## MAG Lecture 5 Dickson's Lemma

mags 1) 13/7/22

To understand the relationships among affine varieties  $V, W \subseteq |\mathbb{A}^n$  we need to understand the relation between their ideals  $\mathbb{I}(V), \mathbb{I}(W) \subseteq \mathbb{k}[x_1, ..., x_n]$ . Suppose we have  $\mathbb{I}(V) = \langle f_1, ..., f_r \rangle$  and  $\mathbb{I}(W) = \langle g_1, ..., g_s \rangle$ . Then

$$V \subseteq W \iff \mathbb{I}(W) \subseteq \mathbb{I}(\vee)$$

$$\iff 9 : \in \mathbb{I}(\vee) \quad |\leq j \leq S$$
algebraic  $\implies 9 : can be written as \sum_{i=1}^{r} a_{ji} f_i \text{ for some } a_{ji}$ 
grometric  $\implies 9 : vanishes on \vee for all \quad |\leq j \leq S$ 

Example Let 
$$L_1, L_2 \subseteq \mathbb{R}^3$$
 be the lines  $L_1 = \mathbb{V}(\mathbb{Z}, \mathbb{Y} - \mathbb{X}), L_2 = \mathbb{V}(\mathbb{Z}, \mathbb{Y} + \mathbb{X})$   
Then with  $f = \mathbb{Z} - (\mathbb{X}^2 - \mathbb{Y}^2)$  the "saddle" we have  $L_1 \cup L_2 \subseteq \mathbb{V}(f)$  since  
 $L_1 \subseteq \mathbb{V}(f), L_2 \subseteq \mathbb{V}(f)$  separately. This  
follows since  $f$  vanishes on both. This means  
 $\mathbb{I}(\mathbb{V}(f)) \subseteq \mathbb{T}(L_2) = \langle \mathbb{Z}, \mathbb{Y} + (-1)^2 \mathbb{X} \rangle$   
 $\mathbb{I}(\mathbb{V}(f)) \subseteq \mathbb{T}(L_2) = \langle \mathbb{Z}, \mathbb{Y} + (-1)^2 \mathbb{X} \rangle$   
 $\mathbb{I}(\mathbb{V}(f)) \subseteq \mathbb{T}(\mathbb{L}^2) = (\mathbb{Z} - (\mathbb{Y} + (-1)^{2+1})(\mathbb{Y} + (-1)^{1} \mathbb{X}))$   
But this is clear :  $f = 1.\mathbb{Z} - (\mathbb{Y} + (-1)^{2+1})(\mathbb{Y} + (-1)^{1} \mathbb{X})$   
We have two different ways of checking  $\mathbb{V} \subseteq \mathbb{W}$ ,

one more algebraic and one more geometric. Which is easier depends on the publicm

We see from this that the ideal membership problem (e.g.  $g_j \in \mathbb{I}(V)$ ) is fundamental in algebraic geometry: if we have some effective way of answering it, we can use this to effectively answer any question of the form  $V \subseteq W$ ?

To solve this problem we begin with a special class of ideals. The monomial ideals.

<u>Def</u> An ideal  $I \in k[x_1,...,x_n]$  is a <u>monomial ideal</u> if there exists a set  $\{x^{\alpha}\}_{\alpha \in A}$  of monomials (possibly empty and possibly infinite) such that  $I = \langle \{x^{\alpha}\}_{\alpha \in A}\rangle$ is the smallest ideal containing  $\{x^{\alpha}\}_{\alpha \in A}$ . Equivalently

$$I = \left\{ \sum_{\alpha \in A} b_{\alpha} x^{\alpha} \mid b_{\alpha} \in k[x_{1}, ..., x_{n}] \text{ and only finitely many nonzero} \right\}$$

Lemma Let  $I = \langle \{x^{\alpha}\}_{\alpha \in A} \rangle$  be a monomial ideal. Then

(i) 
$$x^{\beta} \in I$$
 iff  $x^{\alpha} | x^{\beta}$  for some  $\alpha \in A$ .  
(ii)  $x^{\beta} \in I$  iff  $x^{\alpha} | x^{\beta}$  for some  $x^{\gamma} \in I$   
(iii)  $f \in I$  iff every term of  $f$  is in  $I$ .  
(iii)  $f \in I$  iff every term of  $f$  is in  $I$ .

