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1 Introduction

Feed-forward neural nets with a single hidden layer can approximate continuous func-
tions on a compact domain if the hidden layer is allowed to be arbitrarily wide [5], [6].
Recently though [4, §3] there has been interest in feed-forward networks with bounded
widths rather than depth. The goal of this talk is to discuss the approximation of
continuous functions on compact domains by ReLU nets with an upper bound on the
widths (Theorem 1 and Remark 1).

2 Feed-forward Neural Nets, ReLU activations, and

Max-min strings

Definition 1. A ReLU net N consists of

• a (finite) sequence of widths din = d1, d2, ..., dn = dout, where each di ∈ N, din is
the input width, and dout the output width,

• a sequence of affine functions (Ai : Rdi → Rdi+1)n−1i=1 ,

Associated to every ReLU net N is a function

fN : AnReLUdn−1An−1...ReLUd1A1 : Rdin → Rdout (1)

where

ReLUk : Rk → Rk

(x1, ..., xk) 7→
(

max{0, x1}, ...,max{0, xk}
)

The subscript k on ReLUk will be dropped when its value is clear from context. The
proof that ReLU nets can be used to approximate continuous functions with compact
domains will not use ReLU nets on the nose, but instead will use functions which can
be written as particular compositions involving affine functions as well as the max and
min functions:
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Definition 2. A max-min string is a function g : Rn → Rm which can be written as

g = σL−1(lL, σL−2(lL−1, ...(σ2(l3, σ1(l2, l1))...)) (2)

where each li : Rn → Rm is an affine function, and each σi is either the component-wise
max function:

max : R2m → Rm

(x1, ..., xm, y1, ..., ym) 7→ (max{x1, y1}, ...,max{xm, ym)

or the component-wise min function:

min : R2m → Rm

(x1, ..., xm, y1, ..., ym) 7→ (min{x1, y1}, ...,min{xm, ym})

Lemma 1. Let g : Rn → Rm a max-min string and K ⊆ Rn a compact set. Then there
exists a ReLU net N such that for all x ∈ K, fN (x) = g(x).

Proof. It can be assumed without loss of generality that K lies in the positive orthant,
that is,

K ⊆ Rn
+ := {(x1, ..., xn) ∈ Rn | 1 ≤ i ≤ n⇒ xi ≥ 0}

To see this, say that K does not lie in the positive orthant. Then let T : K → K ′ be
a translation where K ′ does lie in the positive orthant, such a translation exists as K
is compact. Then by the theorem (once it has been proved) there exists N such that
fN = gT−1, which implies fNT = g, and fNT is a ReLU net.

So assume K lies in the positive orthant and write

g = σL−1(lL, σL−2(lL−1, ...(σ2(l3, σ1(l2, l1))...))

where li : Rn → Rm.

The key observation is that if a, b ∈ R, then max{a, b} can be calculated by adding a
to max{0, b− a}, with a similar trick used for min.

Define the following affine functions:

A1 : Rn → Rm

x 7→ (x, l1(x))

and if i = 2, ..., L:

Ai : Rn+m → Rn+m

(x, y) 7→

{
(x, y − li(x)) σi−1 = max

(x,−y + li(x)) σi−1 = min
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Notice that for i = 2, ..., L, the functions Ai admit inverses given by:

A−1i : Rn+m → Rn+m

(x, y) 7→

{
(x, y + li(x)) σi−1 = max

(x,−y + li(x)) σi−1 = min

Then the function

h := ReLU A−1L ReLU AL ... A
−1
1 ReLU A1

is equal to the graph of g. Thus πh = g, where π : R2m → Rm is the map (x1, ..., xn, y1, ..., ym) 7→
(y1, ..., ym), and πh is a ReLU net.

3 Approximation of Continuous Functions by ReLU

Nets, Finite Case

It follows from Lemma 1 that in order to approximate a continuous function f : K →
Rm using a ReLU net, it suffices to approximate f with a max-min string. The goal of
section 4 below is to show how this can be done. The proof will require some technical
analysis, but the broad idea is highlighted well by considering the case when K is a
finite set. In fact, in the finite case, f can be computed exactly using a ReLU net:

Lemma 2. Let ε ∈ R>0 and f : S → Rm a function with S finite. Then there exists a
max-min string g : Rn → Rm such that f = g.

The following Lemma will be used:

Lemma 3. Let f : S → Rm be a function with S ⊆ Rn a finite set. For any t ∈ R≥0
and any x ∈ R \ S there exists an affine function l = (l1, ..., lm) : Rn → Rm such that

• l(x) = (0, ..., 0),

• t < li(s) for all s ∈ S

Proof. Many such functions l can be defined, but in order to reflect the construction
which will be used to prove the case where S is an arbitrary compact set, the case when
n = 2 and m = 1 will be considered and a particular construction will be shown which
perhaps is not the most obvious one.

