MAST30026: Metric and Hilbert Spaces: Assignment 1

Tutor: Daniel Murfet Tutorial time: Wednesday, 10am

Student: Brett Eskrigge

31st of August

Two Circles

In the following exercise, we make use of:

Definition. If (X, d_X) , (Y, d_Y) are metric spaces, a function $f: X \to Y$ is distance preserving if

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2) \quad \forall x_1, x_2 \in X$$

A distance preserving function which is bijective is called an <u>isometry</u>.

Exercise L6-2

Prove that (S^1, d_a) , (S^1, d_2) are <u>not</u> isometric (that is, no isometry exists between them), but that $\mathcal{T}_{d_a} = \mathcal{T}_{d_2}$, i.e. in the associated topologies on S^1 the same sets are declared open.

Proof (not isometric). We notice that over S_1 , the maximal possible distance between two points under d_a is π , whereas the maximum distance between two points under d_2 is 2 (which is less than π). So since there is no map that takes $x, y \in S^1$ to make $d_2(x, y) = \pi$, we can conclude that no isometry exists between (S^1, d_a) and (S^1, d_2) , so they are <u>not</u> isometric. \square

Proof (topologies are equal). To show $\mathcal{T}_{d_a} = \mathcal{T}_{d_2}$, we first show $\mathcal{T}_{d_a} \subseteq \mathcal{T}_{d_2}$, then $\mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_a}$. $\mathcal{T}_{d_a} \subseteq \mathcal{T}_{d_2}$:

If $U \in \mathcal{T}_{d_a}$, then $U \subseteq S^1$ is such that $\forall x \in U \exists \epsilon > 0$ $B_{\epsilon}^{d_a}(x) \subseteq U$. Now, if we wish to find the chord length that $B\epsilon^{d_a}(x)$ forms around the unit circle, we use the Pythagorean theorem to find that it is equal to

$$2\sin\left(\frac{\epsilon}{2}\right)$$

We take $\epsilon' = 2\sin\left(\frac{\epsilon}{2}\right)$, to see that $B_{\epsilon'}^{d_2}(x) \subseteq B_{\epsilon}^{d_a}(x)$. Hence $U \in \mathcal{T}_{d_2}$.

 $\underline{\mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_a}}$: If $U \in \mathcal{T}_{d_2}$, then $U \subseteq S^1$ is such that $\forall x \in U \exists \epsilon > 0$ $B^{d_2}_{\epsilon}(x) \subseteq U$. Now, if we wish to find the "angle" that $B^{d_2}_{\epsilon}(x)$ forms around the unit circle, we use the cosine rule $(a^2 = b^2 + c^2 - 2bc\cos\theta)$ with b = c = 1 (as we are on the unit circle) and $a = \epsilon$. So,

$$\epsilon^{2} = 2 - 2\cos\theta$$

$$\implies 1 - \frac{\epsilon^{2}}{2} = \cos\theta$$

$$\implies \theta = \arccos\left(1 - \frac{\epsilon^{2}}{2}\right)$$

We take $\epsilon' = \arccos\left(1 - \frac{\epsilon^2}{2}\right)$, to see that $B_{\epsilon'}^{d_a}(x) \subseteq B_{\epsilon}^{d_2}(x)$. Hence $U \in \mathcal{T}_{d_a}$.

Sierpiński

In the following exercise, we make use of:

Definition. A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a set of subsets of X, such that

- (T1) \emptyset , X both belong to \mathcal{T}
- (T2) if $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$
- (T3) if $\{V_i\}_{i\in I}$ is any indexed set with $V_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} V_i \in \mathcal{T}$.

We call such a set \mathcal{T} a topology on X and say that the sets $V \in \mathcal{T}$ are open in the topology. A set $C \subseteq X$ is closed in the topology if there exists $U \in \mathcal{T}$ with $C = X \setminus U$.

Claim. Every singleton is closed in a metrisable space.

Proof. Let us denote our metrisable space with (X, \mathcal{T}_d) . Let $\{*\} \subseteq X$ be a singleton in X. To prove our claim, we need only show that $X \setminus \{*\}$ is open. So we need to prove that $\forall x \in X \setminus \{*\} \exists \epsilon > 0$ $B_{\epsilon}(x) \subseteq X \setminus \{*\}$.

