
Exercise L6-7

We must show that ∼ as defined in the question is reflexive, symmetric and transitive.

Reflexivity: Let (U, f) ∈ Sx, so that U is an open subset of X containing x and f : U → R is a
continuous function. By letting W = U , we see that W satisfies:

• W ⊆ U ∩ U since W = U = U ∩ U

• W is open since W = U and U is open

• x ∈W since x ∈ U and W = U

• f |W = f |W .

So indeed there does exist W such that W ⊆ U ∩ U and W is open, x ∈ W and f |W = f |W . Thus,
(U, f) ∼ (U, f) and so ∼ is reflexive.

Symmetry: Let (U, f), (V, g) ∈ Sx. We have:

(U, f) ∼ (V, g) ⇐⇒ ∃W ⊆ U ∩ V s.t. W is open, x ∈W and f |W = g|W
⇐⇒ ∃W ⊆ V ∩ U s.t. W is open, x ∈W and g|W = f |W
⇐⇒ (V, g) ∼ (U, f).

Hence (U, f) ∼ (V, g) ⇐⇒ (V, g) ∼ (U, f) and we conclude ∼ is symmetric.

Transitivity: Let (U, f), (V, g), (W,h) ∈ Sx and suppose that (U, f) ∼ (V, g) and (V, g) ∼ (W,h).
We have

(U, f) ∼ (V, g) =⇒ ∃A ⊆ U ∩ V s.t. A is open, x ∈ A and f |A = g|A
(V, g) ∼ (W,h) =⇒ ∃B ⊆ V ∩W s.t. B is open, x ∈ B and g|B = h|B

Let C = A ∩B. Then:

• C ⊆ U ∩W since C = A ∩B ⊆ A ⊆ U ∩ V ⊆ U and C = A ∩B ⊆ B ⊆ V ∩W ⊆W

• C is open since A and B are open, so C = A ∩B is open by property (T2) of topological spaces

• x ∈ C since x ∈ A and x ∈ B implies x ∈ A ∩B = C

• f |C = h|C since (C ⊆ A and f |A = g|A implies f |C = g|C) and (C ⊆ B and g|B = h|B implies
g|C = h|C), so that f |C = g|C = h|C .

Hence there exists C such that C ⊆ U∩W and C is open, x ∈ C and f |C = h|C . Thus, (U, f) ∼ (W,h),
and we have proved that ∼ is transitive.

To conclude, ∼ is reflexive, symmetric and transitive so is an equivalence relation on Sx.

Exercise L6-8

We must show that ∼ as defined in the question (i.e. to denote Lipschitz equivalent) is reflexive,
symmetric and transitive.
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Reflexivity: Let d be a metric on X. For any x, y ∈ X, we have

1× d(x, y) ≤ d(x, y) ≤ 1× d(x, y)

so letting h = 1 and k = 1, we have hd(x, y) ≤ d(x, y) ≤ kd(x, y) for all x, y ∈ X. Hence d ∼ d so ∼ is
reflexive.

Symmetry: Let d1, d2 be metrics on X. We have

d1 ∼ d2 ⇐⇒ ∃h, k > 0 s.t. hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y)∀x, y ∈ X
⇐⇒ ∃h, k > 0 s.t. hd2(x, y) ≤ d1(x, y) and d1(x, y) ≤ kd2(x, y)∀x, y ∈ X

⇐⇒ ∃h, k > 0 s.t. d2(x, y) ≤ 1

h
d1(x, y) and

1

k
d1(x, y) ≤ d2(x, y)∀x, y ∈ X

⇐⇒ ∃h, k > 0 s.t.
1

k
d1(x, y) ≤ d2(x, y) ≤ 1

h
d1(x, y)∀x, y ∈ X

⇐⇒ ∃h′, k′ > 0 s.t. h′d1(x, y) ≤ d2(x, y) ≤ k′d1(x, y)∀x, y ∈ X (h′ =
1

k
and k′ =

1

h
)

⇐⇒ d2 ∼ d1

Hence d1 ∼ d2 ⇐⇒ d2 ∼ d1 and we conclude ∼ is symmetric.

