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we have now seen the beginning of the dictionary that relates geometry ( in the form
of affine varieties) to algebra (in the form of ideals) .

Given afield K
, polynomial

ring R=k[xy . . .in] and affine space 1A
"
= ti we have

• Tor I = ( fi, . . . ,fs >
,
☒ (1) = Nlf, . . - ifs ) ≤ /AT an affine variety

• For V ≤ AT an affine variety
,

ITN) ≤ R an ideal (finitelygenerated?)

• (f ,
,

. .
.,
fs> c- IN (fi, . . _

,
fs )) ( lemma CLO 1.4.7.

)

• if YW are affine varieties 4≤Wilf . I(4) ≥ IIW)

we have looked at the division algorithm, and you have been
"

getting yourhands dirty
"

in exercises working with polynomials .
But is all that algebra really geometry? Isn't it

just shuffling coefficients around ? Yes and Yes : the soul ofgeometry is in the

algebraicmanipulations and notthe pictures, which in any case will become close to

useless as soon aswe move beyond three variables .
It will take some time before

you are convinced of
this (maybe the Division Algorithm is the mostgeometric thing in Euclid) .

Lemma1 Let f- c- KIX] .
Then foraek

,
f-(a) = 0 if and only if ×- a /ft) .

[
is Zero or

Proof By Euclidean Division we can write f- = 9 /×-a) t r where deg (r) < deg (x-a) = 1

sore K
.

Then f-(a) = r so it is clear that if f/a) = 0 then ×-a/f. The

convene is easierto see . ☐
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Lemma 2 Let P= ( Pi, . .

-

,
Pn ) EIA? Then I/ { P } ) = ( × , - Pi, . . _

,
✗n
- Pn?

Proof the inclusion 2 is clear
.
For the reverse inclusion suppose f-c-ICP) or what is the

same f-117=0 . Suppose we collect terms towrite

f- = [ 9i( xz, . . _in )xÉ
i≥ 0

and run the division algorithm on f "

treating the xi for i≥2 as scalars
"

,

with ×,
- P

,
as the divisor, i. e. if

f- = gnxY + gu _ , xp
- '
+ -

- -

we subtract 9N ¥
_ '

(× ,
-13 ) to obtain

f- 9N × ,
" _ ' ( x, - Pi ) = f - 9N ×,

"
+ 9N Pix ,

" - I

(2-1)
= ( giv - it 9N Pi ) ×,

" - '
t - - .

now subtracting ( 9N - it 9N A) xp -4×1
- Pi ) and continuing in this fashion

we eventually obtain f- q( ×, - Pi ) = r where r is a polynomial in
the variables ✗2

,
. . _

, Xn . Hence

f- = qfx ,
- Pi ) t r (Xy . .

_pen )

Now apply the same algorithm to divide ✗2- Be into r
,
and so on

, obtaining

f- = Eik , 9 :(Xi - Pi) +7

with ✗ c- K
. By substitution f- (P) = 7 .

Hence if HP) = 0 then f is in
< × ,
- Pi

,
. . -

,
✗n
- Pn >

. ☐
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In the proof there was no reason we couldn't have divided by the Xi - Pi in some
other order . The order we chose was ×

,
> xz> - -

- meaning that

we prioritised terms with large × , - degree, then termswith large ✗a-degree, and so on .

What made thiswork was that once we were
"
done " dividing by Xi - Pi, . . _

,
Xi
-Pi

no xy . . _

, xi
's were re - introduced into our dividend r by subsequent divisions by

✗in
- Piti

,
- - -

,
an - Pn

. Why was that? In the first step the original

f- = gnxY + gu _ , xp
- '
+ -

- -

becomes the "first remainder
"
or dividend

r = f - 9N × ,
" - ' ( ×, - Pi ) = ( g. - it gn Pi ) ✗↑

- '
t 9 -2×7-2 + - - -

By def
"
, 9N ,9N - I C-

K [✗ 2, - - - Pin]
,
and so 9N - I + 9 N P, C- klxz, - - - inn]

. and the

coefficients of the other powers of ×, are unchanged . Of course P, c- K, butnote that

even if R were a polynomial in the xz, . . _

, In the logic would survive, and ateach step
the ×, - degree decreases until eventually our dividend R is in k /Xy .

.
_

,
Xn ]

. Suppose

we now divide by Xz - Pz, with R = hmtxs, . .
_

,
xn ) XP + hm - i (Xs, . .