Let our $x \in X \setminus \{*\}$ be given (as if $X \setminus \{*\}$ were empty, our statement would be vacuously true). This means that d(*,y) > 0.

Set $\epsilon = d(*,y)/2$. Clearly, $B_{\epsilon}(x) \subseteq X \setminus \{*\}$, which completes the proof.

Exercise L6-3

Prove that $X = \{0,1\}$ with $\mathcal{T} = \{\emptyset, X, \{1\}\}$ is a topological space. This is called the Sierpiński space and is usually denoted Σ . Prove that Σ is <u>not</u> metrisable.

Proof. (T1) is clear, (T2) Intersections can only be one of \emptyset , $\{1\}$, X, so it is clear, (T3) Only possible unions are \emptyset , $\{1\}$, X, so it is also clear. Hence, Σ is a topological space.

To show that Σ is not metrisable, we need only consider the above claim (since $\{1\}$, a singleton, is open in Σ).

Fake Interval

In the following exercise, we make use of:

Definition. Let (X, \mathcal{T}) , (Y, \mathcal{S}) be topological spaces. A <u>continuous map</u> $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ is a function $f: X \to Y$ with the property that

$$\forall V \subseteq Y (V \in \mathcal{S} \implies f^{-1}(V) \in \mathcal{T})$$

Exercise L6-11

Consider the topological space (X, \mathcal{T}) with X = [0, 1] and $\mathcal{T} = \{\emptyset, X, [0, \frac{1}{2}], (\frac{1}{2}, 1]\}$. Classify all the continuous function $X \to \mathbb{R}$.

Claim. A function is continuous $X \to \mathbb{R}$ if and only if it is of the form,

$$f(x) = \begin{cases} a & x \in \left[0, \frac{1}{2}\right] \\ b & x \in \left(\frac{1}{2}, 1\right] \end{cases}$$

for some $a, b \in \mathbb{R}$.

Proof. (\Rightarrow) Clearly, any continuous function $X \to \mathbb{R}$ must be a hybrid function (due to the discreteness of \mathcal{T}). So let us suppose (for a contradiction), that we have some other hybrid function $g \in \text{Cts}(X, R)$ with steps in different domains.

That is, for $i \in I$ we have $a_i \in \mathbb{R}$ and $A_i \subseteq X$ forming a partition of X, such that $A_i \notin \{[0, \frac{1}{2}], (\frac{1}{2}, 1]\}$ and,

$$g(x) = \begin{cases} a_i & x \in A_i \end{cases}$$

[note that $|I| \ge 2$, as |I| = 1 means that f = g, with a = b]

And since g is continuous, any $U \subseteq \mathbb{R}$ open $\Longrightarrow g^{-1}(U) \in \mathcal{T}$. So let us take $U \subseteq \mathbb{R}$ to be such that $a_i \in U$ and $a_j \notin U$ for all $j \neq i$, for some $i \in I$. This implies that $g^{-1}(U) = A_i \in \mathcal{T}$. But this contradicts the definition of \mathcal{T} .

Hence, $g \notin \mathrm{Cts}(X,\mathbb{R})$. So we conclude that if a function is in $\mathrm{Cts}(X,\mathbb{R})$, it must be of the form listed above.

(\Leftarrow) Clearly the preimage of f will be one of $\emptyset, X, \left[0, \frac{1}{2}\right], \left(\frac{1}{2}, 1\right]$ (which are precisely the elements of \mathcal{T}) for any subset of \mathbb{R} . And in particular, the open subsets of \mathbb{R} .

Product

In the following exercise, we make use of:

Lemma (L7-1). Let X be a set and \mathcal{B} a collection of subsets of X satisfying

- (B1) For each $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$
- (B2) Given $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ there exists $B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$

Then there is a <u>unique</u> topology \mathcal{T} on X for which \mathcal{B} is a basis. We call \mathcal{T} the topology generated by \mathcal{B} .

