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Precis

BHK interpretation: intuitionistic proofs of A — B
give rise to functions Proofs(A) — Proofs(B)

* Can these functions be differentiated?

* What would such derivatives be good for?
1. Efficient (re)computation
2. Differentiable reasoning

3. Investigating logic vs physics
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History of derivatives in logic

Leibniz’s stepped reckoner (1670s)

Babbage’s difference engine (1830s)

Circuits and 2nd order differential equations
Automatic differentiation of real-valued programs
Ehrhard-Regnier’s ditferential lambda calculus (2003)

Ditferential linear logic
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History: L eibniz's stepped reckoner

6 (0

After a full rotation of the drum, the shaft rotates by nk
(if we halve the rotation caused by each tooth, while doubling the number)

A@D:nk& A0 =0,m2m,...
2T



History: L eibniz's stepped reckoner
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In the limit of infinitely many repetitions of this group of nine teeth

k d
dip = k@ kg W= v

- — /
2T 2T do nk




History: L eibniz's stepped reckoner

v
_ — n
db
Y = nb
(=)"
- U(1)
(=)" l
Upshot: The stepped reckoner gives a SO(Q) > SO(Q)
‘physical semantics' of the Church l l
numerals matching the denotational (=)" = ln]

semantics in vector spaces M2 (R) > M2 (R)



Derivatives In the syntax

* Ditterential linear logic adds a new deduction rule,
which produces the derivative of a proof in a
direction specitied by a new (linear) hypothesis.

T

. , 7'('(&1 —+ hCLQ) — 7T(CL1)
AFB (a1, a2) — lim a
1

!A, A |_ B (this is meaningless)

* In the best formulation diff is derived from
codereliction, cocontraction and coweakening.



Deduction rules for (intuitionistic, first-order) linear logic

I A AF B

(Dereliction): T A AFDB der

(Contraction): LA AAEE
ontraction): F,'A’AI—B ctr

| I AF B
(Weakening): T IAAFB weak

. . I'FA A AAFB L
(Axiom): TEA (Cut): NT.AEDB cut (Promotion):

"= A
' -1A

prom

r'-A A.BAFC A BAFC

(Left =) T A Barc " Left ®) § 4o B AFC "
. ATFB |
(Right —o): TE A op (Right ®): FFl_fl— AA®I_BB ®-R



Deduction rules for (intuitionistic, first-order) linear logic

. I'AAFB 001 : binty =!(A —< A) —o (1(A—o A) — (A — A
(Dereliction): FIA AL g 001 - binta = i ) — (U ) = )
AFA AFA |
AFA A A—oAFA
1A ) .
Contraction): F"A"A’Al_Bctr AFA A A—oAA—oAFA .
I'AAFB — L
REES AA—AA A AAFA ™"
AwAAwAAﬂAh%m{OBd
. T,AvFB (A o A) (A oA (A oAFA oA
(Weakening): F’!A’AI_Bweak 4 o A4 o A)FA <A ctr
2X —o R
- bint 4 "

L r'-A AAAFB | T A
AXlOm. . AR cu -2 rom
( S ara (Cut): =X F AF B t (Promotion): iy »

r'-A A.BAFC  I,A,B,A+C

(Left =) AT A oBAarc " (Left @) F X e B AF 0 *”

(Right —o): AlLFEB R (Right ®): kA AFD, .

'A-—oB A+ A®B



Deduction rules for ditferential linear logic

A AFB [ A AF B

(Dereliction): F, 'A, N der (Codereliction): T AALB coder
, VIAJVA AR B .. TVAAFB
(Contraction): T IAAFB ctr  (Cocontraction): T IAIAAFB ™"
. I'AFB . I'VAJA B
(Weakening): T A AF B weak (Coweakening): AL B coweak
(Axiom): A= A (Cut): L 11, FAA’Ié’g - B cut (Promotion): ;g I':'j prom

r'-A A.BAFC A BAFC

(Left =) T A Barc " Left ®) § 4o B AFC "
. ATFB |
(Right —o): TE A op (Right ®): FFl_fl— AA®I_BB ®-R



Deduction rules for ditferential linear logic

(Dereliction): IF 7’ !Ijl’,i Il__g der (Codereliction): 1;’7 !i’ﬁ ll__ g coder
(Contraction): Fjllﬁ;téZAl— l_BB ctr  (Cocontraction): F,F';lﬁ;f Al_ I_B 7 cocts
(Weakening): F,F'if AI_ I_B 7 weak (Coweakening): F’F':LZAI_ ;B coweak

- T
|1:7414|1_|_BB 4  is defined to be ,;ﬁ; fB ::t;

A AF B



Product rule as cut-elimination rule

aX

| \
Dy AvLA

diff
A A FLA
D n
n A ACA 1A, 1AFB
DA . — — cu
, - 'AIALAF B N
{ C
| .A,\.Hi—de A AFE
lA A +A AFB
dy ~AAS>
AArB T

A
=
=)

