Exercise L6-7

We must show that \sim as defined in the question is reflexive, symmetric and transitive.

Reflexivity: Let $(U, f) \in S_x$, so that U is an open subset of X containing x and $f: U \to \mathbb{R}$ is a continuous function. By letting W = U, we see that W satisfies:

- $W \subseteq U \cap U$ since $W = U = U \cap U$
- W is open since W = U and U is open
- $x \in W$ since $x \in U$ and W = U
- $\bullet \ f|_W = f|_W.$

So indeed there does exist W such that $W \subseteq U \cap U$ and W is open, $x \in W$ and $f|_W = f|_W$. Thus, $(U, f) \sim (U, f)$ and so \sim is reflexive.

Symmetry: Let $(U, f), (V, g) \in S_x$. We have:

$$\begin{split} (U,f) \sim (V,g) &\iff \exists \, W \subseteq U \cap V \text{ s.t. } W \text{ is open, } x \in W \text{ and } f|_W = g|_W \\ &\iff \exists \, W \subseteq V \cap U \text{ s.t. } W \text{ is open, } x \in W \text{ and } g|_W = f|_W \\ &\iff (V,g) \sim (U,f). \end{split}$$

Hence $(U, f) \sim (V, g) \iff (V, g) \sim (U, f)$ and we conclude \sim is symmetric.

Transitivity: Let $(U, f), (V, g), (W, h) \in S_x$ and suppose that $(U, f) \sim (V, g)$ and $(V, g) \sim (W, h)$. We have

$$(U, f) \sim (V, g) \implies \exists A \subseteq U \cap V \text{ s.t. } A \text{ is open, } x \in A \text{ and } f|_A = g|_A$$

 $(V, g) \sim (W, h) \implies \exists B \subseteq V \cap W \text{ s.t. } B \text{ is open, } x \in B \text{ and } g|_B = h|_B$

Let $C = A \cap B$. Then:

- $C \subseteq U \cap W$ since $C = A \cap B \subseteq A \subseteq U \cap V \subseteq U$ and $C = A \cap B \subseteq B \subseteq V \cap W \subseteq W$
- C is open since A and B are open, so $C = A \cap B$ is open by property (T2) of topological spaces
- $x \in C$ since $x \in A$ and $x \in B$ implies $x \in A \cap B = C$
- $f|_C = h|_C$ since $(C \subseteq A \text{ and } f|_A = g|_A \text{ implies } f|_C = g|_C)$ and $(C \subseteq B \text{ and } g|_B = h|_B \text{ implies } g|_C = h|_C)$, so that $f|_C = g|_C = h|_C$.

Hence there exists C such that $C \subseteq U \cap W$ and C is open, $x \in C$ and $f|_C = h|_C$. Thus, $(U, f) \sim (W, h)$, and we have proved that \sim is transitive.

To conclude, \sim is reflexive, symmetric and transitive so is an equivalence relation on S_x .

Exercise L6-8

We must show that \sim as defined in the question (i.e. to denote Lipschitz equivalent) is reflexive, symmetric and transitive.

Reflexivity: Let d be a metric on X. For any $x, y \in X$, we have

$$1 \times d(x, y) \le d(x, y) \le 1 \times d(x, y)$$

so letting h=1 and k=1, we have $hd(x,y) \le d(x,y) \le kd(x,y)$ for all $x,y \in X$. Hence $d \sim d$ so \sim is reflexive.