Transitivity: Let d1, d2, d3 be metrics on X and suppose d1 ∼ d2 and d2 ∼ d3. We have

d1 ∼ d2 =⇒ ∃h, k > 0 s.t. hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y)∀x, y ∈ X
d2 ∼ d3 =⇒ ∃h′, k′ > 0 s.t. h′d3(x, y) ≤ d2(x, y) ≤ k′d3(x, y)∀x, y ∈ X

Let h′′ = hh′ and k′′ = kk′. Then h′′, k′′ > 0, and using the above we have, for all x, y ∈ X,

h′′d3(x, y) = hh′d3(x, y) ≤ hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y) ≤ kk′d3(x, y) = k′′d3(x, y).

Hence there does exist h′′, k′′ > 0 such that h′′d3(x, y) ≤ d1(x, y) ≤ k′′d3(x, y) for all x, y ∈ X, so
d1 ∼ d3. Thus ∼ is transitive.

To conclude, ∼ is reflexive, symmetric and transitive so is an equivalence relation.

Exercise L6-9

Let d1, d2 be metrics on X and suppose that d1 ∼ d2. Let Td1 and Td2 be the topologies associated
with (X, d1) and (X, d2), respectively. We want to show Td1 = Td2 , which we will do by showing that
Td1 ⊆ Td2 and Td1 ⊇ Td2 .

Part 1: First, we’ll show that Td1 ⊆ Td2 . Let U ∈ Td1 , then U ⊆ X. Fix any x ∈ U . Then since
U ∈ Td1 , there exists ε > 0 such that

{y ∈ X | d1(x, y) < ε} ⊆ U. (1)

Now, since d1 ∼ d2, there exists h, k > 0 such that hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y)∀y ∈ X, in
particular, there exists k > 0 such that d1(x, y) ≤ kd2(x, y) for all y ∈ X. Note that this implies

{y ∈ X | kd2(x, y) < ε} ⊆ {y ∈ X | d1(x, y) < ε} (2)

since for any a ∈ {y ∈ X | kd2(x, y) < ε}, we have kd2(x, a) < ε, which implies d1(x, a) ≤ kd2(x, a) < ε
so that d1(x, a) < ε and hence a ∈ {y ∈ X | d1(x, y) < ε}.
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Now let ε′ = ε/k, then ε′ > 0 (since ε, k > 0) and

{y ∈ X | d2(x, y) < ε′} = {y ∈ X | d2(x, y) < ε/k} (since ε′ = ε/k)

= {y ∈ X | kd2(x, y) < ε}
⊆ {y ∈ X | d1(x, y) < ε} (by (2))

⊆ U. (by (1))

So there does exist an ε′ > 0 such that

{y ∈ X | d2(x, y) < ε′} ⊆ U.

Since x ∈ U was arbitrary, we have that for all x ∈ U there exists ε′ > 0 such that {y ∈ X | d2(x, y) <
ε′} ⊆ U , and together with U ⊆ X this implies that U ∈ Td2 . So U ∈ Td1 implies U ∈ Td2 , hence
Td1 ⊆ Td2 .

Part 2: Showing that Td1 ⊇ Td2 is similar to part 1. Indeed, simply notice that d1 ∼ d2 implies
d2 ∼ d1 by symmetry, then use the same argument as part 1 but with 1s and 2s swapped wherever
necessary.

To conclude, we have Td1 ⊆ Td2 and Td1 ⊇ Td2 , which implies Td1 = Td2 as required.

Exercise L6-10

To show that the metrics d1, d2, d∞ on Rn, where n ∈ N, are all Lipschitz equivalent, it suffices to
show d2 ∼ d1 and d2 ∼ d∞ and the rest will follow from symmetry and transitivity.