Proofs in differential linear logic are
: l
formal linear sums of proof trees ANAFE 5y




binty =!1(A —o A) — (I(A —o A) — (A — A)).
EFE=A—oA

repeat : !bint 4 — bint 4

c:omp?4

EF1E E.EVE
\EF+'E E)JE —oE EFE H’L
E+E \E,\E bints, E+ E -

L

EFIE EEE bint,, |E - EFE

E\E.\E.\E. bint,, bint, - E —r

\EVEVE, bint 4, bint 4 H E
\EE . bint 4, binty H E
bint 4, bint 4 - bint 4
'bint 4, 'bint 4 - bint 4
lbint 4 - bint 4

ctr

ctr

2X —o R

2% der

ctr



repeat

'bint 4 - bint 4
'bint 4, bint 4 F bint 4

diff

(S+eT)(S+eT) =SS+ (ST +T8S) +e*TT



Relation to calculus via coalgebras

* Following Ehrhard-Regnier we have defined
derivatives in the syntax, via new deduction rules
and cut-elimination rules.

* Do these syntactic derivatives capture the logical
content lying behind the semantic derivatives?

* |n particular, are they consistent with the role of
Church numerals in Leibniz’s stepped reckoner?

-+ Yes: because coalgebras



multiplication 1M : AR A — A

Algebras over a field k

uw:k — A unit

A AA—"2" . Az A
1Qm associativity m
\ \/
AR A — > A
A mE— A = L AQk
left unit u®1 1a right unit 1Qu
\/ \ \ \
A< AR A A < AR A



Coalgebras over a field k&

comultiplicaton A : A — AR A c: A —3 Lk counit

AR1

ARAR®A< AR A
A A
1QA coassociativity A
AR A< ~ A
A<= koA A Ak
A A A A
La left counit c®1 1a right counit | 1®c
A > AR A A = AR A

A A



Examples

polynomial algebra ring of dual numbers
klzy, ..., 2] klel/(e®) =k-1@k-¢
g2 =0
polynomial coalgebra dual of the ring of dual numbers
klzi,...,x,] (kle]/(e*)* =k- 1" Dk-&*
Alr™) =) a' @z Al)=1®1
1=0

Ae")=1Re" +e"®1



Consider a morphism of k-algebras

¥
klry, ..., xp)] > kle]/(e*)=k- 1D k-¢

p(T;) = Ni + e

It is straightforward to see that, for any polynomial f,

o(f) = F(A1, o An) + > s af,

L&
this gives rise to a bijection of k-algebra morphisms with pairs
, 1:1
Homk—Alg(k[$17”°7xn]7k[€]/(g )) ) > k" X kT

—

@ «— (A, 1) (point, tangent vector)



Universal coalgebra

The cofree coalgebra Cof (V') over a vector space V is a coalgebra
together with a linear map d : Cof (V') — V which is universal, in
the sense that for any coalgebra C and linear ¢ : C — V there

unigue morphism of coalgebras & such that

dod = ¢
d
Cof (V) >V
A
d
z ¢
C

Theorem: Cof(V) is the space of distributions with
finite support on V, i.e. all derivatives of Dirac distributions



Sweedler semantics |—| : LL — Vect
[A — B] = Homy([4], [B])
[A® B| = [A] ® [B]

[14] = Cof([A])

dereliction = universal linear map [!A] — [A4]
contraction = comultiplication [!A] — [!A] ® [!A]
weakening = counit [!A] — k

promotion = lifting of ['A]] — [B] to [!A] — ['B]



Sweedler semantics |—| : LL — Vect
[A — B] = Homy([4], [B])
[A® B| = [A] ® [B]

[14] = Cof ([A])

The Sweedler semantics is also a semantics of
differential linear logic, as follows:

m MA@ [A] , [14] ] , 18]
' | |

ArB - CofAD® 4] — Cof([4]

A, AF B D&v— 8,D



Homy,((k[<]/(£2))", V)
I ~
Homy, coatg((K[e]/(£2))*, Cof



How to differentiate a proof denotation

Given m:!A — B, a,B:A sothat |af,[8] € [A]

Cof([A]) = [14] — ™3]
(o], [5])—s
(Hel/ (€)' 3--~ [B] = Cof(IB)
(Ir(@)], )

T

The directional derivative of m at « in the direction of



Conciliation: syntax vs semantics

* The semantics of (intuitionistic, first-order) linear
logic In vector spaces uses cofree coalgebras to
model contraction, weakening and dereliction.

* Since the cofree coalgebra is made up of Dirac
distributions and their derivatives, this semantics is
naturally a model of differential linear logic.

* Linear logic secretly wants to be differentiated!



Conclusion/Questions

Derivatives are natural in (linear) logic.

Examples like the stepped reckoner suggest the use of
calculus in logic is justitied. Are there more convincing
mechanical examples of this kind?

The Sweedler semantics is a step in the direction of more
Interesting algebra and geometry. What is the logical
content of distributions with more general support?

Ditferential linear logic forms the basis for one approach to
integrating symbolic reasoning with neural networks (work
in progress with H. Hu).