Symmetry: Let d_1, d_2 be metrics on X. We have

$$d_{1} \sim d_{2} \iff \exists h, k > 0 \text{ s.t. } hd_{2}(x,y) \leq d_{1}(x,y) \leq kd_{2}(x,y) \, \forall x,y \in X$$

$$\iff \exists h, k > 0 \text{ s.t. } hd_{2}(x,y) \leq d_{1}(x,y) \text{ and } d_{1}(x,y) \leq kd_{2}(x,y) \, \forall x,y \in X$$

$$\iff \exists h, k > 0 \text{ s.t. } d_{2}(x,y) \leq \frac{1}{h} d_{1}(x,y) \text{ and } \frac{1}{k} d_{1}(x,y) \leq d_{2}(x,y) \, \forall x,y \in X$$

$$\iff \exists h, k > 0 \text{ s.t. } \frac{1}{k} d_{1}(x,y) \leq d_{2}(x,y) \leq \frac{1}{h} d_{1}(x,y) \, \forall x,y \in X$$

$$\iff \exists h', k' > 0 \text{ s.t. } h'd_{1}(x,y) \leq d_{2}(x,y) \leq k'd_{1}(x,y) \, \forall x,y \in X \quad (h' = \frac{1}{k} \text{ and } k' = \frac{1}{h})$$

$$\iff d_{2} \sim d_{1}$$

Hence $d_1 \sim d_2 \iff d_2 \sim d_1$ and we conclude \sim is symmetric.

Transitivity: Let d_1, d_2, d_3 be metrics on X and suppose $d_1 \sim d_2$ and $d_2 \sim d_3$. We have

$$d_1 \sim d_2 \implies \exists h, k > 0 \text{ s.t. } hd_2(x, y) \le d_1(x, y) \le kd_2(x, y) \forall x, y \in X$$

 $d_2 \sim d_3 \implies \exists h', k' > 0 \text{ s.t. } h'd_3(x, y) \le d_2(x, y) \le k'd_3(x, y) \forall x, y \in X$

Let h'' = hh' and k'' = kk'. Then h'', k'' > 0, and using the above we have, for all $x, y \in X$,

$$h''d_3(x,y) = hh'd_3(x,y) \le hd_2(x,y) \le d_1(x,y) \le kd_2(x,y) \le kk'd_3(x,y) = k''d_3(x,y).$$

Hence there does exist h'', k'' > 0 such that $h''d_3(x,y) \le d_1(x,y) \le k''d_3(x,y)$ for all $x,y \in X$, so $d_1 \sim d_3$. Thus \sim is transitive.

To conclude, \sim is reflexive, symmetric and transitive so is an equivalence relation.

Exercise L6-9

Let d_1, d_2 be metrics on X and suppose that $d_1 \sim d_2$. Let \mathcal{T}_{d_1} and \mathcal{T}_{d_2} be the topologies associated with (X, d_1) and (X, d_2) , respectively. We want to show $\mathcal{T}_{d_1} = \mathcal{T}_{d_2}$, which we will do by showing that $\mathcal{T}_{d_1} \subseteq \mathcal{T}_{d_2}$ and $\mathcal{T}_{d_1} \supseteq \mathcal{T}_{d_2}$.

Part 1: First, we'll show that $\mathcal{T}_{d_1} \subseteq \mathcal{T}_{d_2}$. Let $U \in \mathcal{T}_{d_1}$, then $U \subseteq X$. Fix any $x \in U$. Then since $U \in \mathcal{T}_{d_1}$, there exists $\epsilon > 0$ such that

$$\{y \in X \mid d_1(x, y) < \epsilon\} \subseteq U. \tag{1}$$

Now, since $d_1 \sim d_2$, there exists h, k > 0 such that $hd_2(x, y) \leq d_1(x, y) \leq kd_2(x, y) \forall y \in X$, in particular, there exists k > 0 such that $d_1(x, y) \leq kd_2(x, y)$ for all $y \in X$. Note that this implies

$$\{y \in X \mid kd_2(x,y) < \epsilon\} \subseteq \{y \in X \mid d_1(x,y) < \epsilon\}$$
(2)

since for any $a \in \{y \in X \mid kd_2(x,y) < \epsilon\}$, we have $kd_2(x,a) < \epsilon$, which implies $d_1(x,a) \le kd_2(x,a) < \epsilon$ so that $d_1(x,a) < \epsilon$ and hence $a \in \{y \in X \mid d_1(x,y) < \epsilon\}$.

