Exercise L6-7

We must show that ~ as defined in the question is reflexive, symmetric and transitive.

Reflexivity: Let (U, f) € S;, so that U is an open subset of X containing z and f: U — R is a
continuous function. By letting W = U, we see that W satisfies:

e WCUNUsince W=U=UnNnU

e W is open since W = U and U is open
e zeWsincexelUand W=U
flw = flw.

So indeed there does exist W such that W C UNU and W is open, x € W and f|w = f|lw. Thus,
(U, f) ~ (U, f) and so ~ is reflexive.

Symmetry: Let (U, f),(V,g) € S;. We have:

(U, f)~(V,g) <= IW CUNV st. Wisopen, z € Wand flw = glw
<~ IW CVNU st Wisopen, x € W and glw = flw
= (V,g) ~ (U, J).

Hence (U, f) ~ (V,g) < (V,g) ~ (U, f) and we conclude ~ is symmetric.

Transitivity: Let (U, f),(V,g),(W,h) € S, and suppose that (U, f) ~ (V,g) and (V,g) ~ (W, h).
We have

(U, f)~(V,9) = FACUNV s.t. Aisopen, z € A and fla =g|a
(V,9) ~(W,h) = IBCVNW st. Bisopen, z € Band g|p =h|p

Let C = AN B. Then:
e CCUNWsince C=ANBCACUNVCUandC=ANBCBCVNWCW
e (' is open since A and B are open, so C = AN B is open by property (T2) of topological spaces
e rc(Csincex € Aand x € Bimpliesz € ANB=C

e flc = h|c since (C C A and f|a = g|a implies f|lc = g|¢) and (C C B and g|p = h|p implies
glc = hlc), so that flc = glc = hlc.
Hence there exists C such that C C UNW and C is open, = € C and f|c = h|c. Thus, (U, f) ~ (W, h),

and we have proved that ~ is transitive.
To conclude, ~ is reflexive, symmetric and transitive so is an equivalence relation on S,.

Exercise L6-8

We must show that ~ as defined in the question (i.e. to denote Lipschitz equivalent) is reflexive,
symmetric and transitive.



Reflexivity: Let d be a metric on X. For any x,y € X, we have
I xd(z,y) <d(z,y) <1 xd(z,y)

so letting h = 1 and k = 1, we have hd(z,y) < d(z,y) < kd(z,y) for all z,y € X. Hence d ~ d so ~ is
reflexive.

Symmetry: Let dj,ds be metrics on X. We have

dy ~dy <= Th,k >0s.t. hda(z,y) < di(z,y) < kda(x,y) Yo,y € X
Jh,k > 0s.t. hda(z,y) < di(z,y) and di(z,y) < kda(x,y) Yo,y € X

1 1
Fh, k> 0s.t. do(x,y) < Edl(a:,y) and Edl(a;,y) < ds(z,y)Vx,y € X

1 1
Jh, k>0 s.t. %dl(x,y) <ds(x,y) < Edl(m,y) Ve,y € X

1 1
IR K > 0s.t. Bdi(x,y) < do(z,y) < K'di(z,y)Ve,ye X (b = Z and k' = E)

rt vt

do ~ dy

Hence d; ~ dy < d3 ~ dy and we conclude ~ is symmetric.

Transitivity: Let di,d2,ds be metrics on X and suppose d; ~ ds and ds ~ d3z. We have

dy ~dy = Fh,k>0st. hda(x,y) < di(x,y) < kdy(z,y)Va,y € X
dy ~dz = I, k' >0s.t. hds(z,y) < do(x,y) < Kds(x,y)Vo,y € X

Let b = hh/ and k" = kk’. Then h”,k” > 0, and using the above we have, for all z,y € X,
h//d?)(m)y) = hh/d3($7y) < hd?(l‘?y) < dl (%y) < de(xa y) < kkld3($7y) = k/ld3($7y)'

Hence there does exist h” k" > 0 such that h"dz(z,y) < di(z,y) < k"ds(z,y) for all z,y € X, so
dy ~ ds. Thus ~ is transitive.
To conclude, ~ is reflexive, symmetric and transitive so is an equivalence relation.

Exercise L6-9

Let di,ds be metrics on X and suppose that dy ~ ds. Let 74, and 74, be the topologies associated
with (X, d;) and (X, ds), respectively. We want to show Ty, = Tg,, which we will do by showing that
Ta, € Ta, and Tg, 2 Ta,.