Definition. Let $\{X_i\}_{i\in I}$ be an indexed family of topological spaces. The <u>product space</u> $\prod_{i\in I} X$ is the usual product set with the topology generated by the basis consisting of sets

$$\prod_{i \in I} U_i = \left\{ (x_i)_{i \in I} \prod_{i \in I} X_i \mid x_i \in U_i \text{ for all } i \right\}$$

where each $U_i \subseteq X_i$ is open and the set $\{i \in I \mid U_i \neq X_i\}$ is finite. (i.e. something like ... $\times X_{-2} \times X_{-1} \times U_0 \times U_1 \times ... \times U_k \times X_{k+1} \times ...$ if $I = \mathbb{Z}$)

Exercise L7-2

Prove that $\prod_i U_i$ as defined above satisfy (B1), (B2), so that the topology on $\prod_{i \in I} X_i$ is well-defined.

- *Proof.* (B1) We may take $U_i = X_i$ for every $i \in I$. This is a valid thing to do since now $\{i \in I \mid U_i = X_i\} = \emptyset$, which is certainly finite.
 - This means that $\prod_{i\in I} X_i \in \mathcal{B}$, so we can pick any $(x_i)_{i\in I} \in \prod_i X_i$, and it will lie within at least one of the basis elements (namely, $\prod_i X_i$ itself). So (B1) is satisfied.
- (B2) We are concerned with subsets of the form $\prod_{i \in I} U_i$ and $\prod_{i \in I} V_i$, where only finitely many of the U_i 's and V_i 's are not equal to X_i . Let,

$$(x_i)_{i \in I} \in \left(\prod_{i \in I} U_i\right) \cap \left(\prod_{i \in I} V_i\right)$$

$$\iff (x_i)_{i \in I} \in \prod_{i \in I} U_i \text{ and } (x_i)_{i \in I} \in \prod_{i \in I} V_i$$

$$\iff x_i \in U_i \quad \forall i \in I \text{ and } x_i \in V_i \quad \forall i \in I$$

$$\iff x_i \in U_i \cap V_i \quad \forall i \in I$$

$$\iff (x_i)_{i \in I} \in \prod_{i \in I} (U_i \cap V_i)$$

Hence,

$$\left(\prod_{i\in I} U_i\right)\cap \left(\prod_{i\in I} V_i\right) = \prod_{i\in I} \left(U_i\cap V_i\right)$$

Now, we claim that $\prod_{i \in I} (U_i \cap V_i)$ is in the basis. To show this, we need only show that $\{i \in I \mid U_i \cap V_i \neq X_i\}$ is finite (since $U_i \cap V_i$ is clearly open).

So $U_i \cap V_i \neq X_i$ will hold if and only if at least one of U_i or V_i are not X_i . This means that

$$\{i \in I \mid U_i \cap V_i \neq X_i\} = \{i \in I \mid U_i \neq X_i\} \cup \{i \in I \mid V_i \neq X_i\}$$

Now both $\{i \in I \mid U_i \neq X_i\}$ and $\{i \in I \mid V_i \neq X_i\}$ are finite, so $\{i \in I \mid U_i \cap V_i \neq X_i\}$ must be finite as well.

Hence, $\prod_{i \in I} (U_i \cap V_i)$ is a basis element.

Now, we may pick $x \in (\prod_{i \in I} U_i) \cap (\prod_{i \in I} V_i)$, and we see that if we take $B = \prod_{i \in I} (U_i \cap V_i)$ as a basis element, that $x \in B \subseteq (\prod_i U_i) \cap (\prod_i V_i)$. So (B2) is satisfied.

So by Lemma L7-1, the basis of the product topology is well defined, and it uniquely defines a topology of the product. \Box

R-Omega

In the following exercises, we make use of:

Definition. A metric space is a pair (X, d) consisting of a set X and a function

$$d: X \times X \to \mathbb{R}$$

satisfying the axioms:

- (M1) $d(x,y) \ge 0 \quad \forall x, y \in X \text{ (non-negativity)}$
- (M2) $d(x,y) = 0 \iff x = y \quad \forall x,y \in X \text{ (separation)}$
- (M3) $d(x,y) = d(y,x) \quad \forall x,y \in X \text{ (symmetry)}$
- (M4) $d(x,y) + d(y,z) \ge d(x,z) \quad \forall x,y,z \in X$ (triangle inequality)

Exercise (L6-10). The metrics d_1 , d_2 and d_{∞} (on \mathbb{R}^2) are all Lipschitz equivalent, so

$$(\mathbb{R}^2, \mathcal{T}_{d_1}) = (\mathbb{R}^2, \mathcal{T}_{d_2}) = (\mathbb{R}^2, \mathcal{T}_{d_{\infty}})$$

Exercise L7-4 (i)

Prove \mathbb{R}^n (with the metric topology) is <u>equal</u> as a topological space to the product of n copies of \mathbb{R} , in the above sense.