Now let $\epsilon' = \epsilon/k$, then $\epsilon' > 0$ (since $\epsilon, k > 0$) and

$$\{y \in X \mid d_2(x,y) < \epsilon'\} = \{y \in X \mid d_2(x,y) < \epsilon/k\}$$
 (since $\epsilon' = \epsilon/k$)

$$= \{y \in X \mid kd_2(x,y) < \epsilon\}$$
 (by (2))

$$\subseteq U.$$
 (by (1))

So there does exist an $\epsilon' > 0$ such that

$$\{y \in X \mid d_2(x,y) < \epsilon'\} \subseteq U.$$

Since $x \in U$ was arbitrary, we have that for all $x \in U$ there exists $\epsilon' > 0$ such that $\{y \in X \mid d_2(x,y) < \epsilon'\} \subseteq U$, and together with $U \subseteq X$ this implies that $U \in \mathcal{T}_{d_2}$. So $U \in \mathcal{T}_{d_1}$ implies $U \in \mathcal{T}_{d_2}$, hence $\mathcal{T}_{d_1} \subseteq \mathcal{T}_{d_2}$.

Part 2: Showing that $\mathcal{T}_{d_1} \supseteq \mathcal{T}_{d_2}$ is similar to part 1. Indeed, simply notice that $d_1 \sim d_2$ implies $d_2 \sim d_1$ by symmetry, then use the same argument as part 1 but with 1s and 2s swapped wherever necessary.

To conclude, we have $\mathcal{T}_{d_1} \subseteq \mathcal{T}_{d_2}$ and $\mathcal{T}_{d_1} \supseteq \mathcal{T}_{d_2}$, which implies $\mathcal{T}_{d_1} = \mathcal{T}_{d_2}$ as required.

Exercise L6-10

To show that the metrics d_1, d_2, d_{∞} on \mathbb{R}^n , where $n \in \mathbb{N}$, are all Lipschitz equivalent, it suffices to show $d_2 \sim d_1$ and $d_2 \sim d_{\infty}$ and the rest will follow from symmetry and transitivity.

Part 1 (show $d_2 \sim d_1$): We will show that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$n^{-1/2}d_1(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le d_1(\mathbf{x}, \mathbf{y}). \tag{1}$$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and let $\mathbf{x} = (x_1, x_2, \dots, x_n)$, $\mathbf{y} = (y_1, y_2, \dots, y_n)$. To prove the right-hand inequality of (1), notice that by expanding the LHS below, we get

$$\left(\sum_{i=1}^{n} |x_i - y_i|\right)^2 = \sum_{i=1}^{n} |x_i - y_i|^2 + 2 \sum_{1 \le i < j \le n} |x_i - y_i| |x_j - y_j|$$

$$\geq \sum_{i=1}^{n} |x_i - y_i|^2 \qquad \text{(since } |x_i - y_i|, |x_j - y_j| \ge 0 \text{ for all } i, j \in \{1, 2, \dots, n\})$$

$$= \sum_{i=1}^{n} (x_i - y_i)^2.$$

Taking square roots (note both LHS and RHS are non-negative), we get

$$\sum_{i=1}^{n} |x_i - y_i| \ge \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \quad \text{i.e.} \quad d_1(\mathbf{x}, \mathbf{y}) \ge d_2(\mathbf{x}, \mathbf{y}).$$