Let A,B ∈ R2 be points such that ∆AxB forms a triangle, S ∩ ∆AxB = {x} and
S lies in the infinite planar sector ∠AxB, ie

S ⊆ ∠AxB := {
(
γ1(B − x), γ2(C − x)

)
| γ1, γ2 ≥ 0}

see figure 1. Then let l be the affine function such that l(x) = 0 and l(A) = l(B) = t.
See figure 2
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Figure 1: An example of an appropriate choice of triangle for the proof of Lemma ??.

Figure 2: The affine function l.
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Proof of Lemma 2. If S = {s} contains a single element, then the max-min string
g(s) = f(s) can be used. So say S contains at least two elements. Fix an element s ∈ S
and let g : S \ {s} → Rm be a max-min string satisfying ∀s′ ∈ S \ {s}, g(s′) = f(s′).
Set

t = maxs′∈S\{s}{|g(s′)− f(s)|}

and let l = (l1, ..., lm) : Rn → Rm be an affine function such that l(s) = 0 and for all
s′ ∈ S \ {s}, li(s′) > t, which exists by Lemma 3. Write f = (f1, ..., fm), then

∀s′ ∈ S \ {s},∀i = 1, ...,m, fi(s)− li(s′) < gi(s
′) < fi(s) + li(s

′) (3)

Define the max-min string:

ĝ = max{min{g, f(s) + l}, f(s)− l}

which is such that ĝ(s′) = f(s′) for all s′ ∈ S. Indeed,

ĝ(s) = max{min{g(s), f(s) + l(s)}, f(s)− l(s)}
= max{min{g(s), f(s)}, f(s)}
= f(s)

and if s′ ∈ S \ {s},

ĝ(s′) = max{min{g(s′), f(s) + l(s′)}, f(s)− l(s′)}
= max{g(s′), f(s)− l(s′)}
= g(s′) = f(s′)

where the first and second equality follow from 3.

4 Approximation of Continuous Functions by ReLU

Nets, General Case

The goal of this section is to prove that ReLU nets can approximate continuous func-
tions f : K → R, where K is compact (for a formal statement see Theorem 1 below).
This will be done by approximating a continuous function f : R2 → R on a compact
subset K ⊆ R2. Again, a ReLU net which approximates f itself will not be directly
constructed, but a max-min string will be instead, which is sufficient by Lemma 1.

In the finite case, a max-min string g : S \{s} → Rm was extended to ĝ : S → Rm. The
existence of ĝ used crucially that there existed an affine function l : Rn → Rm such that
each entry of l(s′) was larger than the corresponding entry of g(s′), for all s′ ∈ S \ {s},
and was such that l(s) = 0. The key realisation in the case where K is an arbitrary
compact set is the existence of an analogous affine function l:
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Definition 3. The inverse modulus of continuity of ε of a continuous function
f : R2 → R in the domain K ⊆ R2 is

w−1f,K(ε) = sup{δ ∈ R | ∀x, y ∈ K, |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε}

Lemma 4. Let f : R2 → R be continuous, ε > 0, r > r′ > 0. Let Sr := {(x, y) ∈
R2 | x2 + y2 = r} be the circle of radius r. Let X, Y ∈ Sr be such that |X − Y | ≤ r
and X ′, Y ′ ∈ Sr′ be such that X ′, X, Y, Y ′ are collinear, and let Z ∈ Sr′ be the point on
the arc connecting X ′ to Y ′ and the straight line which passes through the origin and
the midpoint of the straight line connecting X and Y . See Figure 3. Let L denote the

Figure 3: The configuration described in Lemma 4

minor sector of Sr induced by the radii 0X and 0Y and let L′ denote the minor segment
of Sr′ induced by the chord which connects X ′ to Y ′. If

Diam(L′) ≤ w−1f,Br′ (0)
(ε)

then there exists an affine function l : R2 → R such that

• l(x) ≤ ε for all x ∈ L′,

• |f(x)− f(Z)| ≤ l(x) + ε for all x ∈ L.