Part 1: First, we’ll show that 75, C Tg,. Let U € Ty, then U C X. Fix any € U. Then since
U € Ta,, there exists € > 0 such that

{ye X |di(z,y) <e} CU. (1)

Now, since dy ~ da, there exists h,k > 0 such that hds(z,y) < di(z,y) < kdo(z,y)Vy € X, in
particular, there exists k > 0 such that dy(z,y) < kda(x,y) for all y € X. Note that this implies

{y e X | kda(z,y) < e} C{y e X | di(x,y) <€} (2)

since for any a € {y € X | kda(x,y) < €}, we have kds(x, a) < €, which implies dy(x, a) < kda(z,a) < €
so that dy(z,a) < € and hence a € {y € X | di(z,y) < €}.



Now let € = €/k, then ¢ > 0 (since €,k > 0) and

{y € X | do(z,y) < €'} ={y € X |da(z,y) < €¢/k} (since € = ¢/k)
={y € X | kda(z,y) < ¢}
Clye X [di(r,y) <e} (by (2))
CU. (by (1))

So there does exist an ¢ > 0 such that
{ye X | da(z,y) <€} CU.

Since x € U was arbitrary, we have that for all € U there exists ¢ > 0 such that {y € X | da(x,y) <
€'} C U, and together with U C X this implies that U € Tg,. So U € T3, implies U € Tg,, hence
Ta, € Ta,-

Part 2: Showing that T4, O T4, is similar to part 1. Indeed, simply notice that di ~ ds implies
ds ~ di by symmetry, then use the same argument as part 1 but with 1s and 2s swapped wherever
necessary.

To conclude, we have Tg, C T4, and T4, 2 Ta,, which implies 74, = T4, as required.

Exercise L6-10

To show that the metrics di,ds, do on R™, where n € N, are all Lipschitz equivalent, it suffices to
show do ~ dy and dy ~ do, and the rest will follow from symmetry and transitivity.

Part 1 (show dy ~ d;): We will show that for all x,y € R"
n~2di(x,y) < do(x,y) < di(x,y). (1)

Let x,y € R™ and let x = (z1,22,...,2Zn), Yy = (Y1,Y2,--.,Yn). To prove the right-hand inequality of
(1), notice that by expanding the LHS below, we get

n 2 n
<Z|$i—yi|> :Z|$i—yi|2+2 Z i = yille; — y;l
i=1 i=1 1<i<j<n

> |ri—wil®  (since |z —yil, |zj —y;| > 0 for all 4,5 € {1,2,...,n})

-

«
Il
-

(zi — yi)>.

|

s
Il
_

Taking square roots (note both LHS and RHS are non-negative), we get

n

Y @i—y)? i di(x,y) > da(x,y).

i=1




Now we’ll prove the left-hand inequality of (1). For i € {1,2,...,n}, let a; = |x; — y;|. Then a; > 0
for each 7. We have

Z (@i —a;)* >0 (squares are non-negative)
1<i<j<n
— Z af—Zaiaj—i—a?ZO
1<i<j<n
- Z a?—l—a?zZ Z a;a;
1<i<j<n 1<i<j<n
n
= (nfl)Zaz2 >2 Z a;a;
i=1 1<i<j<n
n n n 2
— Y@z e ¥ - (Ye
i=1 i=1 1<i<j<n i=1

noting that the second last line aboves follows since in the sum 2, ., ., a? + a?, each term of the
form a? appears exactly n—1 times, once in each of af+a?,a3+a?,...,a?_;+a?,a?+a? ,...,al+a2.
Anyway, by substituting back a; = |z; — y;|, we get

n n 2
nz | — yil® > <Z |zi — yi|>
=1

i=1

n n
n i —yil?2 > T; — Vi note both sides were non-negative
> e — il y g
i=1 i=1

= Z(-Ti —y;)2 =012 i lzi — yil

i=1 i=1

— dZ(Xa Y) > n71/2d1 (X7Y)'

Thus, we have proved (1) holds for all x,y € R”. It immediately follows that dy ~ dj, as letting h =
n~12 > 0and k =1 > 0, we see that these values satisfy hd; (x,y) < do(x,y) < kdi(x,y) Vx,y € R".

Part 2 (show ds ~ dw): We will show that for all x,y € R"
doo(x,y) < da(x,y) < 0/ %dsc(x,y). (2)

Let x,y € R™ and let x = (z1,22,...,2,), Yy = (¥1,¥2,.-.,Yn). Choose any m € {1,2,...,n} such
that

|93m - ym‘ = ma‘X{‘xi - yz‘ ‘ 1<:< TL} = doo(XaY)'
To prove the left-hand inequality of (2), notice that
n

Z(wz = ¥i)2 2V (@Tm — Ym)? = [T — Y| = do(x,y)

i=1

since (z; — ;)% > 0 for each i € {1,2,...,n}. To prove the right-hand inequality of (2), notice that by
our choice of m, 0 < |z; — yi| < |Zm — Ym| and thus (z; — ;)% < (T — ym)? for all i € {1,2,...,n}.