Now we'll prove the left-hand inequality of (1). For $i \in \{1, 2, ..., n\}$, let $a_i = |x_i - y_i|$. Then $a_i \ge 0$ for each i. We have

$$\sum_{1 \leq i < j \leq n} (a_i - a_j)^2 \geq 0$$
 (squares are non-negative)
$$\implies \sum_{1 \leq i < j \leq n} a_i^2 - 2a_i a_j + a_j^2 \geq 0$$

$$\implies \sum_{1 \leq i < j \leq n} a_i^2 + a_j^2 \geq 2 \sum_{1 \leq i < j \leq n} a_i a_j$$

$$\implies (n-1) \sum_{i=1}^n a_i^2 \geq 2 \sum_{1 \leq i < j \leq n} a_i a_j$$

$$\implies n \sum_{i=1}^n a_i^2 \geq \sum_{i=1}^n a_i^2 + 2 \sum_{1 \leq i < j \leq n} a_i a_j = \left(\sum_{i=1}^n a_i\right)^2$$

noting that the second last line aboves follows since in the sum $\sum_{1 \leq i < j \leq n} a_i^2 + a_j^2$, each term of the form a_i^2 appears exactly n-1 times, once in each of $a_1^2 + a_i^2$, $a_2^2 + a_i^2$, ..., $a_{i-1}^2 + a_i^2$, $a_i^2 + a_{i+1}^2$, ..., $a_i^2 + a_n^2$. Anyway, by substituting back $a_i = |x_i - y_i|$, we get

$$n \sum_{i=1}^{n} |x_i - y_i|^2 \ge \left(\sum_{i=1}^{n} |x_i - y_i|\right)^2$$

$$\implies \sqrt{n \sum_{i=1}^{n} |x_i - y_i|^2} \ge \sum_{i=1}^{n} |x_i - y_i| \qquad \text{(note both sides were non-negative)}$$

$$\implies \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \ge n^{-1/2} \sum_{i=1}^{n} |x_i - y_i|$$

$$\implies d_2(\mathbf{x}, \mathbf{y}) \ge n^{-1/2} d_1(\mathbf{x}, \mathbf{y}).$$

Thus, we have proved (1) holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. It immediately follows that $d_2 \sim d_1$, as letting $h = n^{-1/2} > 0$ and k = 1 > 0, we see that these values satisfy $hd_1(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le kd_1(\mathbf{x}, \mathbf{y}) \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Part 2 (show $d_2 \sim d_{\infty}$): We will show that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$d_{\infty}(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le n^{1/2} d_{\infty}(\mathbf{x}, \mathbf{y}). \tag{2}$$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and let $\mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n)$. Choose any $m \in \{1, 2, \dots, n\}$ such that

$$|x_m - y_m| = \max\{|x_i - y_i| \mid 1 \le i \le n\} = d_{\infty}(\mathbf{x}, \mathbf{y}).$$

To prove the left-hand inequality of (2), notice that

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \ge \sqrt{(x_m - y_m)^2} = |x_m - y_m| = d_\infty(\mathbf{x}, \mathbf{y})$$

since $(x_i - y_i)^2 \ge 0$ for each $i \in \{1, 2, ..., n\}$. To prove the right-hand inequality of (2), notice that by our choice of $m, 0 \le |x_i - y_i| \le |x_m - y_m|$ and thus $(x_i - y_i)^2 \le (x_m - y_m)^2$ for all $i \in \{1, 2, ..., n\}$.

Hence

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \le \sqrt{\sum_{i=1}^n (x_m - y_m)^2} = \sqrt{n(x_m - y_m)^2} = n^{1/2} |x_m - y_m| = n^{1/2} d_{\infty}(\mathbf{x}, \mathbf{y}).$$

Thus we have proved (2) holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. It immediately follows that $d_2 \sim d_{\infty}$, as letting h = 1 > 0 and $k = n^{1/2} > 0$, we see that these values satisfy $hd_{\infty}(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le kd_{\infty}(\mathbf{x}, \mathbf{y}) \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Putting part 1 and part 2 together and using symmetry and transitivity of \sim , we see that d_1, d_2, d_∞ must all be Lipschitz equivalent. In particular this holds for when n=2 (i.e. d_1, d_2, d_∞ are metrics on \mathbb{R}^2), and in this case we can conclude using Exercise 6-9 that $(\mathbb{R}^2, \mathcal{T}_{d_1}) = (\mathbb{R}^2, \mathcal{T}_{d_2}) = (\mathbb{R}^2, \mathcal{T}_{d_\infty})$.

