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To understand the relationships among affine varieties V, IN
≤ # we need

to understand the relation between their ideals IN )
,
-11W) ≤ k[✗ i

,
_ . .in] .

Suppose we have IN)=( fi, .
. _

,fr> and Illw ) = < 91, - -

, gs> .

Then

CLO Poop 1.4.8

y ≤ w ⇔ IIW ) ≤ IN)
⇔ 9J C- IN) 1≤j≤ s

algebraic → ⇔ gj can be written as I ;-] ajifi for some aji
geometric →⇔ gj vanishes on V for all l≤j≤ s

Example Let ↳↳ ≤ 1123 be the lines 4 =N(z, y - x ) , ↳ =N(z, ytx )

then with f = 2- - (x2- YZ) the
"
saddle

"

we have Liu ↳ ≤ ☒ (f) since

L
,
≤ ☒ (f)

,
↳ C- N (f) separately _

This
2-

^ follows since f- vanishes on both - This means

,why
?

i.

;
*HIM ≤ Iki)=↳y+⇔i× >

why? →
11

(f)

✗

<

: Butthis is clear : f = I. 2- - (9+1-1)
"" )(ytti )i✗)

.

4 We have two different ways of checking ✗≤W,

one more algebraic and one more geometric . Which is easier depends on the problem .

We see from this that the ideal membership problem leg . 9jEI( × ) ) is fundamental

in algebraicgeometry : if we hate some effective way of answering it, we can use this

to effectively answer any question of the form V≤W ?

To solve thisproblem we begin with a special class of ideals : the monomial ideals .
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Def An idea/ I≤ k[✗ ii. - in] is a monomial ideal if there exists a set {xD✗ c- A of

monomials (possibly empty and possibly infinite) such that I
= ( {xd} ✗ c-A>

is the smallest ideal containing {in} ✗ c-A. Equivalently

I = { [ ✗ ≤* bad / bxeklxi , . . -in] and only finitely many nonzero}

Lemma Let I = ( {i} ✗ c-A) be amonomial ideal .Then

4.) XP c-I iff
.

it XP for some ✗ c-A
. } ideal membership

Iii) XP c- I iH . sit XP for some WEI

g
problem is easy !

liii) f- c- I iff . every term off is in I.

Proof Ii ) One direction is clear . For the other direction , suppose XP c- I. Then

forsome b. a C- k[×, . . _in]

xp = {
• c-Abasi

Cox c- K

= E.
✗ c- a ( § Craw ) ✗

✗

= [
✗ c- A.r

Cra ✗%
&

This shows every monomial with a nonzero coefficient in KP f-RHS)

is divisible by xt, some ✗ c-A .

Iii ;) If f- c- I then writing f = [ apXP for apek and comparing
to f- =[ • ←a bad

&
for bin C- k[✗ ii.→ ✗ n] as above we find all

XP with ap -1-0 are divisible by some ok, ✗ c-A - ☐

Corollary Two monomial ideals are the same if and only if they contain the same monomials .
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Theorem CLO 2.4.5 ( Dickson's Lemma) Let I = ( {xd} ✗ c-A) be a monomial ideal

ink /× , . . - in] . Then there is a finite subset Ao
≤A with I = ( { x%e # ◦>.

Proof the proof is by induction on n .

In the base case n-1, the setA ≤2≥ ◦ has a

least elementµ and clearly I
= < { x%ea > = <xD.

Suppose the claim holds for n variables and letI be a monomial idea / in

k[ × , . . -in, y ] generated by {u%eA (noting = xp '
-

- - xntnytnt ' ) .

If A ≤ 25¥ contained a least element, in the sense that for someMEA
we had um I u✗ for all ✗EA then again I = <um> and we are done .

Butof course the relationµ≤ diff . UM 1K is not a total order, and we

need not have such a least element

Example Consider ↳Ey } My > ≤
'KAY] where the monomials in the ideal

are the
"filled in" vertices below

L2
^

: i

- - t 4- - ii. - i -

i

* - - t - .

✗292 / x4y2
'

l
'

'

x4y 1×4 y2 ( 3. 1)
I 2292 1 1

I 1 ( I

-

. -
-

y
- i- Fo - - -

i i i.
✗ 4g

> 2
,

so let us try minimal elements instead , like x2y2, ✗
"
y in our picture .

A monomial uh, ✗ c- A is minimal if there is no PEA distinct from ✗ with UP / uh

4-e. Pi ≤ ✗ i for all i ) . We claim the set min (A) is finite .

Since any us ✗ c-A

is divisible by a minimal UP, this will show I
= < {A} ✗ c-A) = < { UP}p c-min (A)>

is finitely generated and complete the inductive step .
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To see min (A) is finite, we compare A to its projection onto the "
✗- plane " .

That is
,
let B. ≤ 23,0 be the set of all P such that XPym c- I forsome m≥ 0 .

i f i

y
^ I E.

•Ñym÷ ¥9k 14.1 )
1- i.

,
I

- -
.
. - -

- -

'

-

'

iii.
- -

-xp 2 "

- - - - - xr- - -
- - - - - -

x-p , :-.
.

.

>

Set F-( {XP} peps> ≤ k[✗ is . -
-in]

.

Let min (B) denote the setof minimal elements

of B. If we take a monomial uh = ✗Pym with ✗ c- A it may not be that p is minimal

(see ( 3.D) . However if B c- B is minimal then there is a unique m≥ 0 such that ✗
= (Gm )

is in min /A) . To see this, note there is by hypothesis ✗ = (Blm ) c-A with P ≥ P
'

and by minimality p =p ! If I Am) , (B, M
' ) are both in A then one is smaller under ≤

,

and there is a least pair, proving the claim .

We have thus an injective map min (B)→ min (A) sending p to this (Gm) .

By the inductive hypothesis J can be generated by finitely many Bo≤ B
,
and since

min (B) ≤ Bo this means min (B) is finite .

Let Wyk be such that (Rk ) c- min (A) . Then 8≥A forsome B.c- min (B) . Suppose

1ps, m ) c- min (A) .

Then by minimality since 8≥P we must have K < m . Thus

Wyk is
"
in the shadow

"

of one of the gray cubes in 14 . 1)
.

Butthere are only finitely
many of these

! suppose

min /B) = {By .
. .

/ Pr} and 1A, mi ) , 1Pa , ma 1, . . .

,
/Pr, Mr) c-min (A)

.

Let M = max {mil I≤i≤r }
.

Then if (T, K ) c- min /A) we have KLM .
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In
any given y - slice we can only have finitely many elements of min IA) : for any

K< M let BK = { p c-25
, ◦

I XPyk E I}
,
and JK = < { XP}p c- Bk> .

Then again

by the inductive hypothesis min (BK) is finite and it BE min (BK) there is a unique ns.t .

(Gm ) C- min (A) (note m may be < K) , so we have maps

min (B) > min (A)
'

fmin (Bo ) -

.
.

min IBM -1)

The domains ofall these maps are finite and we claim they arejointly surjective : it

(T, K) c- min (A) then letp ≤ 8 be in min (Bk) . If p ≠ 8 then ✗By
k
c- I

contradicts minimality of IT, K), so ✗c- min /Bk) hence MK ) is in the image of
thin /Bk )→ min /A) . From this we conclude min /A) is finite as claimed . ☐

Corollary Let > be a relation on 2%0 satisfying

lil > is a total order

Iii) it ✗> B and TE In≥ ◦ then ✗+8>At8-

Then > is a well-ordering itand only if ✗ ≥ 0 for all ✗ c-25,0
.


