7. INTERSECTIONS IN ProTE CTIVE SPACE

e puipose on;‘— this sechon 1s v study the infenecton of vanehes in a pojectwe space. If N, Z ave
vanehes m [P", what can one say ahout YNZ ! We have alveady seen ihaf Y A2 wneed not be a
vanety (Ex2.16). But ih1s an algebrac set, ancl we con aok fint about it mveducible compovents.
We takee our cue fom e Meony of vechrspaces < f U, are subspaces of dunenstons 1s of aveetor
spaw \W of dimension n, then VAV 15 a subspate of dimension z r+s5 —n, st

U — +\V
unv = l—J———-—— oo dimU —dimuny

¥ == c\!Vﬂ[U“l’V}’—G\lW\V

Henwe r+s —dm(U+ V) sGIJWIfUnVJ] |mp]ylﬂj d!m!'\lm/) Z r+s—n oanchif UN ave (n
sufficently gencral posihon (1. U+\/ = W) thenThe cltmengon of VAV 15 r+5 - Qurfint
rorult in s sechon will be do pove that f ¥, Z ave projechve vanehes of dimensions v, s in IP™
fhen eveny weducible cormponent of YAz han dimension 7 v +s = n. Favthermoreif rts—n>O
Hen NNZ 15 nonempty.

Knowng someting about the dimevsion o+ Y0Z we can anke for more precise mfovmation. Suppose for
example Tnaf v 45 ="Tn, anc thet YO Z s afnite gef of poinds. Then we can ask, hew many poms are theve?
Let wa ook ata specialcase. TF 7 15 a cuwe of degree d m (P35 andif 25 a line w P2, Then YOZ consists of
at most o peints, and The numbeyr comes to d exadly o we counf them with appropnate mulhphorhes. (ExS.4)
Ts result ﬂenemluw fothe well-known theorem of “Bézout, which ;qp”.’r that if ~,Z are plane cune of
degvees de with Y= Z, then YNz consist of e ponts, counfec wi mulhphcrhes. We will prove Bezout 's
Thgorem later in+his rechion.

The idecil generalisahon of Bézoutls Theorem +o IP™ would be His. Fint, defimne fhe degree of any projeciue
vanefy. Lét Y, Z be vaneties of chmensons vis and degreey dje in [P". Assume #hal Y, Z ave n sufficiently
geneval Pwrhnn so thet all wecucible ;omfmem‘x oF YAZ have clinensibn= v+5~-n, and casume Hiak
v+ 5 —n O. foreach inveducible omponent W ot YNZ, define the mtewecton mulhplicehy (Y, 2 ; w)
of Y and Z along W. Then we should have

D ild,zy W) ~degW = de

wheve the sum s taken over all nveclucible components of YN Z

The hardest pai of thr genevaliscon s the comect dedmifion o infewechion muH‘iPhcdy. We will defne
the fewechon mmihphc% only m The cone where Z 15 a hyperuvface. Our matn farkR n fhus rection

will ke the definrfion of e degice of e vanety Y of-dimension r~ 1n [P”, Clonsically, +he deguee of Y

s defiec) e The numbev of points of 1ntenechon of Y with a sufficiently geveval linear space L of

dumension vi—7. Howevev, Ths clefmition 15 diffeult fo wse. Cuthing Y successely with v sufficiently g eneval ,
hypevplanes , one coin Finel o hnear space L of dimension vi—v which meetr = i & fimbe numbev ot poink (£x1.9)
Butfhe numbev of mteniechwn paimts may depend on-l, and iF15 havel fo inake precise the notwn “su fherently
gevieral "

Therefore we w;llz;ue a purely algebraic dehnron of degiee, winy the Hilbert polynomial of a pwjectue
vanety . Twis depnihon s leas geornelncally wohvated, buk han the advartage of gem\r_.’ precye. In an exerlie
(Ex 7.4)we thow that it qgreet with e clgnsica) dednitvon 11 @ rpectal case .