Exercise L7-1

(i)

Let (X, \mathcal{T}) be a topological space and let \mathcal{B} be a subset of \mathcal{T} . We want to prove that \mathcal{B} is a basis for \mathcal{T} if and only if every $U \in \mathcal{T}$ can be written as the union set of a subset $\mathcal{C} \subseteq \mathcal{B}$.

Part 1: We'll first show that if \mathcal{B} is a basis for \mathcal{T} then every $U \in \mathcal{T}$ can be written as the union set of a subset $\mathcal{C} \subseteq \mathcal{B}$. Consider any $U \in \mathcal{T}$. Since \mathcal{B} is a basis for \mathcal{T} , for any $x \in U$ there exists $B_x \in \mathcal{B}$ with $x \in B_x \subseteq U$. Fix one such B_x for each $x \in U$. Now, we claim that U is the union set of $\mathcal{C} = \{B_x \mid x \in U\}$, i.e.

$$U = \bigcup_{x \in U} B_x.$$

To prove this, first notice that for any $x \in U$, we have $x \in B_x \subseteq \bigcup_{x \in U} B_x$ (where B_x is as chosen for x previously), which implies $x \in \bigcup_{x \in U} B_x$. Hence $U \subseteq \bigcup_{x \in U} B_x$. For the other inclusion, let $y \in \bigcup_{x \in U} B_x$, then $y \in B_x$ for some $x \in U$. But then $y \in B_x \subseteq U$, so $y \in U$. This proves that $\bigcup_{x \in U} B_x \subseteq U$. Putting these two inclusions together, we get $U = \bigcup_{x \in U} B_x$. To conclude, every $U \in \mathcal{T}$ can be written as the union set of a subset of \mathcal{B} .

Part 2: Now we'll show that if every $U \in \mathcal{T}$ can be written as the union set of a subset $\mathcal{C} \subseteq \mathcal{B}$, then \mathcal{B} is a basis for \mathcal{T} . Consider any $U \in \mathcal{T}$. Then, U can be written as the union set of some subset $\mathcal{C} \subseteq \mathcal{B}$, i.e.

$$U = \bigcup_{B \in \mathcal{C}} B.$$

Consider any $x \in U$, then $x \in \bigcup_{B \in \mathcal{C}} B$ so $x \in B$ for some $B \in \mathcal{C}$. Also, $B \subseteq \bigcup_{B \in \mathcal{C}} B = U$ so actually we have $x \in B \subseteq U$. In summary, we have shown that for any $U \in \mathcal{T}$ and any $x \in U$, there exists $B \in \mathcal{B}$ with $x \in B \subseteq U$, which shows that \mathcal{B} is a basis for \mathcal{T} .

(ii)

Let (X, \mathcal{T}) and (Y, \mathcal{T}_Y) be topological spaces, let \mathcal{B} be a basis for \mathcal{T} and consider any function $f: (Y, \mathcal{T}_Y) \to (X, \mathcal{T})$.

If f is continuous then for all $U \subseteq X$, $U \in \mathcal{T} \implies f^{-1}(U) \in \mathcal{T}_Y$. Now, for any $B \in \mathcal{B}$, we have $B \subseteq X$ and $B \in \mathcal{B} \subseteq \mathcal{T}$, so continuity of f gives $f^{-1}(B) \in \mathcal{T}_Y$. So if f is continuous then $f^{-1}(B) \in \mathcal{T}_Y$ for all $B \in \mathcal{B}$.

