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Two Circles

In the following exercise, we make use of:

Definition . If (X, dX), (Y, dY ) are metric spaces, a function f : X → Y is
distance preserving if

dY (f(x1), f(x2)) = dX(x1, x2) ∀x1, x2 ∈ X

A distance preserving function which is bijective is called an isometry.

Exercise L6-2

Prove that (S1, da), (S1, d2) are not isometric (that is, no isometry exists between them),
but that Tda = Td2 , i.e. in the associated topologies on S1 the same sets are declared open.

Proof (not isometric). We notice that over S1, the maximal possible distance between two
points under da is π, whereas the maximum distance between two points under d2 is 2 (which
is less than π). So since there is no map that takes x, y ∈ S1 to make d2(x, y) = π, we can
conclude that no isometry exists between (S1, da) and (S1, d2), so they are not isometric.

Proof (topologies are equal). To show Tda = Td2 , we first show Tda ⊆ Td2 , then Td2 ⊆ Tda .

Tda ⊆ Td2 :
If U ∈ Tda , then U ⊆ S1 is such that ∀x ∈ U ∃ε > 0 Bda

ε (x) ⊆ U . Now, if we wish to find the
chord length that Bεda(x) forms around the unit circle, we use the Pythagorean theorem to
find that it is equal to

2 sin
( ε

2

)
We take ε′ = 2 sin

(
ε
2

)
, to see that Bd2

ε′ (x) ⊆ Bda
ε (x). Hence U ∈ Td2 .
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Td2 ⊆ Tda :

If U ∈ Td2 , then U ⊆ S1 is such that ∀x ∈ U ∃ε > 0 Bd2
ε (x) ⊆ U . Now, if we wish to

find the “angle” that Bd2
ε (x) forms around the unit circle, we use the cosine rule (a2 =

b2 + c2 − 2bc cos θ) with b = c = 1 (as we are on the unit circle) and a = ε. So,

ε2 = 2− 2 cos θ

=⇒ 1− ε2

2
= cos θ

=⇒ θ = arccos

(
1− ε2

2

)
We take ε′ = arccos

(
1− ε2

2

)
, to see that Bda

ε′ (x) ⊆ Bd2
ε (x). Hence U ∈ Tda .
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Sierpiński

In the following exercise, we make use of:

Definition . A topological space is a pair (X, T ) where X is a set and T is a set of subsets
of X, such that

(T1) ∅, X both belong to T

(T2) if U, V ∈ T then U ∩ V ∈ T

(T3) if {Vi}i∈I is any indexed set with Vi ∈ T for all i ∈ I, then
⋃
i∈I Vi ∈ T .

We call such a set T a topology on X and say that the sets V ∈ T are open in the topology.
A set C ⊆ X is closed in the topology if there exists U ∈ T with C = X \ U .

Claim . Every singleton is closed in a metrisable space.

Proof. Let us denote our metrisable space with (X, Td). Let {∗} ⊆ X be a singleton in X.
To prove our claim, we need only show that X \ {∗} is open. So we need to prove that
∀x ∈ X \ {∗} ∃ε > 0 Bε(x) ⊆ X \ {∗}.
Let our x ∈ X \ {∗} be given (as if X \ {∗} were empty, our statement would be vacuously
true). This means that d(∗, y) > 0.
Set ε = d(∗, y)/2. Clearly, Bε(x) ⊆ X \ {∗}, which completes the proof.

Exercise L6-3

Prove that X = {0, 1} with T = {∅, X, {1}} is a topological space. This is called the
Sierpiński space and is usually denoted Σ. Prove that Σ is not metrisable.

Proof. (T1) is clear, (T2) Intersections can only be one of ∅, {1}, X, so it is clear, (T3) Only
possible unions are ∅, {1}, X, so it is also clear. Hence, Σ is a topological space.

To show that Σ is not metrisable, we need only consider the above claim (since {1}, a
singleton, is open in Σ).
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Fake Interval

In the following exercise, we make use of:

Definition . Let (X, T ), (Y,S) be topological spaces. A continuous map f : (X, T ) →
(Y,S) is a function f : X → Y with the property that

∀V ⊆ Y
(
V ∈ S =⇒ f−1(V ) ∈ T

)
Exercise L6-11

Consider the topological space (X, T ) with X = [0, 1] and T =
{
∅, X,

[
0, 1

2

]
,
(
1
2
, 1
]}

. Classify
all the continuous function X → R.

Claim . A function is continuous X → R if and only if it is of the form,

f(x) =

{
a x ∈

[
0, 1

2

]
b x ∈

(
1
2
, 1
]

for some a, b ∈ R.

Proof. (⇒) Clearly, any continuous function X → R must be a hybrid function (due to the
discreteness of T ). So let us suppose (for a contradiction), that we have some other
hybrid function g ∈ Cts(X,R) with steps in different domains.