PROPOSTION 7. | (Afhne Dimension Theorem) | o4 Y, Z be vanehes b divnensions v,s 1n IRC. Then evewy
— wweducible component W ook YNZ has dimension = v + S —n. (TF ¥nz =P

PROOF Assume YOZ venemply fivughout. we proceed m s @vep [ skeps £t suppore that Z 15 a hypersuyface
T dehved by an equation. F=0."If y< Z_!-)f‘ﬁ@ﬂ’. 15 nothingte ng. If \/gpfz, e muahhgf)%halfm%
iveclucible component W ot Y (12 lhon dimension =1 Le- A(Y) be the auffine eordinaleving o ¥,
Sine Y 42, £ F0m AY) and sine Y0Z % $ S5 pot aundn ALY efer. Tne \weducible Lo ponents
ok Y\ Z wwreapondtothe ymintal primeideals of the principal ideal (£) in A(Y). By (1)) each
sech 4 haw hel W one in H(Y)J fo by'ﬁflld”'ﬂfnflﬂﬂ Theorein (fl'-Pﬂ') /4[7]/14 hew dinension r— 1.
By (1.7) APus shows thateach imeducible component W hpy dimension r—).



Now for fﬂwgeneml cane . We consider the product Y x z < [N, which s an adfme vanefy o - climepnd/on

Cts (Be3.05). Leb N be ﬂudlajunal iPrP | Pe At < p2" Tnen X" 15 somonghic fo I\ oy The

map P> PP consicler k [y .. %m Y-+ 4 n ] le [5ty - potn] 2 17 oy FAi v l”i[)“}--',rx"]“_'k[;“?)"'i"h]“jh-yynj
canoni(ai ) and uncler Hhis isomoyphism,y 12 orsaponds 4o (Y¥2) () D Jine [ hos dimension 11, cd

s v+5—n = [r+5)tp —2n, wereduwe +o proving the reyulf for thetuovaneties Y <z amd O m IN

Now 25 an infewecton of n hypersurfa®s x, =y, 2,=Yz, .- , =Y~ 50 we catn apply The special case

0 hes (ree our Noke: Dimepgion and @(-& in f/JD!udwﬂr)-[j

THEVREM 7.2 (Pwjechwe Dimension Theorem) Let ¥, 2 he vavehes ot dimensions v, s in P Then
evew] weducible compenent oF YN2Z han dimension 2 r+5~n. FRuvthevmore, If

v+s—nz0 then YAZ 15 HOVJGMP{T/_

PROOF Fintly asume 702#95 and let YNZ= W) U --- U We be the deomposchon o meducible
wmponent. Let U; =P bean affne opert with W, Ny; #£¢. Then (ynz)Nnu; s anvneumpij

closed subsetof /AT, and
(VOZ)OV; = WiNU; v --- v WeNV; (1)

Omiffing emphy Terms 1n unten, the Wy (\V; ave nonempty, closed, wedugible sets in IBY,

vo onz o hained m the other (cloryre s nw; m B s W, ro u,—nw\]'g Vi NW), = Wy € Wh,
& WWWC“CI‘W”)I”'GW () 15 Tiae meducible dewmiposruon of the intenechon of Hw +wo afine
vaviehes YOVi, ZNU; which Wave dimensions v, s v the Muqlargwmnk Bﬂmpygvrm Theorem

dimW, = dmWwW, NV =v+s—n

Bor the sevond resdlt, let c(N) and c(z) bethe wones over Y, Z in N (Ex 2.10) Then c(Y), ¢(2)

have dimewstons v+, s+ | reap. Fevthevmore, ¢(¥)0c(2)+ ¢ sine lgoth contan Fhe ongm
p=(2--,0) By Theatfine dimension Thegrem, C(¥) € (2) hen climension = (v+1) +Hat 1)~ (1)
—— LT (gep_Pno{—’ﬂwenoiﬂﬂ).Henw c(M)NC(2) contting sorme point @#:f;ffﬂ?c#gﬁ 0

=

WROLLARY Let Y, 2 be cunces sn P2 Then YNZ s mcﬂemp\a_

PROOF r=s=1,n=2 s r+s—n=0.7

WROLLARY Let Y, Z be hypenurfaco in ", W72 Then Y2 1s nonemp@_

Ngxl, wWe wome o ﬂ]ichﬁmﬁﬂm of the Hilbevt pelynomial o a pwjectwe uaneh\j_ e dea 1540 acsocale 4p each
projechws vanely PL a lynompl Py (z)e @ [2] o which we can o bt vanouy numervical imvanants,
we will detine Py staw ng fom e hom05gnow werdinate vng J(Y), Tn fact, move geverally , we will defne

a Hliher*I-PungDmIM fov any qvaced S-vnodule, wheve S = kfw,. ., ],

DEFINITON A yuwneyal polynomial s a Pviyhamml Plz) e Q] such that PGi) ez 4ordl W>>0,neZ

PROPOS (TION 7.3 () IF P(2) € B[] 15 a numiencal pelynoimal, then ther are rm‘egm lo,Cy. -, Cv such Hhat
P(z) = C"{i]* Cl(,fl)-f- o 4 oo

w hem.