_

,
In )xzM - 't - - -

R' = R - hm ✗↑
- '

(Xz- Pz ) = ( hm - it hm B)a
" - "

t - - .

Again thiswillwork outjust fine if Btk/✗3 . - -in ]
,
in the sense that we can continue

dividing by ✗a- Be until a remainder in 121×3 . _ pin]
.

But if 12 contains xz 's it will

potentially stop the ai - degree from decreasing , and it 12 contains x, 's then these may
be introduced into R

'
and we're back to the beginning again !
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If you're astute you'll notice the first problem is not a big deal . Suppose we replace
Xz
- Pz by ✗E - XE R' with B'c- 121×3, . .

_

,
In]

. Then our division looks like (l < K)

R' = R - hmxz"
-HE- x!Pi ) = ( hm _ , thnx! Pi ) am

-¥ . _ .

= Rim .sn?i+ethM-iXzM-kt . . .

butsince M -ktl < M we're still making progress .
This is of coursejust the familiar fact

that we match up leading terms in the polynomial division algorithm in one variable .

So division will make progress as long as Pz = xd k ' is "smaller " than ask in two senses :

'

itshouldn't involve ×, (which counts as
"

bigger
" than any power of ✗2) or powers of xz above K .

↑

Example 1 Let f,
= y

2-
xz
,
f- = z →E We claim if 2

= { (1-2,1-3,1-4) / te IR }
" e9ⁿᵈᵗ0

that I(2) = (fi
,
for>

.

It iseasy to check ☒Hi , f-a)
= 2 so

Lf , , fz> ≤ I/NI fi , fz )) = I(2) .

Now suppose f- C- I(2)

Dividing f, into f- gives f- = 9 ,
f
, t r, (x, 2-) t rz (×, z)y

Hence fort c- IR

0 = f-It2,1-3, t
") = r.lt?t4)trzlt2,t4)t3

substituting - t gives 0 = rile, t
" ) - rzlt } 1-411-3 so r.lt?-t4)-- 0

and Blt } t 4) 1-3 = 0 forall t .
Hence for t -1-0, rz (Ht4) = 0 . Thepolynomial

rz It, t4) in Rft] has infinitelymany roots and is therefore zero
. We have reduced

to proving I ( { (1-2,1-4) It c- IR} ) = <fi in 1121×12-7. Suppose g It2,1-41=0 for all -1,
and divide g. by 2- -x2 treating 2- as the "primary variable

"
so we obtain

g.
= q ( z - x2 ) t RK ) .

Then 0--911-3 t4) = Rtt2) for ant, so 12=0

and g c-<fi
, completing the proof that f e <fi ,fi.

Note the order y > z > × implicitly used here



⑤

ma⑦

In this Example we could solve the problem easily becausewe chose the right ordering
y > 2- > × and tailored our division process to this ordering in order that the remainders

became always
"

smaller? We now make these ideasprecise .

Monomial orderings

Let K be a field
.

We explained how monomials ✗
✗
= xp '

- - - In
"
in klxy . . -in] are

in bijection with tuples ✗ E IN
"

(form IN =≥≥o) and we freely interchange them .

We write ei = (0, . .
_

,
I
,
. .
.

,
0) so that ✗i

= xei
.

A total order < is a relation on a set 5 which is irreflexive ( Vs c- S not so s ) ,
transitive ( V-s.li

,
u c- S if set and tou then s < u) and total ( Ys, 1-ES s < tors = tort < s )

.

We write s > t for t < s , and s ≤ t for 5- t or sat, similarly s ≥ t .

Def A monomial ordering < on 121×1, . - -in] is a relation on IN
"

(or { ×
' }a c- IN

" ) satisfying

Ii ) < is a total order

Iii ) if a > p and TENT then att >Pto ( i. e. ✗
✗I> xp>F)

.

Liii) < is a well - ordering , that is, every nonempty subsets ≤ IN
"

has a smallestelement ( 1- e. Fs c- S ttt ES s ≤ t)
.

We do nothere (and never will ) define an order on general polynomials; we order only monomials .

DEI Given ✗if c- IN
"

we define ✗ >lex B if the leftmost nonzero entry of

x-p = (4
-fi, _ . _, an -An ) is positive . This is called lexicographic order, or let .