That is, for i ∈ I we have ai ∈ R and Ai ⊆ X forming a partition of X, such that
Ai /∈

{[
0, 1

2

]
,
(
1
2
, 1
]}

and,

g(x) =
{
ai x ∈ Ai

[note that |I| ≥ 2, as |I| = 1 means that f = g, with a = b]

And since g is continuous, any U ⊆ R open =⇒ g−1(U) ∈ T . So let us take U ⊆ R
to be such that ai ∈ U and aj /∈ U for all j 6= i, for some i ∈ I. This implies that
g−1(U) = Ai ∈ T . But this contradicts the definition of T .

Hence, g /∈ Cts(X,R). So we conclude that if a function is in Cts(X,R), it must be of
the form listed above.

(⇐) Clearly the preimage of f will be one of ∅, X,
[
0, 1

2

]
,
(
1
2
, 1
]

(which are precisely the
elements of T ) for any subset of R. And in particular, the open subsets of R.
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Product

In the following exercise, we make use of:

Lemma (L7-1). Let X be a set and B a collection of subsets of X satisfying

(B1) For each x ∈ X there exists B ∈ B with x ∈ B

(B2) Given B1, B2 ∈ B and x ∈ B1 ∩B2 there exists B3 ∈ B with x ∈ B3 ⊆ B1 ∩B2

Then there is a unique topology T on X for which B is a basis. We call T the topology
generated by B.

Definition . Let {Xi}i∈I be an indexed family of topological spaces. The product space∏
i∈I X is the usual product set with the topology generated by the basis consisting of sets

∏
i∈I

Ui =

{
(xi)i∈I

∏
i∈I

Xi

∣∣∣∣∣ xi ∈ Ui for all i

}

where each Ui ⊆ Xi is open and the set {i ∈ I | Ui 6= Xi} is finite.
(i.e. something like . . .×X−2 ×X−1 × U0 × U1 × . . .× Uk ×Xk+1 × . . . if I = Z)

Exercise L7-2

Prove that
∏

i Ui as defined above satisfy (B1), (B2), so that the topology on
∏

i∈I Xi is
well-defined.

Proof. (B1) We may take Ui = Xi for every i ∈ I. This is a valid thing to do since now
{i ∈ I | Ui = Xi} = ∅, which is certainly finite.

This means that
∏

i∈I Xi ∈ B, so we can pick any (xi)i∈I ∈
∏

iXi, and it will lie within
at least one of the basis elements (namely,

∏
iXi itself). So (B1) is satisfied.

(B2) We are concerned with subsets of the form
∏

i∈I Ui and
∏

i∈I Vi, where only finitely
many of the Ui’s and Vi’s are not equal to Xi.

Let,

(xi)i∈I ∈

(∏
i∈I

Ui

)
∩

(∏
i∈I

Vi

)
⇐⇒ (xi)i∈I ∈

∏
i∈I

Ui and (xi)i∈I ∈
∏
i∈I

Vi

⇐⇒ xi ∈ Ui ∀i ∈ I and xi ∈ Vi ∀i ∈ I
⇐⇒ xi ∈ Ui ∩ Vi ∀i ∈ I

⇐⇒ (xi)i∈I ∈
∏
i∈I

(Ui ∩ Vi)
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Hence, (∏
i∈I

Ui

)
∩

(∏
i∈I

Vi

)
=
∏
i∈I

(Ui ∩ Vi)

Now, we claim that
∏

i∈I(Ui∩Vi) is in the basis. To show this, we need only show that
{i ∈ I | Ui ∩ Vi 6= Xi} is finite (since Ui ∩ Vi is clearly open).

So Ui ∩ Vi 6= Xi will hold if and only if at least one of Ui or Vi are not Xi. This means
that

{i ∈ I | Ui ∩ Vi 6= Xi} = {i ∈ I | Ui 6= Xi} ∪ {i ∈ I | Vi 6= Xi}

Now both {i ∈ I | Ui 6= Xi} and {i ∈ I | Vi 6= Xi} are finite, so {i ∈ I | Ui ∩ Vi 6= Xi}
must be finite as well.

Hence,
∏

i∈I(Ui ∩ Vi) is a basis element.

Now, we may pick x ∈
(∏

i∈I Ui
)
∩
(∏

i∈I Vi
)
, and we see that if we take B =

∏
i∈I(Ui∩

Vi) as a basis element, that x ∈ B ⊆ (
∏

i Ui) ∩ (
∏

i Vi). So (B2) is satisfied.

So by Lemma L7-1, the basis of the product topology is well defined, and it uniquely defines
a topology of the product.
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R-Omega

In the following exercises, we make use of:

Definition . A metric space is a pair (X, d) consisting of a set X and a function

d : X ×X → R

satisfying the axioms:

(M1) d(x, y) ≥ 0 ∀x, y ∈ X (non-negativity)

(M2) d(x, y) = 0⇐⇒ x = y ∀x, y ∈ X (separation)

(M3) d(x, y) = d(y, x) ∀x, y ∈ X (symmetry)

(M4) d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z ∈ X (triangle inequality)

Exercise (L6-10). The metrics d1, d2 and d∞ (on R2) are all Lipschitz equivalent, so

(R2, Td1) = (R2, Td2) = (R2, Td∞)

Exercise L7-4 (i)

Prove Rn (with the metric topology) is equal as a topological space to the product of n copies
of R, in the above sense.