Hence

dg(x,y) = Z(xz - yi)2 < Z(mm - ym)2 = /n(xm — ym)2 = nl/glxm - ym| = n1/2d00(x7 Y)'

i=1 i=1

Thus we have proved (2) holds for all x,y € R™. It immediately follows that da ~ do, as letting h =
1> 0and k =n'? > 0, we see that these values satisfy hdu (X,y) < da(X,y) < kdoo (X, y) VX, y € R,
Putting part 1 and part 2 together and using symmetry and transitivity of ~, we see that di, ds, d
must all be Lipschitz equivalent. In particular this holds for when n = 2 (i.e. dj,ds,ds are metrics
on R?), and in this case we can conclude using Exercise 6-9 that (R? 73,) = (R?, Ta,) = (R?, Ta..).

Exercise L7-1

(i)
Let (X, T) be a topological space and let B be a subset of 7. We want to prove that B is a basis for
T if and only if every U € T can be written as the union set of a subset C C B.

Part 1: We'll first show that if B is a basis for 7 then every U € T can be written as the union
set of a subset C C B. Consider any U € 7. Since B is a basis for T, for any z € U there exists
B, € B with x € B, C U. Fix one such B, for each x € U. Now, we claim that U is the union set of
C={B,; |z €U}, ie.

U= UBz.

xeU
To prove this, first notice that for any x € U, we have x € B, C UweU B, (where B, is as chosen
for & previously), which implies x € (J,cy; B2 Hence U C U,y Be. For the other inclusion, let
Y € U ey Bz, then y € B, for some » € U. But then y € B, C U so y € U. This proves that

U,cu Be € U. Putting these two inclusions together, we get U = U B,. To conclude, every U € T

can be written as the union set of a subset of B.

zeU

Part 2: Now we’ll show that if every U € T can be written as the union set of a subset C C B, then
B is a basis for 7. Consider any U € 7. Then, U can be written as the union set of some subset
C CB,ie.

v=J B

BeC

Consider any x € U, then x € Jgce B so x € B for some B € C. Also, B C (Jgce B = U so actually
we have ¢ € B C U. In summary, we have shown that for any U € T and any = € U, there exists
B € B with € B C U, which shows that B is a basis for T.

(ii)
Let (X,7) and (Y,7y) be topological spaces, let B be a basis for 7 and consider any function
[ (Y Ty) = (X, 7).

If f is continuous then for all U C X, U € T = f~}(U) € Ty. Now, for any B € B, we have
B C X and B € B C T, so continuity of f gives f~1(B) € Ty. So if f is continuous then f~(B) € Ty
for all B € B.



For the other direction, suppose f~1(B) € Ty for all B € B. Consider any U C X such that U € T.
Since B is a basis for 7T, the result from part (i) of Exercise 7-1 tells us that U can be written in the

form
U=|JB
BeC

for some subset C C B. Then, f~*(U) = f~'(Ugec B)- Now, notice that

yef (B <= fwelB

Bec BeC
< f(y) € B for some B €

<= y e f1(B) for some B €C
= ye s

BeC

so that [~ (Ugee B) = Upgec /1 (B). But since C C B, we have that f~!(B) € Ty for all B € C so
using property (T3) of topological spaces we get Jpee f~H(B) € Ty. Thus, f~HU) = f~H(Upgec B) =
Upee /7HB) € Ty. So, we have shown that for any U C X, if U € T then also f~'(U) € Ty. This
shows that f is continuous, which completes our proof.

(iii)
Let (X, d) be a metric space. The associated topology is defined by

T={UCX|VxeUTe>0st. Bx) CU}.

Let B={B.(z) | z € X,e > 0}. Now, for any U € T and x € U, from the definition of 7 there exists
€ > 0 such that B.(x) C U. Note also that d(x,z2) =0 < € so & € B.(x). So B.(x) satisfies B.(x) € B
and x € B.(x) C U, and there exists at least one such B(z) for any U € T and = € U. This shows
that B is a basis for 7T, as required.

Exercise L7-6
(i)

Let {X;}icr be an indexed family of topological spaces. We'll first prove that the topology on X =
[;c; Xi given by

T = {]_[UZ | U; C X, is open for each i € I}
el

is indeed a topology by verifying each of the topology axioms (T1), (T2), (T3) in turn.