Proof. Let us denote the topology of \mathbb{R}^n (with the metric topology) by \mathcal{T}_1 , and the product topology of n copies of \mathbb{R} by \mathcal{T}_2 .

We proved in an Exercise L6-10 that \mathbb{R}^2 has equivalent induced topologies under the metrics d_1 , d_2 , or d_{∞} . So we may choose any of these metrics for \mathbb{R}^2 as we please. This can be extended to \mathbb{R}^n , so we will choose d_2 as our metric for \mathbb{R}^n .

$\mathcal{T}_1 \subseteq \mathcal{T}_2$:

Let us take $x \in \mathbb{R}^n$ and some $U_1 \in \mathcal{T}_1$ such that $x \in U_1$. Since U_1 is open, we can find a ball $B_{\epsilon}^{d_2}(x) \subseteq U_1$ (for some $\epsilon > 0$), which contains x. This ball contains the open box $U_2 \in \mathcal{T}_2$ where $U_2 := (x - \delta, x + \delta)^n$ (that is, the product of n copies of $(x - \delta, x + \delta)$), where $\delta \leq n^{-1/2} \epsilon$. This open box clearly contains x.

This means that $x \in U_2 \subseteq B_{\epsilon}^{d_2}(x) \subseteq U_1$. So we have proved that the metric topology is contained within the product topology.

$\mathcal{T}_2 \subseteq \mathcal{T}_1$:

Again, we take $x \in \mathbb{R}^n$, and some $U_2 \in \mathcal{T}_2$ such that $x \in U_2$. Since U_2 is generated by unions of the products of open sets in \mathbb{R} (by definition of the product topology), we can find a box $(x - \delta, x + \delta)^n \subseteq U_2$ (for some $\delta > 0$), which contains x. This box contains the ball $U_1 \in \mathcal{T}_1$ where $U_1 := B_{\epsilon}^{d_2}(x)$, where $\epsilon \leq \delta/2$. This ball clearly contains x.

This means that $x \in U_1 \subseteq (x - \delta, x + \delta)^n \subseteq U_2$. So we have proved that the product topology is contained within the metric topology.

Exercise L7-4 (ii)

Is the space $\mathbb{R}^{\omega} := \prod_{n \in \mathbb{N}} \mathbb{R}$ metrisable? Prove it, either way.

Claim. \mathbb{R}^{ω} is metrisable, with metric $d(x,y) = \sup_{n \in \mathbb{N}} \left(\frac{\min\{1,|x_n-y_n|\}}{n} \right)$

Proof. The following proof makes reference to \underline{this} website, in inspiration for a suitable metric.

Before we proceed with our proof, we must of course prove that d is in fact a metric for \mathbb{R}^{ω} : d is a metric:

- (M1) Clear, since neither 1 or |-| are negative.
- (M2) Clear, since d(x,y) = 0 iff $|x_n y_n| = 0$ for all $n \in \mathbb{N}$ iff x = y.
- (M3) Clear, since $|x_n y_n|$ is symmetric about x_n and y_n for all $n \in \mathbb{N}$.
- (M4) Suppose we are given $x, y, z \in \mathbb{R}^{\omega}$. Now for all $n \in \mathbb{N}$,

$$\min\{1, |x_n - z_n|\} \le \min\{1, |x_n - y_n| + |y_n - z_n|\}$$
 by the triangle inequality $\le \min\{1, |x_n - y_n|\} + \min\{1, |y_n - z_n|\}$

And in particular,

$$\frac{\min\{1, |x_n - z_n|\}}{n} \le \frac{\min\{1, |x_n - y_n|\}}{n} + \frac{\min\{1, |y_n - z_n|\}}{n} \le d(z, y) + d(y, z)$$

And since this is true for all $n \in \mathbb{N}$, we conclude that

$$d(x,z) \le d(x,y) + d(y,z)$$

Hence, d is a metric upon \mathbb{R}^{ω} .