Part 1 (show d2 ∼ d1): We will show that for all x,y ∈ Rn

n−1/2d1(x,y) ≤ d2(x,y) ≤ d1(x,y). (1)

Let x,y ∈ Rn and let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). To prove the right-hand inequality of
(1), notice that by expanding the LHS below, we get(

n∑
i=1

|xi − yi|

)2

=

n∑
i=1

|xi − yi|2 + 2
∑

1≤i<j≤n

|xi − yi||xj − yj |

≥
n∑
i=1

|xi − yi|2 (since |xi − yi|, |xj − yj | ≥ 0 for all i, j ∈ {1, 2, . . . , n})

=

n∑
i=1

(xi − yi)2.

Taking square roots (note both LHS and RHS are non-negative), we get

n∑
i=1

|xi − yi| ≥

√√√√ n∑
i=1

(xi − yi)2 i.e. d1(x,y) ≥ d2(x,y).

3



Now we’ll prove the left-hand inequality of (1). For i ∈ {1, 2, . . . , n}, let ai = |xi − yi|. Then ai ≥ 0
for each i. We have∑

1≤i<j≤n

(ai − aj)2 ≥ 0 (squares are non-negative)

=⇒
∑

1≤i<j≤n

a2i − 2aiaj + a2j ≥ 0

=⇒
∑

1≤i<j≤n

a2i + a2j ≥ 2
∑

1≤i<j≤n

aiaj

=⇒ (n− 1)

n∑
i=1

a2i ≥ 2
∑

1≤i<j≤n

aiaj

=⇒ n

n∑
i=1

a2i ≥
n∑
i=1

a2i + 2
∑

1≤i<j≤n

aiaj =

(
n∑
i=1

ai

)2

noting that the second last line aboves follows since in the sum
∑

1≤i<j≤n a
2
i + a2j , each term of the

form a2i appears exactly n−1 times, once in each of a21+a2i , a
2
2+a2i , . . . , a

2
i−1+a2i , a

2
i +a2i+1, . . . , a

2
i +a2n.

Anyway, by substituting back ai = |xi − yi|, we get

n

n∑
i=1

|xi − yi|2 ≥

(
n∑
i=1

|xi − yi|

)2

=⇒

√√√√n

n∑
i=1

|xi − yi|2 ≥
n∑
i=1

|xi − yi| (note both sides were non-negative)

=⇒

√√√√ n∑
i=1

(xi − yi)2 ≥ n−1/2
n∑
i=1

|xi − yi|

=⇒ d2(x,y) ≥ n−1/2d1(x,y).

Thus, we have proved (1) holds for all x,y ∈ Rn. It immediately follows that d2 ∼ d1, as letting h =
n−1/2 > 0 and k = 1 > 0, we see that these values satisfy hd1(x,y) ≤ d2(x,y) ≤ kd1(x,y)∀x,y ∈ Rn.

Part 2 (show d2 ∼ d∞): We will show that for all x,y ∈ Rn

d∞(x,y) ≤ d2(x,y) ≤ n1/2d∞(x,y). (2)

Let x,y ∈ Rn and let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Choose any m ∈ {1, 2, . . . , n} such
that

|xm − ym| = max{|xi − yi| | 1 ≤ i ≤ n} = d∞(x,y).

To prove the left-hand inequality of (2), notice that

d2(x,y) =

√√√√ n∑
i=1

(xi − yi)2 ≥
√

(xm − ym)2 = |xm − ym| = d∞(x,y)

since (xi− yi)2 ≥ 0 for each i ∈ {1, 2, . . . , n}. To prove the right-hand inequality of (2), notice that by
our choice of m, 0 ≤ |xi − yi| ≤ |xm − ym| and thus (xi − yi)2 ≤ (xm − ym)2 for all i ∈ {1, 2, . . . , n}.
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Hence

d2(x,y) =

√√√√ n∑
i=1

(xi − yi)2 ≤

√√√√ n∑
i=1

(xm − ym)2 =
√
n(xm − ym)2 = n1/2|xm − ym| = n1/2d∞(x,y).