<u>Proof</u> (i) One direction is clear. For the other direction, suppose  $\mathbf{x}^{\beta} \in \mathbf{I}$ . Then for some  $b \in \mathbf{x} \in \mathbf{x}[x_1, \dots, x_n]$ 

$$\chi^{\beta} = \sum_{\alpha \in A} b_{\alpha} \chi^{\alpha}$$

$$= \sum_{\alpha \in A} \left( \sum_{\gamma} c_{\gamma \alpha} \chi^{\gamma} \right) \chi^{\alpha}$$

$$= \sum_{\alpha \in A, \gamma} c_{\gamma \alpha} \chi^{\gamma} \chi^{\alpha}$$
(rate k)

This shows every monomial with a nonzero wellicient in  $x^{\beta}$  (=RHS) is divisible by  $x^{d}$ , some  $d \in A$ .

(iii) If 
$$f \in I$$
 then writing  $f = \sum a_{\beta} x^{\beta}$  for  $a_{\beta} \in k$  and comparing  
to  $f = \sum_{\alpha \in A} b_{\alpha} x^{\alpha}$  for  $b_{\alpha} \in k[x_{1},...,x_{n}]$  as above we find all  
 $x^{\beta}$  with  $a_{\beta} \neq 0$  are divisible by some  $x^{\alpha}$ ,  $\alpha \in A \cdot \Box$ 

Corollary Two monomial ideals are the same if and only if they wontain the same monomials.



<u>Theorem CLO 2.4.5</u> (Dickson's Lemma) Let  $I = \langle \{x^d\}_{a \in A} \rangle$  be a monomial ideal in  $k[x_1, ..., x_n]$ . Then there is a finite subset  $A_0 \subseteq A$  with  $I = \langle \{x^d\}_{d \in A_0} \rangle$ .

<u>Proof</u> The proof is by incluction on n. In the base case n = 1, the set  $A \subseteq \mathbb{Z}_{\gg 0}$  has a least element  $\mathcal{M}$  and clearly  $\mathbb{I} = \langle \{x^{\alpha}\}_{\alpha \in A} \rangle = \langle x^{\mathcal{M}} \rangle$ .

Suppose the claim holds for n variables and let I be a monomial ideal in  $k[x_1, ..., x_n, y]$  generated by  $\{u^{\alpha}\}_{\alpha \in A}$  (noting  $u^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n} y^{\alpha_{n+1}}\}$ . If  $A \subseteq \mathbb{Z}_{>0}^{n+1}$  contained a least element, in the sense that for some  $M \in A$ we had  $u^{M} \mid u^{\alpha}$  for all  $\alpha \in A$  then again  $I = \langle u^{M} \rangle$  and we are done. But of course the relation  $M \leq \alpha$  iff.  $u^{M} \mid u^{\alpha}$  is not  $\alpha$  total order, and we need not have such a least element

Example Consider  $\langle x^2y^2, x^4y \rangle \subseteq k[x,y]$  where the monomials in the ideal are the "filled in" vertices below



So let us try minimal elements instead, like x2 y2, x4 y in our picture.

A monomial  $u^{\alpha}$ ,  $\alpha \in A$  is <u>minimal</u> if there is no  $\beta \in A$  distinct from  $\alpha$  with  $u^{\beta} | u^{\alpha}$ (i.e.  $\beta_i \leq \alpha_i$  for all i). We claim the set min (A) is finite. Since any  $u^{\alpha}$ ,  $\alpha \in A$ is divisible by a minimal  $u^{\beta}$ , this will show  $I = \langle \{u^{\alpha}\}_{\alpha \in A} \rangle - \langle \{u^{\beta}\}_{\beta \in \min(A)} \rangle$ is finitely generated and complete the inductive step. To see min (A) is finite, we compare A to its projection onto the "x-plane". That is, let  $B \in \mathbb{Z}_{\geq 0}^n$  be the set of all  $\beta$  such that  $\mathcal{A}^\beta y^m \in \mathbb{I}$  for some  $m \geq 0$ .