Let the metric topology induced by d over \mathbb{R}^{ω} be denoted by \mathcal{T}_1 , and the product topology of \mathbb{R}^{ω} be denoted by \mathcal{T}_2 . We wish to show that $\mathcal{T}_1 = \mathcal{T}_2$.

$\underline{\mathcal{T}_1 \subseteq \mathcal{T}_2}$:

Let us take $x \in \mathbb{R}^{\omega}$ and some $U_1 \in \mathcal{T}_1$ such that $x \in U_1$. Since U_1 is open, we can find a ball $B_{\epsilon}^d(x) \subseteq U_1$ (for some $\epsilon > 0$).

Consider now the open 'box' $U_2 \in \mathcal{T}_2$ where $U_2 := (x_1 - \epsilon, x_1 + \epsilon) \times \ldots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \times \ldots$, where $N \in \mathbb{N}$ is large enough that $1/N < \epsilon$. This is certainly a valid basis element of \mathcal{T}_2 , since we have the product of open sets in \mathbb{R} with only finitely many of them being not equal to \mathbb{R} itself.

Notice now that given any $y \in \mathbb{R}^{\omega}$,

$$\frac{\min\{1, |x_n - y_n|\}}{n} \le \frac{1}{N}$$
 for $n \ge N$

Hence,

$$d(x,y) \le \max\left\{\frac{\min\{1,|x_1-y_1|\}}{1},\ldots,\frac{\min\{1,|x_N-y_N|\}}{N},\frac{1}{N}\right\}$$

And if $y \in U_2$, this expression is less than ϵ . So $U_2 \subseteq B_{\epsilon}^d(x) \subseteq U_1$. So we have proved that the metric topology is contained within the product topology.

$\mathcal{T}_2 \subseteq \mathcal{T}_1$:

Again, we take $x \in \mathbb{R}^{\omega}$, and some $U_2 \in \mathcal{T}_2$ to be such that $x \in U_2$. Since U_2 is in the product topology of \mathbb{R}^n , we can find a $V \in \mathcal{T}_2$ defined $V := \prod_{n \in \mathbb{N}} V_n$ where V_n are open subintervals in \mathbb{R} for $n \in \{\alpha_1, \ldots, \alpha_N\}$ (for some $N \in \mathbb{N}$) and $V_n = \mathbb{R}$ for all other values of n, such that $x \in V$ (this V is a basis element of \mathcal{T}_2).

We now choose an interval $(x_n - \epsilon_n, x_n + \epsilon_n) \subseteq V_n \subseteq \mathbb{R}$ for $n \in \{\alpha_1, \dots, \alpha_N\}$, where each $\epsilon_n \leq 1$ (since any open set in \mathbb{R} contains a sufficiently small open interval). This allows us to define,

$$\epsilon = \min\{\epsilon_n/n \mid n \in \{\alpha_1, \dots, \alpha_N\}\}\$$

which certainly exists as we are finding the minimum over a finite domain. Consider now $y \in B^d_{\epsilon}(x)$. Then for all $n \in \mathbb{N}$,

$$\frac{\min\{1, |x_n - y_n|\}}{n} \le d(x, y) < \epsilon$$

Now if $n \in \{\alpha_1, \ldots, \alpha_N\}$, we know that $\epsilon \leq \epsilon_n/n$. So $\min\{1, |x_n - y_n|\} < \epsilon_n \leq 1$. Hence $|x_n - y_n| < \epsilon$.

Therefore $B_{\epsilon}^d(x) \subseteq V \subseteq U_2$. So we have proved that the product topology is contained within the metric topology.

Quotients

In the following exercise, we make use of:

Definition. A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a set of subsets of X, such that

- (T1) \emptyset , X both belong to \mathcal{T}
- (T2) if $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$
- (T3) if $\{V_i\}_{i\in I}$ is any indexed set with $V_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} V_i \in \mathcal{T}$.

We call such a set \mathcal{T} a topology on X and say that the sets $V \in \mathcal{T}$ are open in the topology. A set $C \subseteq X$ is closed in the topology if there exists $U \in \mathcal{T}$ with $C = \overline{X \setminus U}$.