Thus we have proved (2) holds for all x,y ∈ Rn. It immediately follows that d2 ∼ d∞, as letting h =
1 > 0 and k = n1/2 > 0, we see that these values satisfy hd∞(x,y) ≤ d2(x,y) ≤ kd∞(x,y)∀x,y ∈ Rn.

Putting part 1 and part 2 together and using symmetry and transitivity of ∼, we see that d1, d2, d∞
must all be Lipschitz equivalent. In particular this holds for when n = 2 (i.e. d1, d2, d∞ are metrics
on R2), and in this case we can conclude using Exercise 6-9 that (R2, Td1) = (R2, Td2) = (R2, Td∞).

Exercise L7-1

(i)

Let (X, T ) be a topological space and let B be a subset of T . We want to prove that B is a basis for
T if and only if every U ∈ T can be written as the union set of a subset C ⊆ B.

Part 1: We’ll first show that if B is a basis for T then every U ∈ T can be written as the union
set of a subset C ⊆ B. Consider any U ∈ T . Since B is a basis for T , for any x ∈ U there exists
Bx ∈ B with x ∈ Bx ⊆ U . Fix one such Bx for each x ∈ U . Now, we claim that U is the union set of
C = {Bx | x ∈ U}, i.e.

U =
⋃
x∈U

Bx.

To prove this, first notice that for any x ∈ U , we have x ∈ Bx ⊆
⋃
x∈U Bx (where Bx is as chosen

for x previously), which implies x ∈
⋃
x∈U Bx. Hence U ⊆

⋃
x∈U Bx. For the other inclusion, let

y ∈
⋃
x∈U Bx, then y ∈ Bx for some x ∈ U . But then y ∈ Bx ⊆ U , so y ∈ U . This proves that⋃

x∈U Bx ⊆ U . Putting these two inclusions together, we get U =
⋃
x∈U Bx. To conclude, every U ∈ T

can be written as the union set of a subset of B.

Part 2: Now we’ll show that if every U ∈ T can be written as the union set of a subset C ⊆ B, then
B is a basis for T . Consider any U ∈ T . Then, U can be written as the union set of some subset
C ⊆ B, i.e.

U =
⋃
B∈C

B.

Consider any x ∈ U , then x ∈
⋃
B∈C B so x ∈ B for some B ∈ C. Also, B ⊆

⋃
B∈C B = U so actually

we have x ∈ B ⊆ U . In summary, we have shown that for any U ∈ T and any x ∈ U , there exists
B ∈ B with x ∈ B ⊆ U , which shows that B is a basis for T .

(ii)

Let (X, T ) and (Y, TY ) be topological spaces, let B be a basis for T and consider any function
f : (Y, TY )→ (X, T ).

If f is continuous then for all U ⊆ X, U ∈ T =⇒ f−1(U) ∈ TY . Now, for any B ∈ B, we have
B ⊆ X and B ∈ B ⊆ T , so continuity of f gives f−1(B) ∈ TY . So if f is continuous then f−1(B) ∈ TY
for all B ∈ B.
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For the other direction, suppose f−1(B) ∈ TY for all B ∈ B. Consider any U ⊆ X such that U ∈ T .
Since B is a basis for T , the result from part (i) of Exercise 7-1 tells us that U can be written in the
form

U =
⋃
B∈C

B

for some subset C ⊆ B. Then, f−1(U) = f−1(
⋃
B∈C B). Now, notice that

y ∈ f−1(
⋃
B∈C

B) ⇐⇒ f(y) ∈
⋃
B∈C

B

⇐⇒ f(y) ∈ B for some B ∈ C
⇐⇒ y ∈ f−1(B) for some B ∈ C

⇐⇒ y ∈
⋃
B∈C

f−1(B)

so that f−1(
⋃
B∈C B) =

⋃
B∈C f

−1(B). But since C ⊆ B, we have that f−1(B) ∈ TY for all B ∈ C so
using property (T3) of topological spaces we get

⋃
B∈C f

−1(B) ∈ TY . Thus, f−1(U) = f−1(
⋃
B∈C B) =⋃

B∈C f
−1(B) ∈ TY . So, we have shown that for any U ⊆ X, if U ∈ T then also f−1(U) ∈ TY . This

shows that f is continuous, which completes our proof.