()= 2= (aoren)

15 the binomal f.ue{‘flc;eﬂf' Funchon. In povhcular pPra)e 7 P allne Z.

(b) 1¢ FZ—>Z ang g‘i{.v.\c-h,g,qJ anel if there exist a numwiencql Pofymmmf axz)
such that the differena funchon D = f(nt+l) —fn) Jﬁqua!?’a R(n) Sor all 1330,
HMenthereexist a vivmecal po uormal P(2) such Hiat f(n) = p(n) fov all n>> 0.



See me‘\'ou\‘ ovevlenf for pwo@

-

?

PROE () By mcluchon on the degree of P, thecane of degree O betn sbvibng, Sine (Z)= ?Lr ad S
Y g 9 9

worng the division aijoni’ﬁm we cetn e xpreas avy polynemial Pe @ [2] of cleqree m n1he above
ﬁw:?, with co,..., ¢v e @. Tor any PolynDVﬂlGJ' P we clefine the ciffeventa ggfgnﬂmrﬂ{ AP by

AP(2) = pl{z+)—P(z)

Stne (F) = (,,—z_.,\, we howe

AF;Co( = \J-c.( & )"’"'—*'Cv'—l

L =2

By mducton Go,..., e e Z (TF Prsviumencal, clealy o i« AP) putthien ce € Z sme P(n) e Z for n>> 0.
(®) Wate

Q= a(i)Jr--- + &
with co,...,cr e Z. Let
p= Co(,_i,) 4o +Cr(zl)
Men BP=Q, 50 ML~ P)n)=0 forall 150, s0 (£- P)(n) = Tt wrstant crri for all >0, 10

Fln) = p(n) + Cra)
For all n>>0, ar vequived . The fact that P(n) +cvr 1s numencal i momechafe . ¥

Next, weneed sovie prepciratwns about giradeel modules. Let S be a graded ring. A graded S-modyle 1s an
S~wodule M, togetlier with adecomposition M= B geg H4 e abelon groups, £.4. 54 Me = Hyre.

For an :L:]\radecl module M, and aviy € €Z, we define the tunsted wodule P'T(Ef by shl%ﬁﬂg € placs +o e |oft,
re. T(€)q = Mdre. ¥ Misagvoded S-wnodule, we definethe annihilatyrof M, Am™ = fres)s. M= o}
Ths s o liomogenowa dead tn S Thenext reutt 15 the cnalogue for graded moduled ofcwell -levio wn reaul - d
Pov _[_3 modules over & Nethenan ving (ouv A £11 mles pslp). A submodule N S M5 o gradec submodule i

Ni= @dGZ(NnMd) "'e'} "F nelN and = 2!’!; ﬂd&l"r&&lt:h VI[EN (u; h{)h’l)

PROPOSJTION -4y Let M be o vionzew fuilely generated g aded module over o noethenan giadec ving .
Then theve exists a Athahon ©—= M°S H'e -- - = M7= I by gaded submodules,
such that fov each 3, M7/ pi-'= (5]pc)(€;) & Jacled modules, wheve 7 15 o
hormogeno s prime el of 5, €e 7z . The flbzrhon ts nokumgue, butforany such
Firhaton we clohave : '

(%) T 5 a homogenoun prime deal of S, then 12 Apn M <> 2T Aorsomer,
Fn pavheulav, e winimal elements of the et fu,.--) B } ave juak The imnimal
primesct My t-e- the pames which ave gl contaniing Ann™.

%) Rresch minimal pome of Iy the number of hmes which P ecewra 1 the seb f'r;,j_.[fp;g
} the

Efqual BM length of My over the [ocal ¥ing Sga. (and hienw is mdepend evito

PROO ) of N be any vozeyw jmc[.ad wiodule over S, gud lef @ =7Ann () be makivnal n 5 avnoug all anmhilators
of vionzew howiogenous elements of N. Clearly @ 15 pwpey, ehd we claim 15 pyiriie . Vo suppose a)l
ave hamogemws and cihe & (4 ¢ cleavly homugenows ), and a@ . Then abx=0,axF 0,0 Ann (a=)
i an cninilator of a ponzewo hompgenow element and a < Am(ex), o a= Aun(ax) b mmx]wgh{y.
Hene sina b.(ux) =0, be X aovequred. The submodule L= () =N s agraded submoclule onr{

=) S—LS'/FL)[*‘?) xeNe
cw gvaded S-vnodules.