For the other direction, suppose $f^{-1}(B) \in \mathcal{T}_Y$ for all $B \in \mathcal{B}$. Consider any $U \subseteq X$ such that $U \in \mathcal{T}$. Since \mathcal{B} is a basis for \mathcal{T} , the result from part (i) of Exercise 7-1 tells us that U can be written in the form

$$U = \bigcup_{B \in \mathcal{C}} B$$

for some subset $\mathcal{C} \subseteq \mathcal{B}$. Then, $f^{-1}(U) = f^{-1}(\bigcup_{B \in \mathcal{C}} B)$. Now, notice that

$$y \in f^{-1}(\bigcup_{B \in \mathcal{C}} B) \iff f(y) \in \bigcup_{B \in \mathcal{C}} B$$
$$\iff f(y) \in B \text{ for some } B \in \mathcal{C}$$
$$\iff y \in f^{-1}(B) \text{ for some } B \in \mathcal{C}$$
$$\iff y \in \bigcup_{B \in \mathcal{C}} f^{-1}(B)$$

so that $f^{-1}(\bigcup_{B\in\mathcal{C}}B)=\bigcup_{B\in\mathcal{C}}f^{-1}(B)$. But since $\mathcal{C}\subseteq\mathcal{B}$, we have that $f^{-1}(B)\in\mathcal{T}_Y$ for all $B\in\mathcal{C}$ so using property (T3) of topological spaces we get $\bigcup_{B\in\mathcal{C}}f^{-1}(B)\in\mathcal{T}_Y$. Thus, $f^{-1}(U)=f^{-1}(\bigcup_{B\in\mathcal{C}}B)=\bigcup_{B\in\mathcal{C}}f^{-1}(B)\in\mathcal{T}_Y$. So, we have shown that for any $U\subseteq X$, if $U\in\mathcal{T}$ then also $f^{-1}(U)\in\mathcal{T}_Y$. This shows that f is continuous, which completes our proof.

(iii)

Let (X, d) be a metric space. The associated topology is defined by

$$\mathcal{T} = \{ U \subseteq X \mid \forall x \in U \,\exists \, \epsilon > 0 \text{ s.t. } B_{\epsilon}(x) \subseteq U \}.$$

Let $\mathcal{B} = \{B_{\epsilon}(x) \mid x \in X, \epsilon > 0\}$. Now, for any $U \in \mathcal{T}$ and $x \in U$, from the definition of \mathcal{T} there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$. Note also that $d(x,x) = 0 < \epsilon$ so $x \in B_{\epsilon}(x)$. So $B_{\epsilon}(x)$ satisfies $B_{\epsilon}(x) \in \mathcal{B}$ and $x \in B_{\epsilon}(x) \subseteq U$, and there exists at least one such $B_{\epsilon}(x)$ for any $U \in \mathcal{T}$ and $x \in U$. This shows that \mathcal{B} is a basis for \mathcal{T} , as required.

Exercise L7-6

(i)

Let $\{X_i\}_{i\in I}$ be an indexed family of topological spaces. We'll first prove that the topology on $X = \coprod_{i\in I} X_i$ given by

$$\mathcal{T} = \{ \coprod_{i \in I} U_i \mid U_i \subseteq X_i \text{ is open for each } i \in I \}$$

is indeed a topology by verifying each of the topology axioms (T1), (T2), (T3) in turn.

(T1): Let $U_i = \emptyset$ for each $i \in I$, then each U_i is open (by (T1) for the X_i s) so $\emptyset = \coprod_{i \in I} \emptyset = \coprod_{i \in I} U_i \in \mathcal{T}$ (note that $\coprod_{i \in I} \emptyset = \{(i, u) \mid i \in I, u \in \emptyset\} = \emptyset$).

And now if we instead let $U_i = X_i$ for each $i \in I$, each U_i is open (again by (T1) for the X_i s), so $X = \coprod_{i \in I} X_i = \coprod_{i \in I} U_i \in \mathcal{T}$.