(iii)

Let (X, d) be a metric space. The associated topology is defined by

T = {U ⊆ X | ∀x ∈ U ∃ ε > 0 s.t. Bε(x) ⊆ U}.

Let B = {Bε(x) | x ∈ X, ε > 0}. Now, for any U ∈ T and x ∈ U , from the definition of T there exists
ε > 0 such that Bε(x) ⊆ U . Note also that d(x, x) = 0 < ε so x ∈ Bε(x). So Bε(x) satisfies Bε(x) ∈ B
and x ∈ Bε(x) ⊆ U , and there exists at least one such Bε(x) for any U ∈ T and x ∈ U . This shows
that B is a basis for T , as required.

Exercise L7-6

(i)

Let {Xi}i∈I be an indexed family of topological spaces. We’ll first prove that the topology on X =∐
i∈I Xi given by

T = {
∐
i∈I

Ui | Ui ⊆ Xi is open for each i ∈ I}

is indeed a topology by verifying each of the topology axioms (T1), (T2), (T3) in turn.

(T1): Let Ui = ∅ for each i ∈ I, then each Ui is open (by (T1) for the Xis) so ∅ =
∐
i∈I ∅ =

∐
i∈I Ui ∈

T (note that
∐
i∈I ∅ = {(i, u) | i ∈ I, u ∈ ∅} = ∅).

And now if we instead let Ui = Xi for each i ∈ I, each Ui is open (again by (T1) for the Xis), so
X =

∐
i∈I Xi =

∐
i∈I Ui ∈ T .
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(T2): Consider any U, V ∈ T . Then U =
∐
i∈I Ui and V =

∐
i∈I Vi where Ui, Vi ⊆ Xi are open for

each i ∈ I. We have

U ∩ V =

(∐
i∈I

Ui

)
∩

(∐
i∈I

Vi

)
= {(i, u) | i ∈ I, u ∈ Ui} ∩ {(i, u) | i ∈ I, u ∈ Vi}
= {(i, u) | i ∈ I, u ∈ Ui and u ∈ Vi}
= {(i, u) | i ∈ I, u ∈ Ui ∩ Vi}

=
∐
i∈I

Ui ∩ Vi

and since Ui ∩ Vi is open for each i ∈ I (by (T2) for the Xis), we have
∐
i∈I Ui ∩ Vi ∈ T . Hence

U ∩ V =
∐
i∈I Ui ∩ Vi ∈ T , as required.

(T3): Consider {Uj}j∈J with Uj ∈ T for each j ∈ J . We may write each Uj as

Uj =
∐
i∈I

Uj,i = {(i, u) | i ∈ I, u ∈ Uj,i}

where Uj,i ⊆ Xi is open for each j ∈ J , i ∈ I. Then,⋃
j∈J

Uj =
⋃
j∈J
{(i, u) | i ∈ I, u ∈ Uj,i}

= {(i, u) | i ∈ I, u ∈ Uj,i for some j ∈ J}

= {(i, u) | i ∈ I, u ∈
⋃
j∈J

Uj,i}

=
∐
i∈I

⋃
j∈J

Uj,i


and since Uj,i ⊆ Xi is open for each j ∈ J and i ∈ I, for all i ∈ I we have

⋃
j∈J Uj,i is open (by (T3)

for the Xis). Hence
∐
i∈I

(⋃
j∈J Uj,i

)
∈ T , so that

⋃
j∈J Uj =

∐
i∈I

(⋃
j∈J Uj,i

)
∈ T and we are done.

