Γ

0, else

)
7→

{
1, f is a singleton

0, else

that is,

(b,Γ) 7→

{
1, ∃!c ∈ C, (b, c) ∈ Γ

0, else
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the transpose of which is exactly the function u.

With this preamble out of the way, the proof will now be presented,

Proof of theorem 2: As mentioned by James Clift in his talk “the definition of a topos (part 1)”, a Cate-
gory E admits all finite limits if and only if it admits a terminal object, and all pullbacks. So it remains to show
that an elementary topos has all exponentials.

To this end, let B ∈ E . Then for any C ∈ E , define CB to be the pullback of the diagram

CB 1

ΩB×C ΩB

m _trueB ^

u

where u = _σC _evB×C ^^. An exponential requires more than just a collection of objects, there also must exist a
collection of morphisms evB,C : B × CB → C such that for any morphism f : B ×D → C, there exists a unique
g : D → CB such that the diagram

B ×D

B × CB C

fidB×g

evB,C

commutes.

What should evB,C be? Thinking again momentarily about the topos Set, the value of evB,C(b,Γ), for some
function Γ : B → C should be the unique value c which Γ maps b to. Ie, want {·}CevB,C = _evB×C ^(idB ×m),
where m : ΩB � ΩC×B is the inclusion which sends a function to its graph. However nothing here uses anything
specific about the topos Set, so thinking again about a general topos, the following diagram

B × CB B × ΩC×B ΩC C

Ω 1

1B×m _evC×B ^

σC

{·}C

true

commutes, by definition of σC . Also, u = _σC _evB×C ^^, so taking the transpose of this gives σC _evB×C ^ = evB(idB×
u). So the diagram

B × CB B × ΩC×B ΩC C

B × ΩB Ω 1

1B×m _evC×B ^

(idB×u) σC

{·}C

evB true

commutes. The final portion of the diagram can be extended to a commuting square by applying the functor B×
to the definition of the exponential CB , so the diagram

B × CB B × ΩC×B ΩC C

B × 1 B × ΩB Ω 1

1B×m _evC×B ^

(idB×u) σC

{·}C

1×_true^ evB true

commutes. In fact, there also exists a morphism from B × 1→ 1 such that the diagram

B × CB B × ΩC×B ΩC C

B × 1 B × ΩB Ω 1

1B×m _evC×B ^

(idB×u) σC

{·}C

1×_true^ evB true
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commutes. This is because the bottom square is a distorted version of the diagram

B × 1 B × ΩB

1 Ω

1B×_trueB ^

evB

true

which commutes as can be seen by the explicit formula for transpositions.

In fact, the square on the right is a pullback square, since Ω is a subobject classifier, so the fact that this dia-
gram commutes shows there exists a unique map e : B × CB → C which will be taken to be the definition of
evB,C : B × CB → C. The complete diagram is

B × CB B × ΩC×B ΩC C

B × 1 B × ΩB Ω 1

e

1B×m _evC×B ^

(idB×u) σC

{·}C

1×_true^ evB true

(1)

The proof will then be complete once it has been shown that this map obeys the required universal property.

To this end, let f : A×B → C be arbitrary. Then it needs to be shown that there exists a unique g : A→ CB such
that e(1B × g) = f . Notice first that since {·}C is monic,

{·}Cf = {·}e(1B × g)⇔ f = e(1B × g)

this fact will be used when showing both existence and uniqueness. Also, the proof involves frequent switching
between morphisms and their transpose or inverse transpose. This can be confusing, so to help with readability,
the following commuting diagrams are mentioned and labeled,

C × C

C × ΩC Ω

1C×{·}C δC

evC

(2)

C ×B × ΩC×B

C × ΩC Ω

1C×_evC×B ^ evC×B

evC

(3)

Concerning uniqueness, say {·}Cf = {·}Ce(1B × g). Then by (1),

{·}Cf = _evC×B^(1B ×mg)

it then follows from (2) and (3) that

δC(1× f) = evC×B(1C × 1B ×mg)

this means that if there was a second map g′ such that e(1B × g) = f , then

evC×B(1C × 1B ×mg) = evC×B(1C × 1B ×mg′)

which by uniqueness of the transpose, this implies that mg = mg′, and then m is monic, so g = g′.

It remains to show existence. Say there is f : A × B → C. Then let h : A → ΩB×C be the transpose of the
map δC(1C × f). A map g : A→ ΩB will be found by showing that the square

A 1

ΩB×C Ω

h true

u
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commutes. Then since CB is defined to be a pullback, this will give a map g : A→ CB . The functor B× can then
be applied to the resulting commuting diagram, and appended onto the commuting diagram (1) which can then be
seen by a diagram chase that

{·}Cf = {·}e(1B × g)

which will prove the result.

Indeed as already seen in the uniqueness argument,

δC(1C × f) = evB×C(1C × 1B × h)

which by again using the same argument, follows from (2) and (3) that

{·}Cf = _evC×B^(1B × h)

composing with σC gives
σC{·}Cf = σC _evC×B^(1B × h)

which is
trueCf = σC _evC×B^(1B × h) (∗)

there is now one more manipulation to be done, which is the observation that trueCf = trueBπB where πB :
C ×B → B is projection. It can then be shown that this has transpose _trueB^!A, where !A : A→ 1 is the terminal
map. So, taking the transpose of (∗) gives

_trueB^!A = uh

which is what was required to show. �
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