Set  $J = \langle \{x^{\beta}\}_{\beta \in B} \rangle \subseteq k[x_{0}...,x_{n}]$ . Let min (B) denote the set of minimal elements of B. If we take a monomial  $u^{d} = x^{\beta}y^{m}$  with  $\alpha \in A$  it may not be that  $\beta$  is minimal (see (3.1)). However if  $\beta \in B$  is minimal then there is a unique  $m \gg 0$  such that  $\alpha = (\beta, m)$ is in min (A). To see this, note there is by hypothesis  $\alpha = (\beta, m) \in A$  with  $\beta \geqslant \beta'$ and by minimality  $\beta = \beta'$ . If  $(\beta, m)$ ,  $(\beta, m')$  are both in A then one is smaller under  $\leq$ , and there is a least pair, proving the claim.

We have thus an injective map  $min(B) \longrightarrow min(A)$  sending  $\beta$  to this  $(\beta, m)$ . By the inductive hypothesis J can be generated by finitely many  $B_0 \subseteq B$ , and since  $min(B) \subseteq B_0$  this means min(B) is finite.

Let  $x^{\gamma}y^{k}$  be such that  $(\tau, k) \in min(A)$ . Then  $\gamma \geq \beta$  for some  $\beta \in min(B)$ . Suppose  $(\beta, m) \in min(A)$ . Then by minimality since  $\gamma \geq \beta$  we must have k < m. Thus  $x^{\gamma}y^{k}$  is "in the shadow" of one of the gray cubes in (4.1). But there are only finitely many of these! Suppose

$$\min(B) = \{\beta_1, \dots, \beta_r\} \quad \text{and} \quad (\beta_1, m_1), \quad (\beta_2, m_2), \dots, \quad (\beta_r, m_r) \in \min(A).$$

Let 
$$M = \max\{m: | 1 \le i \le r\}$$
. Then if  $(\mathcal{T}, k) \in \min(A)$  we have  $k < M$ .

In any given y-slice we can only have finitely many elements of min (A): for any k < M let  $B_k = \{\beta \in \mathbb{Z}_{\geq 0}^n \mid x^\beta y^k \in I\}$ , and  $J_k = \{\{x^\beta\}_{\beta \in B_k}\}$ . Then again by the inductive hypothesis min (Bk) is finite and if  $\beta \in \min(B_k)$  there is a unique m s.t.  $(\beta, m) \in \min(A)$  (note m may be < k), so we have maps



The domains of all these maps are finite and we claim they are jointly surjective: if  $(\mathcal{T}, \mathbb{A}) \in \min(A)$  then let  $\beta \in \mathcal{T}$  be in  $\min(B\mathbb{A})$ . If  $\beta \neq \mathcal{T}$  then  $x^{\beta}y^{\mathbb{A}} \in I$ wontradicts minimality of  $(\mathcal{T}, \mathbb{A})$ , so  $\mathcal{T} \in \min(B\mathbb{A})$  hence  $(\mathcal{T}, \mathbb{A})$  is in the image of  $\min(B\mathbb{A}) \longrightarrow \min(A)$ . From this we wonclude  $\min(A)$  is finite as claimed.  $\prod$ 

Corollary Let > be a relation on  $\mathbb{Z}^{n}$  satisfying (i) > is a total order (ii) if  $\alpha > \beta$  and  $\mathcal{T} \in \mathbb{Z}^{n}$ , then  $\alpha + \mathcal{T} > \beta + \mathcal{T}$ . Then > is a well-ordening if and only if  $\alpha > 0$  for all  $\alpha \in \mathbb{Z}^{n} > 0$ .