Proof. Let l be the affine function such that l(Z) = 0 and l(X ′) = l(Y ′) = ε. Let x ∈ L.
Denote by Z ′ ∈ R2 the point which is collinear to X ′, Y ′, X, Y and is also collinear to
Z, x. Then as l is affine and |x− Z| ≤ |Z ′ − Z|, it follows that l(x) ≤ l(Z ′) = ε.
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Figure 4: The points x1, ..., xn in the proof of Lemma 4

Say x ∈ L′. Then write |x−Z| = kw−1f,Br′ (0)
(ε)+ρ where k ∈ N and 0 ≤ ρ < w−1f,Br′ (0)

(ε).
Then

|x− Z| = kw−1f,Br′ (0)
(ε) + ρ

⇒ |x− Z| ≥ kw−1f,Br′ (0)
(ε)

and so,
ε|Z − x|
w−1f,Br′ (0)

(ε)
≥ kε (4)

Also, consider a sequence of points Z = x1, x2, ..., xk+1 = x such that |xi+1 − xi| =
w−1f,Br′ (0)

(ε) for i = 1, ..., k − 1 and |xk+1 − xk| < w−1f,Br′ (0)
(ε). See Figure 4. Then

|f(x)− f(Z)| = |f(x1)− f(x2) + f(x2)− f(x3) + ...+ f(x2)− f(x1)|
≤ |f(x1)− f(x2)|+ ...+ |f(x2)− f(x1)|
< kε+ ε

and so,
|f(x)− f(Z)| < kε+ ε (5)

Equations 4 and 5 together imply

|f(x)− f(Z)| < ε|x− Z|
w−1f,Br′ (0)

(ε)
+ ε
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Thus it remains to show:
ε|x− Z|
w−1f,Br′ (0)

(ε)
≤ l(x)

This comes down to the fact that the slope of l in the direction of the vector x−Z can
be bounded below by ε

w−1
f,Br′ (0)

(ε)
. More precisely, consider the following parametrisation

of the straight line which intersects Z and x:

c : R→ R2

s 7→ Z +
s

|x− Z|
(x− Z)

Then the function lc : R→ R is affine, and in fact is linear as

lc(0) = l(Z) = 0

So for all y ∈ R, lc(y) = my for some gradient m. Let W ∈ R2 be the point which
intersects the line parametrised by c and the line which passes through X and Y . Then
since |W − Z| ≤ w−1f,Br′ (0)

(ε) and l(W ) = ε, it follows that:

m =
l(W )− l(Z)

|W − Z|
=

ε

|W − Z|
≥ ε

w−1f,Br′ (0)
(ε)

and so:
ε|x− Z|
w−1f,Br′ (0)

(ε)
≤ m|x− Z| = lc(|x− Z|) = l(x)

which completes the proof.

Corollary 1. In the setting of Lemma 4, but with every instance of ε replaced by ε
2
, if

there exists a max-min string g : R2 → R which approximates f on L′ then there exists
a max-min string ĝ : R2 → R which approximates f on L ∪ L′.

Proof. Let l : R2 → R be an affine function such that

• l(x) ≤ ε
2
, for all x ∈ L′,

• |f(x)− f(Z)| ≤ l(x) + ε
2
, for all x ∈ L

the existence of which is guaranteed by Lemma 7. Then define the max-min string

ĝ = max{min{g, f(Z) + l}, f(Z)− l}

On L, we have f ≤ g + ε and
f ≤ f(Z) + l + ε
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so

f ≤ min{g + ε, f(Z) + l + ε}
= min{g, f(Z) + l}+ ε

≤ max
{

min{g, f(Z) + l}, f(Z)− l
}

+ ε

= ĝ + ε

Similarly, since g − ε ≤ f and
f(Z)− l − ε ≤ f

it follows that

ĝ − ε = max
{

min{g, f(Z) + l − ε}, f(Z)− l
}
− ε

= max{min{g − ε, f(Z) + l − ε}, f(Z)− l − ε}
≤ max{g − ε, f(Z)− l − ε}
≤ f

On L′, by construction:

f(Z)− ε

2
≤ f(Z)− l ≤ ĝ ≤ f(Z) + l ≤ f(Z) +

ε

2

and for all x ∈ L′
|f(x)− f(Z)| ≤ ε

2

by definition of w−1f,Br′ (0)
( ε
2
). Thus:

|ĝ(x)− f(x)| = |ĝ(x)− f(Z) + f(Z)− f(x)|
≤ |ĝ(x)− f(Z)|+ |f(Z)− f(x)|

≤ ε

2
+
ε

2
= ε

Next we turn to two geometric Lemmas:

Lemma 5. Consider two concentric circles, SR and SR′ with R′ > R. Consider a chord
intersecting points X and Y on SR and extend this chord so that it intercepts SR′, at
X ′ and Y ′ say (see Figure 5). Then

|X ′Y ′|2 = 4(R′2 −R2) + |XY |2

Proof. Let P denote the midpoint of the line XY . Then |P | =
√
R2 − 1

4
|XY |2 (again,

see Figure 5). Thus (√
R2 − 1

4
|XY |2

)2
+

1

4
|X ′Y ′|2 = R′2

from which, the result follows.
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Figure 5: The geometry of Lemma 5

Lemma 6. Let X, Y be points on SR such that 0 < |X − Y | ≤ R. Let τX and τY be
straight lines tangent to SR respectively at X and Y . Let T denote the intersection of
τX and τY . Then Diam(∆XTY ) = |X − Y |

Proof. If |X − Y | = R then the triangle XOY is equilateral. It follows from this that
angle ∠TXY and ∠TY X are both equal to 30◦. As |X − Y | decreases, both angles
∠TXY and ∠TY X decrease. So if |X − Y | ≤ R the angle ∠XTY is obtuse, which
implies that Diam(∆XTY ) = |X − Y |. See Figure 6.