Now wopisider the set of al] nonzevo 3mdec! submedules of M which ad it afithahon of the deaired +ype. The

aloove shows that Yhis set s nonemp?y. /-1 1s a noethenan wmodule, so theve s amarimal such rulomodule N.

If N = M we ave done. Othevunse Teve 1s an oppoviundy +o apply the abore to Hie nonzew graded moclule M/
Jofind a homegenony xeM—N with N+ Sx /N 2= (5]a)(-¢€) @ gvuded wodules, wnhaduhnﬂ mmimahﬂ
of N.Hena N=M ancd the deaned Altraton exists.



Proposition 1 (Hartshorne 7.4). Let M be a nonzero finitely generated graded module over a
noetherian graded ring S. Then there exists a filtration

0=M°cM'c...cM" =M

by graded submodules, such that for each i, M®/M‘~! is isomorphic as a graded module to
(S/p:)(£;) where p; is a homogenous prime ideal of S and £; € Z. The filtration is not unique, but
for any such filtration we do have:

(a) Ifp is any prime ideal of S, thenp O AnnM if and only if p 2 p; for somei. In particular the
minimal elements of the set {p1,...,pr} are just the minimal primes of M, i.e. the primes
which are minimal containing AnnM . Hence the minimal primes of any finitely generated
graded S-module are all homogenous.

(b) For each minimal prime p of M, the number of times p occurs in the set {p1,...,pr} is equal
to the length of M, over the local ring S, (and hence is independent of the filtration).

Proof. Let N be any nonzero graded module over S, and let a = Ann(z) be maximal in S amongst
all annihilators of nonzero homogenous elements of N. Clearly a is a proper homogenous ideal,
and we claim it is prime. For suppose a,b are homogenous elements of S with a ¢ a and ab € a.
Then ab-x =0 and a -z # 0, so Ann(az) is an annihilator of a nonzero homogenous element and
a C Ann(ax) so by maximality a = Ann(az). Since b - (ax) = 0 we have b € Ann(ax) and thus
b € a, as required. The submodule L = (z) C N is a graded submodule which is isomorphic as a
graded module to (S/a)(—e) where e is the degree of z.

Now consider the set of all nonzero graded submodules of M which admit a filtration of the
desired type. The above argument shows that this set is nonempty. Since M is noetherian, there is
a maximal such submodule N. If N # M there is an opportunity to apply the above to the nonzero
graded module M/N to find a homogenous element x € M — N with (N 4+ Sx)/N = (S/a)(—e)
as graded modules, contradicting maximality of N. Hence N = M and the desired filtration of
M exists.

(a) Suppose we are given such a filtration of M. Then for each ¢,

Ann(M'/M*™1) = Ann(S/pi) (4:) = ps

Consider the ideal b = p; N...Np, of S. We claim that b is the radical of the ideal AnnM . Since
b is a radical ideal and b O AnnM, one inclusion is clear. In the other direction, let b € b. Then
since p; = Ann(M?/M*~1) we have b"m = 0 for any m € M, so b is contained in the radical of
AnnM  as required.

It follows that if p is any prime ideal of S, then p contains AnnM iff. it contains b iff. it
contains one of the p;. The other claims now follow easily.

(b) We localise at the minimal prime p. Since M is finitely generated and S is noetherian, we
can ignore the grading and apply (A&M 3.14) to see that in the filtration

0=M)CM,C...CM] =M, (1)
we have
Ann(Mg/M;_l) = Ann ((Mi/Mi_l)p)
= Ann(M'/M'™1), = (pi)p
But (p;), will be Sy, and hence M, = M;~", unless p; C p, which can only happen if p; = p since

p is minimal. In the case where p; = p we have Mé/Mﬁ_l = (S/p)p = k(p) the quotient field of
S/p. Throwing out the trivial links in (??) we end up with a filtration

0=N"CN'C...CN* =M,

where s is the number of times p occurs in the set {p1,...,p,} (by (a) it occurs at least once).
Since as an S, module k(p) = S, /pSy, k(p) is a simple S, module and hence has length 1. Using
additivity of length and our modified filtration, we see that M, is an S, module of length s, as
required. O



Corollary 2. Let a be a proper homogenous ideal in S = klxg,...,x,] (n > 0). Then the minimal
primes of a are all homogenous.