(T2): Consider any $U, V \in \mathcal{T}$. Then $U = \coprod_{i \in I} U_i$ and $V = \coprod_{i \in I} V_i$ where $U_i, V_i \subseteq X_i$ are open for each $i \in I$. We have

$$\begin{split} U \cap V &= \left(\coprod_{i \in I} U_i\right) \cap \left(\coprod_{i \in I} V_i\right) \\ &= \left\{(i, u) \mid i \in I, u \in U_i\right\} \cap \left\{(i, u) \mid i \in I, u \in V_i\right\} \\ &= \left\{(i, u) \mid i \in I, u \in U_i \text{ and } u \in V_i\right\} \\ &= \left\{(i, u) \mid i \in I, u \in U_i \cap V_i\right\} \\ &= \coprod_{i \in I} U_i \cap V_i \end{split}$$

and since $U_i \cap V_i$ is open for each $i \in I$ (by (T2) for the X_i s), we have $\coprod_{i \in I} U_i \cap V_i \in \mathcal{T}$. Hence $U \cap V = \coprod_{i \in I} U_i \cap V_i \in \mathcal{T}$, as required.

(T3): Consider $\{U_j\}_{j\in J}$ with $U_j\in\mathcal{T}$ for each $j\in J$. We may write each U_j as

$$U_j = \coprod_{i \in I} U_{j,i} = \{(i, u) \mid i \in I, u \in U_{j,i}\}$$

where $U_{j,i} \subseteq X_i$ is open for each $j \in J$, $i \in I$. Then,

$$\bigcup_{j \in J} U_j = \bigcup_{j \in J} \{(i, u) \mid i \in I, u \in U_{j,i}\}$$

$$= \{(i, u) \mid i \in I, u \in U_{j,i} \text{ for some } j \in J\}$$

$$= \{(i, u) \mid i \in I, u \in \bigcup_{j \in J} U_{j,i}\}$$

$$= \coprod_{i \in I} \left(\bigcup_{j \in J} U_{j,i}\right)$$

and since $U_{j,i} \subseteq X_i$ is open for each $j \in J$ and $i \in I$, for all $i \in I$ we have $\bigcup_{j \in J} U_{j,i}$ is open (by (T3) for the X_i s). Hence $\coprod_{i \in I} \left(\bigcup_{j \in J} U_{j,i}\right) \in \mathcal{T}$, so that $\bigcup_{j \in J} U_j = \coprod_{i \in I} \left(\bigcup_{j \in J} U_{j,i}\right) \in \mathcal{T}$ and we are done.

Continuity of $\iota_j \colon X_j \to \coprod_{i \in I} X_i$ sending x to (j, x): Consider any open subset $U \in \coprod_{i \in I} X_i$. To show that ι_j is continuous, where $j \in I$, we need to show that $\iota_j^{-1}(U)$ is open as a subset of X_j . By the definition of the discrete union topology on $\coprod_{i \in I} X_i$, we may write U as

$$U = \coprod_{i \in I} U_i = \{(i, u) \mid i \in I, u \in U_i\}$$

where $U_i \subseteq X_i$ is open for each $i \in I$. Then

$$\begin{split} \iota_{j}^{-1}(U) &= \{x \in X_{j} \mid \iota_{j}(x) \in U\} \\ &= \{x \in X_{j} \mid (j, x) \in \{(i, u) \mid i \in I, u \in U_{i}\}\} \\ &= \{x \in X_{j} \mid (j, x) \in \{(j, u) \mid u \in U_{j}\}\} \\ &= \{x \in X_{j} \mid x \in U_{j}\} \\ &= U_{i} \end{split}$$

which is open since U_i is open for all $i \in I$. Thus, we have shown that ι_j is continuous for each $j \in I$.