Continuity of ιj : Xj →
∐
i∈I Xi sending x to (j, x): Consider any open subset U ∈

∐
i∈I Xi. To

show that ιj is continuous, where j ∈ I, we need to show that ι−1j (U) is open as a subset of Xj . By
the definition of the discrete union topology on

∐
i∈I Xi, we may write U as

U =
∐
i∈I

Ui = {(i, u) | i ∈ I, u ∈ Ui}

where Ui ⊆ Xi is open for each i ∈ I. Then

ι−1j (U) = {x ∈ Xj | ιj(x) ∈ U}
= {x ∈ Xj | (j, x) ∈ {(i, u) | i ∈ I, u ∈ Ui}}
= {x ∈ Xj | (j, x) ∈ {(j, u) | u ∈ Uj}}
= {x ∈ Xj | x ∈ Uj}
= Uj

which is open since Ui is open for all i ∈ I. Thus, we have shown that ιj is continuous for each j ∈ I.
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(ii)

We claim that for any topological space Y , the function Ψ: Cts(
∐
i∈I Xi, Y )→

∏
i∈I Cts(Xi, Y ) given

by Ψ(G) = (G ◦ ιi)i∈I , where ιi is as defined in part (i), is a bijection. Note that Ψ is well-defined
since each G ∈ Cts(

∐
i∈I Xi, Y ) is continuous, ιi is continuous for each i ∈ I (as shown in part (i))

and composites of continuous functions are continuous, so (G ◦ ιi)i∈I ∈
∏
i∈I Cts(Xi, Y ).

(Ψ is injective): Suppose that Ψ(G) = Ψ(F ) for some G,F ∈ Cts(
∐
i∈I Xi, Y ). Then

(G ◦ ιi)i∈I = (F ◦ ιi)i∈I
=⇒ G ◦ ιi = F ◦ ιi ∀ i ∈ I

=⇒ (G ◦ ιi)(x) = (F ◦ ιi)(x) ∀ i ∈ I, x ∈ Xi

=⇒ G((i, x)) = F ((i, x)) ∀i ∈ I, x ∈ Xi

=⇒ G(y) = F (y) ∀y ∈
∐
i∈I

Xi

=⇒ G = F

so Ψ is injective.

(Ψ is surjective): Given (fi)i∈I ∈
∏
i∈I Cts(Xi, Y ) (i.e. fi : Xi → Y is continuous for each i ∈ I),

define F :
∐
i∈I Xi → Y as follows:

F ((i, x)) = fi(x) ∈ Y ∀(i, x) ∈
∐
i∈I

Xi.

We claim that F as defined above is continuous. Indeed, let U ⊆ Y be any open subset of Y . Then

F−1(U) = {(i, x) ∈
∐
i∈I

Xi | F ((i, x)) ∈ U}

= {(i, x) ∈
∐
i∈I

Xi | fi(x) ∈ U}

= {(i, x) ∈
∐
i∈I

Xi | x ∈ f−1i (U)}

= {(i, x) | i ∈ I, x ∈ f−1i (U)}

=
∐
i∈I

f−1i (U).

But, since U is open and fi is continuous for each i ∈ I, we have that f−1i (U) is open for each i ∈ I.
Then,

∐
i∈I f

−1
i (U) is open from the definition of open sets in the disjoint union topology. Hence

F−1(U) =
∐
i∈I f

−1
i (U) is open so we have shown that F is continuous. Then, notice that

F (ιi(x)) = F ((i, x)) = fi(x) ∀i ∈ I, x ∈ Xi

=⇒ F ◦ ιi = fi ∀i ∈ I
=⇒ Ψ(F ) = (F ◦ ιi)i∈I = (fi)i∈I .

So, for any (fi)i∈I ∈
∏
i∈I Cts(Xi, Y ) there exists F ∈ Cts(

∐
i∈I Xi, Y ) such that Ψ(F ) = (fi)i∈I ,

which shows that Ψ is surjective.
To conclude, Ψ: Cts(

∐
i∈I Xi, Y )→

∏
i∈I Cts(Xi, Y ) is well-defined, injective and surjective, so is

a bijection between Cts(
∐
i∈I Xi, Y ) and

∏
i∈I Cts(Xi, Y ) as required.
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