Proof. Let M be the module S/a which is finitely generated, graded, nonzero and has annihilator
a. Now apply the previous Proposition. O

This means that we can apply the same techniques used in the affine case to find the irreducible
decomposition of a nonempty algebraic set Y = Z(a) in P*. Take a primary decomposition
a=q;N...Ng¢. Then /a is the intersection of the minimal primes of a, which are all homogenous:
va=piN...Np,. Hence

Y = Z(v/a) = Z(p1) U... U Z(p,) (2)

is the irreducible decomposition of Y.

Definition 1. If p is a minimal prime of a graded S-module M, we define the multiplicity of M
at p, denoted p, (M) to be the length of M, over S,. If M is nonzero and finitely generated then
0 < pp(M) < 0.

If M is a finitely generated graded module over the polynomial ring S = k[zy,...,x,] with
M = @, Mg then we can adapt the standard argument (see top of p.57 in our A&M notes) to
see that each My is a finite dimensional vector space over k. So we can define the Hilbert function
wm : Z — N of M by
QPM(K) = dimkMg

The following Theorem is an analogue of the normal dimension theorem for finitely generated
modules over noetherian local rings, which asserts an equality between the order of the Hilbert-
Samuel polynomial and the Krull dimension of the module.

Theorem 3 (Hilbert-Serre). Let M be a finitely generated graded module over S = k[zg, . .., zy].
Then there is a unique polynomial Py (z) € Q[z] such that ar(€) = Pa(€) for all sufficiently large
¢ > 0. Furthermore,

degPy(2) = dimZ (AnnM)

where Z denotes the zero set in P™ of a homogenous ideal.

Proof. Throughout we use the convention that the degree of the zero polynomial is —1, and the
dimension of the empty set is —1. So putting Py; = 0 the Theorem is true for M = 0.
Consider any exact sequence of nonzero finitely generated graded S-modules

0—M —M-—M'—0

Suppose the Theorem is true for M’ and M”. Then oy = @y + @a and we claim that
Z(AnnM) = Z(AnnM') U Z(AnnM"). This will follow from the fact that for two homogenous
ideals a,b we have Z(ab) = Z(a) U Z(b), and the equality

VAnnM = vV AnnM’ - AnnM”

One inclusion follows from AnnM’-AnnM"” CAnnM. If a annihilates M then aa belongs to the
product AnnM’-AnnM" so clearly AnnM C v/AnnM’- AnnM".

Since the Theorem is true for M', M" we have ppp () = Py (€) and @py(€) = Pagr(€) for
sufficiently large £. Since these values are all positive, the leading coefficients of Py, Pys» must
be positive, so putting Py; = Pyyr + Py we have

degPyr = deg(Pps + Pagrr)
= max{degPys,degPys }
= max{dimZ(AnnM"),dimZ(AnnM")}
= dimZ(AnnM)

where the last equality follows from a standard argument. Uniqueness of Pj; follows immediately
by considering the number of zeros possible for a polynomial over a field.



Let M be a nonzero finitely generated graded S-module. By (7.4) there is a filtration

0=M°cM'c...cM" =M

iapi—1 o (3)

M /M= = (5/pq)(4:)
where the minimal elements of the set {p1,...,p,} are the minimal primes over AnnM. Suppose
the Theorem were true for the modules S/p;. Then for any ¢ € Z we could use the change of
variables z — z+/£ to show the Theorem holds for (S/p;)(¢). Since M* = (S/p1)(¢1), the Theorem
would be true for M?!. The above discussion could then be applied to the exact sequence

0— M — M?* — (S/p2)(l2) — 0

to show that the Theorem was also true for M?2. Proceeding in this way, we would see that the
Theorem was true for M.

Now we have the necessary tools to prove the Theorem for all nonzero finitely generated graded
S-modules by induction on the integer dimZ(AnnM) > —1. Firstly suppose that dimZ(AnnM) =
—1, so the set Z(AnnM) is empty. Then since M is nonzero AnnM is proper and the only
prime ideal containing AnnM is (xo,...,x,). Hence in the filtration of M all the p; are equal
to (zg,...,x,), and to prove the Theorem for M it suffices to prove it for the module N =
S/(xo,...,xn). But on(¢) =0 for £ > 0 so putting Py = 0 shows that the Theorem is true for
N.

