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1 Multiplicative Exponential Linear Logic

1.1 Formulas

The formulas of second order unit-free multiplicative exponential linear logic
(meLL) are generated by the following grammar, where X, X⊥ range over a
denumerable set of propositional variables:

A, B ::= X | X⊥ | A⊗B | A

&

B | !A | ?A | ∃X.A | ∀X.A | §A.

Linear negation is defined through De Morgan laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = B⊥ &

A⊥ (A

&

B)⊥ = B⊥ ⊗A⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X.A)⊥ = ∀X.A⊥ (∀X.A)⊥ = ∃X.A⊥

(§A)⊥ = §A⊥

Two connectives exchanged by negation are said to be dual. Note that the
self-dual paragraph modality is not present in the standard definition of meLL
[Girard, 1987]; we include it here for convenience. Also observe that full linear
logic has a further pair of dual binary connectives, called additive (denoted by
& and ⊕), which we shall briefly discuss in Sect. 5. They are not strictly needed
for our purposes, hence we restrict to meLL in the paper.

Linear implication is defined as A ! B = A⊥ &

B. Multisets of formulas
will be ranged over by Γ, ∆, . . .

For technical reasons, it is also useful to consider discharged formulas, which
will be denoted by ♭A, where A is a formula.

1.2 Proofs

Sequent calculus and cut-elimination. The proof theory of meLL can
be formulated using the sequent calculus of Table 1. This calculus, which
can be shown to enjoy cut-elimination, differs from the one originally given
by [Girard, 1987] because of the addition of the last three rules. All of them are
added for convenience. The paragraph rule actually makes this modality trivial,
as expressed by the following:

Proposition 1 For any A, §A is provably isomorphic to A in meLL.

Proof. It is not hard to see that there are two derivations D1, D2 of ⊢ §A⊥, A
and ⊢ A⊥, §A, from which one can obtain two derivations of ⊢ §A ! A and
⊢ A ! §A, respectively. Moreover, the derivations obtained by cutting D1 with
D2 in the two possible ways both reduce to the identity (i.e., an axiom modulo
η-expansion) after cut-elimination. "
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⊢ A⊥, A
Axiom ⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
Cut

⊢ Γ, A ⊢ ∆, B

⊢ Γ, ∆, A⊗B
Tensor

⊢ Γ, A, B

⊢ Γ, A

&

B
Par

⊢ Γ, A
⊢ Γ, ∀X.A

For all (X not free in Γ)
⊢ Γ, A[B/X ]

⊢ Γ, ∃X.A
Exists

⊢ ?Γ, A
⊢ ?Γ, !A

Promotion
⊢ Γ, A
⊢ Γ, ?A

Dereliction

⊢ Γ
⊢ Γ, ?A

Weakening
⊢ Γ, ?A, ?A

⊢ Γ, ?A
Contraction

⊢ Γ, A
⊢ Γ, §A

Paragraph

⊢
Daimon ⊢ Γ ⊢ ∆

⊢ Γ, ∆
Mix

Table 1: The rules for meLL sequent calculus.

Nevertheless, we shall consider subsystems of meLL in which the paragraph
modality is not trivial, and this is why we find it convenient to include it right
from the start. The mix rule, and its nullary version (here called the daimon
rule), are discussed more thoroughly at the end of this section. Basically, their
presence simplifies the presentation of proof nets.

This last point is very important to us. In fact, the backbone of our work is
a detailed analysis, in terms of computational complexity, of the cut-elimination
procedure of meLL. In sequent calculus, this is composed of rules which are
suitable reformulations of those originally given by [Gentzen, 1934] to prove his
Hauptsatz for classical logic (the calculus LK). As a consequence, most of them
are commutations, i.e., rules permuting a cut with another inference rule; only
a few of them act on derivations in a non-trivial way. This is why we consider
proof nets, an alternative presentation of the proof theory of meLL offering,
among other things, the advantage of formulating cut-elimination without com-
mutations: only the “interesting” rules are left.
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Proof-net links
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♭A . . .

A⊥ A
A⊥ A

axiom cut

cut

pax

Figure 1: Links.

Proof nets. The proof net formalism was introduced by [Girard, 1987,
Girard, 1996], and subsequently reformulated by other authors using slightly
different syntactical definitions. In this paper, we use a combination of the
presentations given by [Danos and Regnier, 1995] and [Tortora de Falco, 2003],
with a slight change in the terminology: the term “proof structure”, introduced
by [Girard, 1987] and traditionally used in the literature, is here dismissed in
favor of the term net. On the contrary, the term proof net, i.e., a net satis-
fying certain structural conditions (the correctness criterion), retains its usual
meaning.

In the following definition, and throughout the rest of the paper, unless
explicitly stated we shall make no distinction between the concepts of formula
and occurrence of formula. The same will be done for what we call links and
their occurrences.

Definition 1 (Net) A pre-net is a pair (G, B), where G is a finite graph-like
object whose nodes are occurrences of what we call links, and whose edges are
directed and labelled by formulas or discharged formulas of meLL; and B is a
set of subgraphs of G called boxes.

• Links (Fig. 1) are labelled by connectives of meLL, or by one of the labels
ax, cut, ♭, pax. Two links labelled by dual connectives are said to be dual.
Each link has an arity and co-arity, which are resp. the number of its
incoming and outgoing edges. The arity and co-arity is fixed for all links
except why not links, which have co-arity 1 and arbitrary arity. A nullary
why not link is also referred to as a weakening link. Par and for all links
are called jumping links.
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. . .

♭B1

A

♭Bn

!pax pax

!A

♭Bn♭B1

π

Figure 2: A box.

• The incoming edges of a link (and the formulas that label them) are referred
to as its premises, and are assumed to be ordered, with the exception of
cut and why not links; the outgoing edges of a link (and the formulas that
label them) are referred to as its conclusions.

• Premises and conclusions of links must respect a precise labeling (which
depends on the link itself), given in Fig. 1. In particular:

– edges labelled by discharged formulas can only be premises of pax and
why not links;

– in a for all link l, the variable Z in its premise A[Z/X ] is called the
eigenvariable of l. Each for all link is assumed to have a different
eigenvariable.

– in an exists link l, the formula B in its premise A[B/X ] is said to be
associated with l.

• Each edge must be the conclusion of exactly one link, and the premise of
at most one link. The edges that are not premises of any link (and the
formulas that label them) are deemed conclusions of the pre-net. (Note
that the presence of these “pending” edges, together with the fact that
some premises are ordered, is why pre-nets are not exactly graphs).

• A box is depicted as in Fig. 2, in which π is a pre-net, said to be contained
in the box. The links that are explicitly represented in Fig. 2 (i.e., the
pax links and the of course link) form the border of the box. The unique
of course link in the border is called the principal port of the box, while
the pax links are called auxiliary ports. We have the following conditions
concerning boxes:

a. each of course link is the principal port of exactly one box;

b. each pax link is in the border of exactly one box;

c. any two distinct boxes are either disjoint or included in one another.
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Figure 14: An mL3 proof-net corresponding to t101.

Definition 16 (Multiplicative light linear logic by levels) Multiplicative
light linear logic by levels (mL4) is the logical system composed of all mL3

proof nets π satisfying the following conditions:

(Weak) Depth-stratification: Each exponential branch (Definition 8) of π
crosses at most one auxiliary port.

Lightness: Each box of π has at most one auxiliary port.

It is not hard to see that mL4 is stable under cut-elimination, i.e., that a
suitable version of Proposition 6 holds. Indeed, the depth-stratification condi-
tion is needed precisely for that purpose: in its absence, one can find an mL3

proof net satisfying the lightness condition which reduces to a proof net no
longer satisfying it.

As expected, mL4 is related to mLLL. To see how, we consider the forget-
ful embedding of mLLL into meLL which simply removes paragraph boxes,
retaining only the corresponding paragraph links (recall that our definition of
meLL includes the paragraph modality). Observe that this embedding is com-
patible with cut-elimination: if π1 → π2, then π+

1 → π+
2 (see [Mazza, 2006]

for the details on cut-elimination with §-boxes). We can then see mLLL as a
subsystem of mL4, in the following sense:

Proposition 9 Let π be a mLLL proof net, and let π+ be its forgetful image
in meLL. Then, π+ is in mL4 and, for every link l+ of π+ whose conclusion
is not a discharged formula and which corresponds to a link l of π, we have
ℓ(l+) = d(l) (we remind that in mLLL proof nets the depth also takes into
account paragraph boxes, see Definition 10).

As already observed above, §A is not isomorphic to A in mL3 (or mL4).
However, it is not hard to check that in both systems the paragraph modality
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Figure 4: Axiom step.

cut

cut

B B⊥

A⊥A⊗

&

cut

A B B⊥ A⊥

A⊗B B⊥ &

A⊥

→

Figure 5: Multiplicative step.

∃ ∀

cut

∃X.A

A[B/X ]

∀X.A⊥
cut

A[B/Z]⊥A[B/X ]

A[Z/X ]⊥

→

Figure 6: Quantifier step; the substitution is performed on the whole net.

pax ! ?

♭ ♭
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...
...

. . .

. . .

cut
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Figure 7: Exponential step; ♭Γ is a multiset of discharged formulas, so one pax
link, why not link, or wire in the picture may in some case stand for several
(including zero) pax links, why not links, or wires.
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Cut-elimination

statement of strong normalisation
(from Pagani-Tortora de Falco “Strong Normalization 

 Property for Second Order Linear Logic”)



. . .

! ! ! !pax pax pax pax pax pax

? ? ?

cut cut

π

Figure 9: A chain of boxes causing an exponential blow-up in the size during
cut-elimination.

. . .

♭C1 . . . ♭Cn

♭C1

A1

♭Cn

Am

§ §pax pax

π

§A1 §Am

Figure 10: A §-box.

Box chains and light linear logic. The reason for the superexponential
blow-up in the size of mELL proof nets after each round can be understood
intuitively by considering the “chain” of boxes of Fig. 9. If the number of boxes
with two auxiliary ports in the chain is n, a simple calculation shows that there
will be 2n copies of π when all cuts shown are reduced. In general, the why not
links involved in a chain need to be binary; but their arity can be (very roughly)
bounded by the size of the proof net containing the chain, and since the length
of a chain can also be subjected to a similar bound, we end up obtaining the
superexponential blow-up mentioned above.

If we want to moderate the increment of the size of proof nets under cut-
elimination, by näıvely looking at Fig. 9 we are led to think of a simple method:
impose that boxes have at most one auxiliary port. This actually turns out
to work, and is the idea underlying Girard’s [Girard, 1998] definition of light
linear logic. Unfortunately though, this restriction is quite heavy in terms of
expressive power: in fact, while normalizable in polynomial time, mELL proof
nets using boxes with at most one auxiliary port are not able to compute all
polytime functions. This is the original reason behind the introduction of the
paragraph modality.

However, using the paragraph modality as we introduced it in meLL is not
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Figure 3: Rules for building sequentializable nets.

Sequent calculus and proof nets. The relationship between sequent cal-
culus and proof nets is clarified by the notion of sequentializable net, whose
definition mimics the rules of sequent calculus:

Definition 5 (Sequentializable net) We define the set of sequentializable
nets inductively: the empty net and the net consisting of a single axiom link are
sequentializable (daimon and axiom); the juxtaposition of two sequentializable
nets is sequentializable (mix); if σ, σ1, σ2 are sequentializable nets of suitable
conclusions, the nets of Fig. 3 are sequentializable; if

♭B1

. . .

?

♭Bn

. . .

?

♭B1 ♭Bn

σ

?B1 ?Bn A

. . .

is a sequentializable net, then the net
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σ
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?
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?AΓ

is sequentializable (contraction).

Proposition 2 ([Girard, 1996]) A net is sequentializable iff it is a proof net.

The above result, combined with Definition 5, gives a simple intuition for looking
at proof nets: they can be seen as a sort of “graphical sequent calculus”.

Cut-elimination. As anticipated above, formulating the cut-elimination pro-
cedure in proof nets is quite simple: there are only five rules (or steps, as we
shall more often call them), taking the form of the graph-rewriting rules given
in Figures 4 through 8. When a net π is transformed into π′ by the application
of one cut-elimination step, we write π → π′, and we say that π reduces to
π′. Of course, in that case, if π is a proof net, then π′ is also a proof net, i.e.,
cut-elimination preserves correctness.

The following notions, taken from [Tortora de Falco, 2003], are needed to
analyze the dynamics of proof nets under cut-elimination, and will prove to be
quite useful in the sequel:
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Cut-elimination. As anticipated above, formulating the cut-elimination pro-
cedure in proof nets is quite simple: there are only five rules (or steps, as we
shall more often call them), taking the form of the graph-rewriting rules given
in Figures 4 through 8. When a net π is transformed into π′ by the application
of one cut-elimination step, we write π → π′, and we say that π reduces to
π′. Of course, in that case, if π is a proof net, then π′ is also a proof net, i.e.,
cut-elimination preserves correctness.

The following notions, taken from [Tortora de Falco, 2003], are needed to
analyze the dynamics of proof nets under cut-elimination, and will prove to be
quite useful in the sequel:
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From sequent calculus proofs to proof-nets

sequent calculus proofs with the same proof-net
(from Davoren “A Lazy Logician’s Guide to Linear Logic” p.140, p.156, p.157)



From sequent calculus proofs to proof-nets

definition of switching
(note Baillot-Mazza is wrong, see Pagani-Tortora de Falco 

and Girard “Proof-nets: the parallel syntax for proof-theory”)
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Example of switching acyclicity



Example of switching cyclicity (non proof-nets)

a(9×0) at

cutj#oy
@ @

!t*3 !atom

a(9×0) at

cutj#oy
@ @

!t*3 !atom



From sequent calculus proofs to proof-nets

statement of sequentialisation theorem
(from Girard)