(ii)

We claim that for any topological space Y, the function $\Psi \colon \operatorname{Cts}(\coprod_{i \in I} X_i, Y) \to \prod_{i \in I} \operatorname{Cts}(X_i, Y)$ given by $\Psi(G) = (G \circ \iota_i)_{i \in I}$, where ι_i is as defined in part (i), is a bijection. Note that Ψ is well-defined since each $G \in \operatorname{Cts}(\coprod_{i \in I} X_i, Y)$ is continuous, ι_i is continuous for each $i \in I$ (as shown in part (i)) and composites of continuous functions are continuous, so $(G \circ \iota_i)_{i \in I} \in \prod_{i \in I} \operatorname{Cts}(X_i, Y)$.

(Ψ is injective): Suppose that $\Psi(G) = \Psi(F)$ for some $G, F \in \text{Cts}(\coprod_{i \in I} X_i, Y)$. Then

$$(G \circ \iota_i)_{i \in I} = (F \circ \iota_i)_{i \in I}$$

$$\Longrightarrow G \circ \iota_i = F \circ \iota_i \quad \forall i \in I$$

$$\Longrightarrow (G \circ \iota_i)(x) = (F \circ \iota_i)(x) \quad \forall i \in I, x \in X_i$$

$$\Longrightarrow G((i, x)) = F((i, x)) \quad \forall i \in I, x \in X_i$$

$$\Longrightarrow G(y) = F(y) \quad \forall y \in \coprod_{i \in I} X_i$$

$$\Longrightarrow G = F$$

so Ψ is injective.

(Ψ is surjective): Given $(f_i)_{i\in I} \in \prod_{i\in I} \mathrm{Cts}(X_i,Y)$ (i.e. $f_i\colon X_i\to Y$ is continuous for each $i\in I$), define $F\colon \coprod_{i\in I} X_i\to Y$ as follows:

$$F((i,x)) = f_i(x) \in Y \quad \forall (i,x) \in \coprod_{i \in I} X_i.$$

We claim that F as defined above is continuous. Indeed, let $U \subseteq Y$ be any open subset of Y. Then

$$F^{-1}(U) = \{(i, x) \in \coprod_{i \in I} X_i \mid F((i, x)) \in U\}$$

$$= \{(i, x) \in \coprod_{i \in I} X_i \mid f_i(x) \in U\}$$

$$= \{(i, x) \in \coprod_{i \in I} X_i \mid x \in f_i^{-1}(U)\}$$

$$= \{(i, x) \mid i \in I, x \in f_i^{-1}(U)\}$$

$$= \coprod_{i \in I} f_i^{-1}(U).$$

But, since U is open and f_i is continuous for each $i \in I$, we have that $f_i^{-1}(U)$ is open for each $i \in I$. Then, $\coprod_{i \in I} f_i^{-1}(U)$ is open from the definition of open sets in the disjoint union topology. Hence $F^{-1}(U) = \coprod_{i \in I} f_i^{-1}(U)$ is open so we have shown that F is continuous. Then, notice that

$$F(\iota_i(x)) = F((i,x)) = f_i(x) \quad \forall i \in I, x \in X_i$$

$$\Longrightarrow F \circ \iota_i = f_i \quad \forall i \in I$$

$$\Longrightarrow \Psi(F) = (F \circ \iota_i)_{i \in I} = (f_i)_{i \in I}.$$

So, for any $(f_i)_{i\in I} \in \prod_{i\in I} \mathrm{Cts}(X_i,Y)$ there exists $F \in \mathrm{Cts}(\coprod_{i\in I} X_i,Y)$ such that $\Psi(F) = (f_i)_{i\in I}$, which shows that Ψ is surjective.

To conclude, $\Psi \colon \operatorname{Cts}(\coprod_{i \in I} X_i, Y) \to \prod_{i \in I} \operatorname{Cts}(X_i, Y)$ is well-defined, injective and surjective, so is a bijection between $\operatorname{Cts}(\coprod_{i \in I} X_i, Y)$ and $\prod_{i \in I} \operatorname{Cts}(X_i, Y)$ as required.