For the induction step, suppose that the Theorem holds for all N with dimZ(AnnN) < k and
let M be a nonzero finitely generated graded S-module with dimZ(AnnM) = k > 0 and filtration
given by (?7?). Since AnnM is a proper homogenous ideal, we can use (?77?) to write

Z(AnnM) = Z(VAanM) = Z(p1) U...U Z(p,)

So dimZ(p;) < k for all 4. To prove the result for M, it suffices to prove it for N = S/p as p ranges
over pi,...,pn. We can assume that p # (zo,...,z,) and hence that some x; ¢ p. Consider the
exact sequence

Tj

0 N N N 0

where N = N/z;N. Then pn»(£) = on(¢) —on(€ — 1) = (Apn)(¢ —1). On the other hand
N" = Nfa;N = 5/(p + () s0

Z(AnaaN")=Z(p+ (zj)) = Z(p) N H

where H is the hypersurface Z(z;). By construction Z(p) ¢ H so (7.2) and Ex 1.10 imply that
every irreducible component of Z(AnnN") has dimension dimZ(p) — 1. Hence

dimZ(AnnN") = dimZ(p) — 1 < k

Note that this holds even if the intersection Z(p) N H is empty, since by (7.2) this can only occur if
dimZ(p) = 0. By the inductive hypothesis there is a polynomial Py~ € Q[z] of degree dimZ(p) —1
with on(£) = Py (£) for all sufficiently large ¢ > 0. Since pn~(£) = (Apn)(¢ — 1) we can use
(7.3) to see that the Theorem is true for N = S/p, as required. O

Corollary 4. If we have an exact sequence of finitely generated graded S-modules
0— M — M-—M'—0
then Pay = Py + Py

Proof. Clearly par(€) = o (€) + @arv (€) for all £, so by considering sufficiently large ¢ we can
show that the polynomial Py; — Py;r — Py has infinitely many roots, hence is zero, as required. [

We have already seen that the Hilbert polynomial of the zero module is the zero polynomial. If
M 1is a nonzero module, we can calculate the Hilbert polynomial as long as we can find a filtration:



Proposition 5. Let M be a nonzero finitely generated graded module over S = k[xg,...,z,].
Then M has a filtration by graded submodules:

0=M°cM'c...cM" =M
M /M 22 (S/p3)(4;)

If P; is the Hilbert polynomial of (S/p;)(¢;), then Pyy = Py + ...+ Py.

(4)

Proof. Since M 2 (S/p1)(¢1) it is clear that Py, = P;. So beginning with i = 1 we can apply
the Corollary to the exact sequence 0 — M* — M1 — (S/p;11)(lir1) — O. O



DEFINITION The Pelynomal R of the Theorem s the Hilberf pelynomial of M.

PEFINITION T# Y= TP7 is an algebmic set of cliymension r; we dehne dhe Hilbert gulgmmm/ of 7 4o e the
Hilbert pelynwmal 7 of ifs horn ogerus ceordinate ving S(¥). (By The Theorem, it s ajoaiynommf
of degreer) wedehne the _Jggy_!;(’-_ of ¥ 4o be v! Hhires e leading coefherent of Ry

PROPOSITION 7.6 (@) IF JSIP”, ¥+ P then fhe deqree of Y s a posifwe mteger  (deqg = ©)
(8) Let Y=Y v Y, wheveY, and Y, have the s ame climension v and
dim( OV Y& Then deg? = deg™ + deg™.
(C\ 0\25 n-"r‘ = l

iveducible

(d) T¢E VTP s ah pevsurfacz whose 1dea) 1 3@Wemi‘ed by a homuﬂenowﬂ P""d“””‘fﬂ]
of degree cl, then deqH = d ( Tn other words, Tins del™ of-degrea s consistent wnth the
degree of a hyperzur;m_g_ ar deftied eavliev (1.4.21)

PROOF Since ‘."-frgé, Py 1s a nonzere polynomial of degree ¥=dim¥. By (7.3a), c{ej‘}:.—_ Co, which 1€ an ml‘ﬁger_
™ isa positive witeger becawse fiv €520 Ry (£) = Fyy (€} 7 O. Of wuve, deggp = O (ov1s undefined)

(b) Let 5,71, be the i eals of Y. ethey sel i gmpfy e reaylf i «}yw,rg{_ offierwide T AT s e ideal
of Y, Uz Thereisan exact sequence (T=T NT,) of finikely genevated graded mocluley