Lemma 7. Let f : R2 → R be continuous, ε > 0, R > 0. Assume w−1f,BR(0)(
ε
2
) and let

R′ > w−1f,BR(0)(
ε
2
). Assume further that there exists a max-min string g : R2 → R which

approximates f on BR′(0). Let R′′ be

R′′ :=

√
R′2 +

w−1f,BR(0)(
ε
2
)

√
2R′

If R′′ < R then there exists a max-min string ĝ : R2 → R which approximates f
on BR′′(0), and if R′′ ≥ R then there exists a max-min string ĝ : R2 → R which
approximates f on BR(0).

Proof. To ease notation let aR′ :=
w−1
f,BR(0)

( ε
2
)

√
2R′

. Let X, Y ∈ R2 lie on the circle of radius

R′ which satisfy

|XY | = w−1f,BR(0)(
ε

2
)(1− aR′)

1
2
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Figure 6: The geometry of Lemma 6

such a pair (X, Y ) exists as

|XY |2 = w−1f,BR(0)(
ε

2
)2(1− a2R′) < w−1f,BR(0)(

ε

2
) ≤ R′

We consider first the case when R′′ < R. Let X ′, Y ′ ∈ R2 lie on the circle of radius R′′

which intersect the line segment connecting X and Y . Let L denote the minor segment
on the circle of radius R′ induced by the chord which connects X ′ to Y ′ and let L′

denote the minor sector on the circle of radius R′ induced by the radii 0X and 0Y . Let
Z denote the intersection of the circle of radius R′′ and the line which connects 0 and
the midpoint of the line XY . See Figure 7. By Lemma 5 and a direct calculation,

|X ′Y ′| =
√

4(R′′2 −R′2) + |XY |2 = w−1f,BR(0)(
ε

2
)

Moreover, w−1f,BR(0)(
ε
2
) < R′ < R′′, so by Lemma 6:

Diam(L) ≤ w−1f,BR(0)(
ε

2
)

Thus the hypotheses of Corollary 1 are satisfied.

The case when R′′ ≥ R is almost identical but the pair (X ′, Y ′) are taken to inter-
sect the ball of radius R instead of the ball of radius R′′.
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Figure 7: Configuration of the balls in Lemma 7

This brings us to the main Theorem:

Theorem 1. Let ε ∈ R>0 and f : R2 → R be continuous, and K ⊆ R2 compact. Then
there exists a max-min string g : R2 → R such that

∀x ∈ K, |g(x)− f(x)| ≤ ε

Proof. Since compact subsets of R2 are bounded, it suffices to consider the case when
K = BR := {x ∈ R2 | |x| ≤ R}, for some R ∈ R. If R ≤ w−1f,BR(0)

(
ε
2

)
then the

max-min string g : R2 → R which is the constant function g ≡ f(0) suffices. Suppose
w−1f,BR(0)

(
ε
2

)
< R and f : BR(0)→ R are given. Consider the following set

X := {R′ ∈ R | there exists a max-min string g which approximates f on BR(0)}

We claim that R ∈X , recall the notation from Lemma 7 that aR :=
w−1
f

(
ε
2

)2
√
2R

. Suppose

for a contradiction that R 6∈ X , then X is bounded above. Let s2 = sup X 2 and
R′ ∈X to be such that

s2 − as < R′2

Notice that s 6∈ X as if s ∈ X then Lemma 7 can be used to find a strictly greater
value in X . As R′ < s, it follows that as < aR′ and

s2 < R′2 + as < R′2 + aR′

thus
s <

√
R′2 + aR′

but by Lemma 7,
√
R′2 + aR′ ∈X , contradicting that s is a supremum.
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Remark 1. As mentioned earlier, Theorem 1 generalises to continuous functions f :
K → Rm where K ⊆ Rn. Ie, given ε > 0 there exists a max-min string g : Rn → Rm

such that for all x ∈ K,
|f(x)− g(x)| < ε

Lemma 1 then implies that there exists a ReLU net with input width n and all other
widths equal to n + m which approximates f . This gives the promised upper bound on
the widths. In fact a lower bound can be proved as well, see [3, §3].
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