Definition. Let X be a topological space and \sim be an equivalence relation on X. The quotient space X/\sim is the set of equivalence classes with the topology given by $(\rho: X \to X/\sim$ denotes the quotient map)

$$\mathcal{T} := \left\{ U \subseteq X /_{\sim} \mid \rho^{-1}(U) \text{ is open in } X \right\}$$

Exercise L7-7

Prove this is a topology on X/\sim and that for any space Y and for any continuous $f: X \to Y$ s.t. $f(x_1) = f(x_2)$ whenever $x_1 \sim x_2$, there is a <u>unique</u> continuous map F making the following diagram commute:

Proof (topology). To show that \mathcal{T} is indeed a topology, we need to show that it satisfies the above definition.

- (T1) $\emptyset \subseteq X/\sim$, and $\rho^{-1}(\emptyset) = \emptyset$, which is open in X. So $\emptyset \in \mathcal{T}$. Similarly, $X/\sim \subseteq X/\sim$, and $\rho^{-1}(X/\sim) = X$, which is open in X. So $X/\sim \in \mathcal{T}$.
- (T2) Suppose we have $U, V \in \mathcal{T}$. This means that $\rho^{-1}(U)$ and $\rho^{-1}(V)$ are open in X. Now, suppose we have

$$x \in \rho^{-1}(U \cap V)$$

$$\iff \rho(x) \in U \cap V$$

$$\iff \rho(x) \in U \text{ and } \rho(x) \in V$$

$$\iff x \in \rho^{-1}(U) \text{ and } x \in \rho^{-1}(V)$$

 $\iff x \in \rho^{-1}(U) \cap \rho^{-1}(V)$

Hence,

$$\rho^{-1}(U \cap V) = \rho^{-1}(U) \cap \rho^{-1}(V)$$

So $U \cap V \in \mathcal{T}$, since $\rho^{-1}(U \cap V)$ is the intersection of two open sets in X and is therefore open in X.

(T3) Suppose we have $\{U_i\}_{i\in I}$ is an indexed set with $U\in T$. This means that $\rho^{-1}(U_i)$ is open in X for all $i\in I$.

Now, suppose we have

$$x \in \rho^{-1} \left(\bigcup_{i \in I} U_i \right)$$

$$\iff \rho(x) \in \bigcup_{i \in I} U_i$$

$$\iff \rho(x) \in U_i \qquad \text{for some } i \in I$$

$$\iff x \in \rho^{-1}(U_i) \qquad \text{for some } i \in I$$

$$\iff x \in \bigcup_{i \in I} \rho^{-1}(U_i)$$

Hence,

$$\rho^{-1}\left(\bigcup_{i\in I} U_i\right) = \bigcup_{i\in I} \rho^{-1}(U_i)$$

So $\bigcup_{i\in I} U_i \in \mathcal{T}$, since $\rho^{-1}\left(\bigcup_{i\in I} U_i\right)$ is the union of arbitrary open sets in X and is therefore open in X.

So we conclude that \mathcal{T} is indeed a topology on \mathbb{Z}_{\sim} .

Proof (universal property). We first note that such an F is well-defined, as it is sending equivalence classes in X/\sim to what f preserves in the equivalence relation, which are of course equal (by the definition of f).

Uniqueness:

Suppose that we have another continuous G such that $G \circ \rho = f$. Let $[x] \in X/_{\sim}$ be the class of elements equivalent to $x \in X$ under \sim .

We notice that,

$$F([x]) = F(\rho(x)) = f(x) = G(\rho(x)) = G([x])$$

Which is to say that F = G as functions, as every element of X/\sim are of the form [x] for some $x \in X$.

Existence: To show that such an F is continuous, we must show that the preimage of open subsets of Y map to open subsets of X/\sim .

Let $U \subseteq Y$ be an open subset. To show that $F^{-1}(U) \in \mathcal{T}$, we need to consider $\rho^{-1}(F^{-1}(U))$.

Now, suppose we have

$$x \in \rho^{-1}(F^{-1}(U))$$

$$\iff \rho(x) \in F^{-1}(U)$$

$$\iff F(\rho(x)) \in U$$

$$\iff f(x) \in U \qquad \text{as } f = F \circ \rho$$

$$\iff x \in f^{-1}(U)$$

Hence,

$$\rho^{-1}(F^{-1}(U)) = f^{-1}(U)$$

So $F^{-1}(U) \in \mathcal{T}$, since $\rho^{-1}(F^{-1}(U)) = f^{-1}(U)$, which is open in X, as f is continuous. \Box