0— Sz —> S[z, @ S/, ¥, S/T+1y — ©

Where V(s ¥Ty +4Ta) = s —L+ L, + 15 Calcu'la.’rmg dimensions we fnd 1haf

5}:[;‘“5 f'j;,'z,_({) = ‘ff/I.FI;_('e) T fr,":r (€)

for €20 wehave (P, + Psjz)(€) = (Psix13 + 3z)(€) 0

}Qﬂ'—rl o P)‘fI,_ = ﬁ—fﬁ.}rl + PS['L

Now Z(Ti+T2) = Y, N whidi hao dimension < 7, jo the Ieadmj wethaent of Ps s the
sum ol -!‘neleudmj wefficienss of Prjz, and Psjz,.

(€) We calculate e Hilberd po bmomml of P Fisthe polynomial Py, where S = f2[%te)- -+ 1 Xn] For € >0,
fi(e)= (-Cin) o B == (FAR) In pavhcular o /eadm_g cvefficient s 1/, so degP"= 1.

(d) ¢ fes1s homogenow weducible poly of degree c| #hen we have an exacksequence of
jmded S-modulen

Bl o5 [§ oty S/(#)— o
Hena

Ve (€) = %le) — F(e—d)
Therefove we can find the Hilbevt Pagnnm.'al of H as

Pa@) = (31) = (=70

n

= Larmen- (2 0) — g(=4n—d) . (z—an)

= T,ILF(I“'Z'}"'—"”"I'*V‘]Z“-'" ;\"‘.[l—d?Z"d-l-----{—Y\—‘\-"d-}-h-d]'zhj}‘“*
= S(dr--xad)2" e d
= ndjg) znthe = Rt

Sin cimbH =n=1 we have degl- =d, asvequied.

NOTE Pavt (d) stavb with HE IP” closed and says, HAHE (£ wheve £1s homogenows of degree d, ond If
dimH=mn -1 then degH = d. (e awrumed £ imeducible jusk+o make ure diml4 =n— .

1\)0[{ bwvlcawa—si—mqt with £ and say degH=d, becawe Fhere is ﬁo'aaurqnf’ee I(z[e)) = (£)
(wnleas of covze, £ s ieducilo



Now we corviefo our main resull about-the mtevechon of « Pvt:jecl'vuf vawe-hj with ¢ htjper.rur;[acz, which s
a Pm,{-,p.{ eneralisahon of Bezolt's Theovern o hlghor\;mjecmjpam. Let Y [P~ be a projectwe uawaﬁj
of climension v. Lel I be a hypersuvface net confaming Y. then by (7.2) YOH=2zU--- U 2Z; where Zj ave
Javiehies of dimansion v—1L If r=0 Yisapomi 1o YO H= . Of'g@"“’”e YN Has nonemphy. Lek fij be e

hovnogenous prime deal of Zj. We defie the utepecton mulhphaty of Y and H along Zj + be
» -
BN e s TENNH$ Y i 4s
z(‘J,H,Z)P—/"‘?_&-( /(Ty—z—IH)) so Mg o< — <o

Heve Iy, T4 ave mﬁhombg\?l’mm ideals of Y end H The wiodule 7‘1_-:75/1“1 FIu hes mwwihﬁ«x]‘or Iy +IH;
and Z(Tr +Ta) = TOH, 5o Hj 1sa minimal prirve of M, and s the mulﬁp\ltéﬂ wihroduted cbove .

THEOREM 7.7 Let Y be avanely of dimension V> | n P, and let H be a hypeurface not contmning 4
Lel 2,,.., Zs be Thc nreducible Lgmpongmhof YNH.Then

s

Z;i[VaHizj)-dejzj = (deg¥)(degH)
J.‘:-

PROOF Let H be defined by The homogenow? ireducible pelynomial £ of degree d. Sine dim¥ 7| by (7.2) Y00
T s nonem , 5o Ty + 7 ,m',,mpamdml and, the intevection mulhfhuhw M H;Z) areal nenzew,
pesthwe mtegers . We constder e e Kelct sequene of-gradec| S -modules

0 —> (s/z+)(-d) _’c——a Sfzy —sM—> 0O
wheve M= 5/(Ty + Tu). Mis sexack becawe ¥ ¢ H. Takuﬂj -l [pevk Pctynomlab we Fnd that
Py(@) = R (2)— Py(z—d)