Example 2 ( 1,0, . . _

,
0 ) > lex (0, 1,0, . _ . ) >iex -

-
- > lex ( 0

,
. . _

,
0
,
1) so

24 > lex 712 >Iex
- - > lex X n .

Note ×
,
>(ex 72100.
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Warning As we flagged in Lecture 1,
"
a
"
is really a name for£

'
andsometimes

we use anothername
.

The monomial order, viewed as an order on IN }

does not care ; but if we say something like x > lex Y > lex Z what

we mean is (since always ke
' > lexx
"
>lex K

" ) that we are using
"
x
"

,

"

y
"

,

"
Z
" to denote resp. Xel, xe2, of

}
.

Lemma CLO 2.2.2 A total orderon IN
"

is a well-ordering it . every strictly decreasing sequence
✗ (1) > ✗ (2) > - - - in 1N

"

is finite .

Proof suppose ( INTL ) is a well-ordering and {✗ ( it} ?= ,
is a sequence with ✗ ( i ) ≥ ✗Citi )

for all i. Then the set {✗ lil } i has a least element ✗ IN) , and clearly ✗ Ii ) = ✗Citi ) for i≥N .

If every strictly decreasing sequence is finite and S≤ IN
"

is nonempty, let 6 be

the set of maximal chains ✗ 11) > -
- - > ✗ (n) in S of finite length .

This is nonempty
since we may choose any SES, and if it is not minimal choose s > t, and by hypothesis

this terminates with a finite sequence .

If 211 ) > . - - > ✗ In )
, Pll) > . _ . >plm ) are in E

and ✗ (n ) < pcm ) or ✗ In ) >Blm) we have a contradiction
,
hence ✗ (n) =P/m) .

This

common final entry in every sequence of 8 is a leastelement of S. ☐

Proposition CLO 2.2.4 Lie× is a monomial order .

Proof ( i) 4 ex is clearly imeflexive and transitive .

Iii) it ✗ 7,exp and TE IN
"

then ✗+8 HexPtt since

1×+81 - (Str) = x-P .

liii) we use the previous lemma . Suppose & ( l ) >lex ✗ (2) >lex ✗ (3) >
-

-
-

then we claim there exists N,
such that for i ≥Ni

,

✗ (i ) ,
= ✗ (2-+1) , ,

this is because ✗ Ii) >lex ✗ lit1) means either ✗ (i ) , = ✗ ( it 1) , or

✗ lit , > ✗ titi) , and there are finitelymany non - negative integers
less than 2 (1) 1 .

There must then be Nz such that ✗ Ii)z= ✗Lititz for

i ≥ Nz ≥Ni
,
and by induction forsome N, ✗ (c) = ✗ (it1) for i≥N

,

as required . ☐
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DEI Let f = [a aid be a nonzero polynomial, and < a monomial order.

• The multidegree off is

multideg (f) = max / ✗ c- IN
" / an -1-0 }

where the maxis w.int .
<

.

• If ✗ = multi deg (f) then the leading coefficient off is

LC(f) = Ax
,

the leading monomial off is

LM (f) = ✗
✗

and the leading term off is

LT(f) = a ✗ x?

Example 3 If x > lex Y Tex Z and f- = 3×2 + y
>
Z + ybz 8 then

x2 > lex Y
>
Z Hex yb 2-

°

,
LT(f) = 3×2

,
LC (f)=3

,
LM (f)= ×?

Lemma CLO 2.2.8 Let f
,g c-k[×, .

. _in] be nonzero .

Then

(i) multideg (f) + multideg (g) = multideg (1-9)

Iii) It ftg -1-0 then multideg (1-+9) ≤ max{ multideglfl.mu/tideg(g)} .

If in addition multideg (f)≠multideg(g) this is an equality.
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Remark Let < be a monomial order on k [ × , . -

= ✗n] . The axioms say if I
✗
< XP then

1%0< XPit but the convene also holds
.
If ✗

✗ + •
< XP +8 then by

totality we have either ✗
✗
< xp

,

⇐ XP or ✗✗ >XP . If a
✗
=XP lie . ✗=P)

then at8=p+8 a contradiction, and it at > xp then xttr > ✗Atta

contradiction .
Hence ✗

✗
< xp

.

Question can we have 1 > It for some ✗ ≠I in k[× , . . _

,
Xn] ?

Question what are the possible monomial orders on klx] ?