Proof. Let us denote the topology of Rn (with the metric topology) by T1, and the product
topology of n copies of R by T2.
We proved in an Exercise L6-10 that R2 has equivalent induced topologies under the metrics
d1, d2, or d∞. So we may choose any of these metrics for R2 as we please. This can be
extended to Rn, so we will choose d2 as our metric for Rn.

T1 ⊆ T2:
Let us take x ∈ Rn and some U1 ∈ T1 such that x ∈ U1. Since U1 is open, we can find
a ball Bd2

ε (x) ⊆ U1 (for some ε > 0), which contains x. This ball contains the open box
U2 ∈ T2 where U2 := (x− δ, x+ δ)n (that is, the product of n copies of (x− δ, x+ δ)), where
δ ≤ n−1/2ε. This open box clearly contains x.
This means that x ∈ U2 ⊆ Bd2

ε (x) ⊆ U1. So we have proved that the metric topology is
contained within the product topology.

T2 ⊆ T1:
Again, we take x ∈ Rn, and some U2 ∈ T2 such that x ∈ U2. Since U2 is generated by unions
of the products of open sets in R (by definition of the product topology), we can find a box
(x− δ, x+ δ)n ⊆ U2 (for some δ > 0), which contains x. This box contains the ball U1 ∈ T1
where U1 := Bd2

ε (x), where ε ≤ δ/2. This ball clearly contains x.
This means that x ∈ U1 ⊆ (x−δ, x+δ)n ⊆ U2. So we have proved that the product topology
is contained within the metric topology.
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Exercise L7-4 (ii)

Is the space Rω :=
∏

n∈NR metrisable? Prove it, either way.

Claim . Rω is metrisable, with metric d(x, y) = supn∈N

(
min{1,|xn−yn|}

n

)
Proof. The following proof makes reference to this website, in inspiration for a suitable
metric.

Before we proceed with our proof, we must of course prove that d is in fact a metric for Rω:

d is a metric:

(M1) Clear, since neither 1 or |-| are negative.

(M2) Clear, since d(x, y) = 0 iff |xn − yn| = 0 for all n ∈ N iff x = y.

(M3) Clear, since |xn − yn| is symmetric about xn and yn for all n ∈ N.

(M4) Suppose we are given x, y, z ∈ Rω. Now for all n ∈ N,

min{1, |xn − zn|} ≤ min{1, |xn − yn|+ |yn − zn|} by the triangle inequality

≤ min{1, |xn − yn|}+ min{1, |yn − zn|}

And in particular,

min{1, |xn − zn|}
n

≤ min{1, |xn − yn|}
n

+
min{1, |yn − zn|}

n
≤ d(z, y) + d(y, z)

And since this is true for all n ∈ N, we conclude that

d(x, z) ≤ d(x, y) + d(y, z)

Hence, d is a metric upon Rω.

Let the metric topology induced by d over Rω be denoted by T1, and the product topology
of Rω be denoted by T2. We wish to show that T1 = T2.
T1 ⊆ T2:
Let us take x ∈ Rω and some U1 ∈ T1 such that x ∈ U1. Since U1 is open, we can find a ball
Bd
ε (x) ⊆ U1 (for some ε > 0).

Consider now the open ‘box’ U2 ∈ T2 where U2 := (x1 − ε, x1 + ε)× . . .× (xN − ε, xN + ε)×
R × R × . . ., where N ∈ N is large enough that 1/N < ε. This is certainly a valid basis
element of T2, since we have the product of open sets in R with only finitely many of them
being not equal to R itself.
Notice now that given any y ∈ Rω,

min{1, |xn − yn|}
n

≤ 1

N
for n ≥ N
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Hence,

d(x, y) ≤ max

{
min{1, |x1 − y1|}

1
, . . . ,

min{1, |xN − yN |}
N

,
1

N

}
And if y ∈ U2, this expression is less than ε. So U2 ⊆ Bd

ε (x) ⊆ U1. So we have proved that
the metric topology is contained within the product topology.

T2 ⊆ T1:
Again, we take x ∈ Rω, and some U2 ∈ T2 to be such that x ∈ U2. Since U2 is in the product
topology of Rn, we can find a V ∈ T2 defined V :=

∏
n∈N Vn where Vn are open subintervals

in R for n ∈ {α1, . . . , αN} (for some N ∈ N) and Vn = R for all other values of n, such that
x ∈ V (this V is a basis element of T2).
We now choose an interval (xn − εn, xn + εn) ⊆ Vn ⊆ R for n ∈ {α1, . . . , αN}, where each
εn ≤ 1 (since any open set in R contains a sufficiently small open interval). This allows us
to define,

ε = min{εn/n | n ∈ {α1, . . . , αN}}

which certainly exists as we are finding the minimum over a finite domain.
Consider now y ∈ Bd

ε (x). Then for all n ∈ N,

min{1, |xn − yn|}
n

≤ d(x, y) < ε

Now if n ∈ {α1, . . . , αN}, we know that ε ≤ εn/n. So min{1, |xn − yn|} < εn ