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Curry-Howard correspondence

(modulo many details)

logic programming

Computable f : N — N
bint - bint

m admits a stratification f is elementary time

. and only promotes on < 1 premise f is polynomial time




Recall: Theorem (Girard)

A function {0,1}* — {0,1}* is “polytime”
if and only if it can be typed as a proof

7 of bint F bint which admits a stratification.

f:{0,1}* — {0,1}* computed by a Turing machine T with polyclock P

length P
copy bint F int int I int iterate T
cut | read off output
bint F bint bint F int : p
SR, QL
bint I bint ® bint bint ® bint F bint ® int bint, int - Tur
cut

bint F bint ® int bint ® int - Tur

bint - Tur Tur F bint

bint - bint

Upshot: m computes f




The formulas of second order unit-free multiplicative exponential linear logic
(meLL) are generated by the following grammar, where X, X range over a
denumerable set of propositional variables:

AB:=X| X' |A®B|ABB|!A|?74|3X.A|VX.A|§A.

Linear negation is defined through De Morgan laws:

(X))t = X+ (XH)*+ = X
(A B)Y = BL® AL (A% B = BtgAat
1AL = 24% (AL = 14t
(3X.A)L = vx.At (VX. AL = 3x.AL
(84)" = §A+

Two connectives exchanged by negation are said to be dual. Note that the
self-dual paragraph modality is not present in the standard definition of meLL
|Girard, 1987]; we include it here for convenience. Also observe that full linear
logic has a further pair of dual binary connectives, called additive (denoted by
& and @), which we shall briefly discuss in Sect. 5. They are not strictly needed
for our purposes, hence we restrict to meLL in the paper.

Linear implication is defined as A — B = A+ % B. Multisets of formulas
will be ranged over by I', A, ...

For technical reasons, it is also useful to consider discharged formulas, which
will be denoted by b A, where A is a formula.

Baillot, Mazza “Linear logic by levels and bounded time complexity”, 2009.



Sequent calculus
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Proof-net links

b A .
promotion

why not of course paragraph

Note: paragraph is used for polytime, not needed to encode elementary time functions.

Baillot, Mazza “Linear logic by levels and bounded time complexity”, 2009.
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Figure 4: Axiom step.

Figure 5: Multiplicative step.
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Figure 6: Quantifier step; the substitution is performed on the whole net.
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Figure 8: Paragraph step.

Figure 7: Exponential step; bI" is a multiset of discharged formulas, so one pax
link, why not link, or wire in the picture may in some case stand for several
(including zero) pax links, why not links, or wires.



Indexing of proof-nets

Definition 12 (Indexing) Let m be a meLL net. An indexing for w is a
function I from the edges of ™ to Z satisfying the constraints given in Fig. 11 and
such that, for all conclusions e, e’ of w, I(e) = I(€').

| | [BM] Prop 5, 6
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Figure 11: Constraints for indexing meLL proof nets. Next to each edge we
represent the integer assigned by the indexing; formulas are omitted, because
irrelevant to the indexing.

Definition 13 (Multiplicative linear logic by levels) Multiplicative lin-
ear logic by levels (mL3) is the logical system defined by taking all meLL proof
nets admitting an indexing.



Theorem to be proven

Definition 2 (Depth, size) Let o be a pre-net.

o A link (or edge) of o is said to have depth d if it is contained in d (nec-
essarily nested) boxes. The depth of a box of o is the depth of the links
forming its border. The depth of a link [, edge e, or box B are denoted resp.
by d(1), d(e) and d(B). The depth of o, denoted by d(o), is the maximum
depth of its links.

e The size of o, denoted by |o|, is the number of links contained in o, ex-
cluding auxiliary ports.

Definition 15 (Level) Let m be an mL® proof net, and let Iy be its canonical
indexing. The level of , denoted by ¢(m), is the maximum integer assigned by I
to the edges of w. Ifl is a link of m of conclusion e (or of conclusions ey, e in the
case of an axiom link), and if B is a box of m whose principal port has conclusion
e, we say that the level of |, denoted by £(1), is Ig(e) (or Iy(e1) = Ip(ez) in the
case of an axiom), and that the level of B, denoted by ¢(B), is Iy(e’).

Theorem 16 (Elementary bound for mL3) Let m be an mL? proof net of
size s and level [. Then, the round-by-round procedure reaches a normal form
in at most (I 4+ 1)23, steps.
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First encoding of 101 in mL3

bint® = Va (o — a) —o (N — a) — §(a — a))




Second encoding of 101 in mL3

bint' = Vo (o —o ) —o (!(Oé —o a) —o l(a —o O‘)))
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Figure 15: An example of nested boxes of identical level (much smaller examples
exist; we gave this one because we shall re-use it later on for different purposes).



Round by round procedure for reduction

(Here proof net = untyped proof net)

Definition 17 (Isolevel tree) Let m be a meLL proof net, and let e be an
edge of ™ which 1s the conclusion of a link | different from flat or pax. The
isolevel tree of e is defined by induction as follows:

e if [ is an axiom, why not, of course, or paragraph link, then the isolevel
tree of e consists of the link [ alone;

e otherwise, let eq1,...,ex (with k € {1,2}) be the premises of l; then, the
1solevel tree of e is the tree whose root is | and whose immediate subtrees
are the isolevel trees of e1,...,ex.

Definition 18 (Complexity of reducible cuts) Let 7 be a meLL proof net,
and let ¢ be a reducible cut link of w, whose premises are e1,es. The complexity
of ¢, denoted by fic, is the sum of the number of nodes contained in the isolevel
trees of e1 and ey. (Note that the isolevel trees of e1,es are always defined
because the premises of a cut can never be conclusions of flat or pax links).

Definition 19 (Weight of an mL® proof net) Let © be an mL® proof net
of level l. If k € Z, we denote by cutsy(m) the set of reducible cut links of m at
level k. The weight of w, denoted by o, is the function from N to N defined as

follows:
ar(i)= > e

cecuts;_; ()

[BM] Contractive order



Round by round procedure for reduction

Definition 21 (Cut order) Let 7 be an mL® proof net, and let cuts(w) be the
set of reducible cut links of w. We turn cuts(m) into a partially ordered set by
posing, for c,c € cuts(m), ¢ < ¢ iff one of the following holds:

o /(c) < (();
Or ¢(c) =4(c") and
e ¢ is non-contractive and ¢ is contractive;

e ¢ and ¢ are both contractive, involving resp. the boxes B and B', and

BXEB.

From now on, we shall only consider the cut-elimination procedure given by the
proof of Lemma 12, i.e., the one reducing only minimal cuts in the cut order.
More concretely, given an mL3 proof net 7, this procedure chooses a cut to be
reduced in the following way:

1. find the lowest level at which reducible cuts are present in 7, say ¢;

2. if non-contractive cuts are present at level 7, choose any of them and reduce
1t;

3. if only contractive cuts are left, chose one involving a minimal box in the
contractive order.



Proofs

Lemma 12 Let © be an mL3 proof net which is not normal. Then, there ezists

7w’ such that m — 7 and o < .

Proposition 13 (Untyped weak normalization) Untyped mL? proof nets
are weakly normalizable.

Definition 22 Let © be an mL3 proof net.

1. The size of level i of m, denoted by |w|;, is the number of links at level i of
m different from auziliary ports.

2. m s t-normal iff it contains no reducible cut link at all levels 57 < 1.

3. m is i-contractive iff it is (i — 1)-normal and contains only contractive cut
links at level 1.

Lemma 14 Let @ be an (i — 1)-normal proof net. Then, the round-by-round
procedure reaches an i-normal proof net in at most |x|; steps.

Lemma 15 Let m be an i-contractive proof net, such that 1 —* w' under the
round-by-round procedure, with ©' i-normal. Then, |7'| < 2|27T|.

Theorem 16 (Elementary bound for mL3) Let m be an mL3 proof net of
size s and level [. Then, the round-by-round procedure reaches a normal form

in at most (1 4+ 1)23, steps.




Admits stratification = elementary time
bint' = Vo !(a — a) —o (Na —o a) — l(a — a)))

Theorem (Girard, Baillot-Mazza, Danos-Joinet, Mairson-Terui)

A function f:{0,1}* — {0,1}* is elementary time
if and only if it can be typed as a proof in mL®

of level d with conclusion (bint')*,!“bint’.




Admits stratification + restricted promotion = polytime

bint® = Vo !(a —o o) —o (Mo —o @) —o §(av —o )

Definition 16 (Multiplicative light linear logic by levels) Multiplicative
light linear logic by levels (mL*) is the logical system composed of all mL3
proof nets m satisfying the following conditions:

(Weak) Depth-stratification: FEach exponential branch (Definition 8) of w
crosses at most one auxiliary port.

Lightness: Fach box of m has at most one auxiliary port.

Theorem 23 (Polynomial bound for mL#*) Let m be an mL* proof net of
size s, level [, and relative depth r. Then, the round-by-round procedure reaches

a normal form in at most (I + 1)3(T+2)l steps.

Theorem (Girard, Baillot-Mazza, Danos-Joinet, Mairson-Terui)

A function f:{0,1}* — {0, 1}* is polytime
if and only if it can be typed as a proof in mL*

of level d with conclusion (bint®)*, §%bint®.