Ouy reautlt comen from compang Fhe leadm weffrcrents of- bothsides of this equaton. et Y have degree e.
Then Py(2z) = (€]¢l)z" + - - so on the vight wehave

(ereV2"+ oo — [ (&) (z=d)4--- ] = ; de)‘ 25 et (1)

Now considev the module M. By (7.4) M han « plbadon 0=M"< M's - - - = M=, whoe
ﬁlef'e"ff Mijri-1 ave of the fovrm (‘flq;)({?,'z_ Hene Py = 37, % where P; 15 the Hilbed polynomial
of (5/9:)(&;). TF 2(9;) 15 a projectwe vavely of dimension v andl dqgr&'l[f: then

Pl' = (-F,‘/(‘.[)zf;_*, e

Note that the shift €; dlves notaffect the leacing wefhciento Fr 5inw we are only intevested in the
.'eadmﬂ weffictentof P, we can 1gvore Hiose Pr ofdegree < r— 1. (we kvow dim YOH =r-1 From

The above discwssion, Jo degPr = r—1 ). Now JpanHt = 410N qa, 1o JTyram 1s Yhe m{'ev)echbn
of the mimmal primeain {9, .., 94} (which ave fhe minimal primsr containing Ty +TH) and hene TNH

is heunion of the =( g (g0 wmimal] . Bwy other c)osed iveclucible subselof YAH 1 conteined moene

of there 25 Uhe 20,.., 25 munt be the 2197), 9; minimal), hene 15 one of H 2i ov s dimension < r—)
(Ex1.lo) Hewe m fq,,..., 95} fhe mnimal elements are precuely Those with dimZ(9i) =T~ 1. 50 we ned
ynlycongider P; uath 9y ammmal privme of J7, 1.e., one of the primey Hy--- Hs f/DWPundmﬂhﬂ“ﬂ
2" Each one of fhese occus Moy (M) imes, so m[eac\mﬂwe dent of /M 15

< eg Z._) : i,(\/} H/ 2.}.)
g=1 (=1l

Jompavmg with (1) we have ourveaul}. 0y



COROLLARY 7.8 (Bézout’s Theorem) Let Y, Z be distinct cunen in IP?, having degrees o e. Lef
\f'ﬂZ‘-'- {FJ}..‘,},P;}.TMEH

Dy, z5 f) =de

PROOF The infewechon 1S uvanteed v be o fimle nonempty 2t of poins. We have onlﬂ by ohsewe Hhat

— apomt hao Hilhetd polynomial |, hente degree ). We have shown eavliev that i P= (ce,...,an) aistO
Then T(P) = (A Ho —Goiy. - ) Aidg — An3ly) (sce our nokes on LineavVaneties in $1), 5o T(P) s generated
by n Imearlj mclependent I\ neav Pulyﬂ orials, foHieve 1S an aulomogism ol fe[ae - 7] :denh{ymg I(P) with
(2te, .- %X -1 ) Moveover e automoiphisim 15 liMedr, henwe pres ewes the cleanzp_ of homogenoun ?&lﬂnomro‘};/

so ¥heve s an pormophis m of
[ P lQ):Ie,.u,xn]
(S/I(.P\)e_# ( /(1:\,._.,1’“ -1))_6

—] k[’xol...}ﬂn]{
C'J[o,- iy In-—lJe

THs Y&0|' hCIPCl "‘Dm‘jﬁai—ﬂﬂl |aﬂev UfC‘*'DI’ JPQCC ;r—ﬁ»eq on ’xn‘? he“m hm d[mammn ]} er?ﬂ“’fd. D

REMARK 1.8 Quy deforhon of mfewechon mulbiplicity m tevms of 4he hoprogenony wordinate g 15 diffevent fiom
The local d efmifion g wen earliov (Ex 5.44) Howevey, Fiseany +o show Hat #’hey (@imelde m Hu cane
el in bewections e} Pkmé‘ cUnel.

REMARKT-#.2 The proof of (7.4)

NOTE Tne mqfﬁpl‘{ﬂ‘h@ mn (7.2) are m}-ege»: >[ Soif V2 aw Cf”"'ﬂ’ld’ cuwes °1L dejma IJ hen [mnazj
YNZ i5a m’ljfelpomf. OF coume, cuvves of degree lave hyperplanes (1.¢. |ines 1n JP2) by (7.6). So
Juo cishnet lea w TPE meetat o dishnet po .

NOTE TfY, 2 avedishnct