(T1): Let U; = () for each i € I, then each U; is open (by (T1) for the Xis) so 0 =[],c;0 =1, Ui €
T (note that [],c, 0 = {(i,u) | i € I,u € 0} =0).

And now if we instead let U; = X; for each ¢ € I, each U; is open (again by (T1) for the X;s), so
X =Ilies Xi =i, Vi €T



(T2): Consider any U,V € T. Then U = [[,.; U; and V = [[,; Vi where U;,V; C X; are open for

each 7 € I. We have
Uunv = <HU> N (]_[v)
i€l el

={(i,u) |ie LueU}n{(u)|icl,uecV;}
={(i,u) |i € [,u e U; and u € V;}
={(,u)|iel,LueU;NV;}
=[[vinv:

i€l

and since U; NV is open for each ¢ € I (by (T2) for the X;s), we have []
UNV =]l..;U;NV; € T, as required.

et UiNVi € T. Hence

iel
(T3): Consider {U;}jes with U; € T for each j € J. We may write each U; as
Uj = HUj7i = {(Lu) | 1€ l,ue Uj,i}
i€l
where U;; C X; is open for each j € J, i € I. Then,
U Uj = U{(l,u) | i1el,uée Uj,i}
=y jed
={(t,u) | i € I,u € U;,; for some j € J}
={(,u) |ieLue |JU}
jed
=11 | Ui
iel \jeJ
and since Uj;; C X; is open for each j € J and i € I, for all i € I we have ;. ;Uj,; is open (by (T3)
for the X;s). Hence [,.; (UjeJ UM) € T, sothat U;c;Uj = [ies (UjeJ an‘) € T and we are done.

Continuity of +;: X; — [[,.; X; sending z to (j,z): Consider any open subset U € [[,.; X;. To

show that ¢; is continuous, where j € I, we need to show that Lj_l(U) is open as a subset of X;. By

the definition of the discrete union topology on [, ; X;, we may write U as

U=]JUi={Guw)|iclucU}
i€l

where U; C X; is open for each ¢ € I. Then

;N (U) = {z € X; | 1;(x) € U}

={zeX;| () e{t,u)|iecluecls}}
= {r e X; | (o) € {(w) |u e U}}}
={zeX;|zecU;}

=U;

which is open since U; is open for all i € I. Thus, we have shown that ¢; is continuous for each j € I.



(ii)

We claim that for any topological space Y, the function W: Cts([[,c; Xi,Y) — [],c; Cts(X;,Y") given
by U(G) = (G o t;)icr, where ¢; is as defined in part (i), is a bijection. Note that ¥ is well-defined
since each G € Cts(][;o; Xi,Y) is continuous, ¢; is continuous for each i € I (as shown in part (i))
and composites of continuous functions are continuous, so (G o ¢;)ier € [[;c; Cts(X;,Y).

(¥ is injective): Suppose that U(G) = W(F) for some G, F' € Cts(][;c; Xi,Y). Then

(Got)ier = (Foti)ier

— Got;=Fouy Viel
= (Goy)(x)=(Fou)(z) Viel,zelX;
= G((i,z)) = F((i,x)) VielzecX;

— Gly) =Fly wel][X
el
— G=F

so V¥ is injective.

(¥ is surjective): Given (f;)icr € [[;c; Cts(X;,Y) (ie. fi: Xy — Y is continuous for each i € I),
define F': [[,c; Xi = Y as follows:

F((i,2)) = filz) €Y V(i,x) €[] X

il
We claim that F' as defined above is continuous. Indeed, let U C Y be any open subset of Y. Then

F7YU) = {(i,2) € [ [ X | F((i,2)) € U}

~ () € [ X0 | @) € U}
(G e [[Xilae s )

={(i,x)lieLze f7(U)}
:Hfiil(U)'

i€l

But, since U is open and f; is continuous for each i € I, we have that fi_l(U) is open for each ¢ € I.
Then, [],c; f[l(U ) is open from the definition of open sets in the disjoint union topology. Hence
FHU) =11Lie; £ (U) is open so we have shown that F is continuous. Then, notice that

F(i(x)) = F((i,2)) = fi(x) Viel,zeX;
— FOLi:fi Viel
= V(F) = (Fou)icr = (fi)ier-

So, for any (fi)ier € [l;e; Cts(Xy,Y) there exists F' € Cts(][;c; Xi,Y) such that U(F) = (fi)ier,
which shows that ¥ is surjective.

To conclude, ¥: Cts([[;,c; Xi,Y) = [[;c; Cts(Xy,Y) is well-defined, injective and surjective, so is
a bijection between Cts(]],c; X4,Y") and [],.; Cts(X;,Y) as required.



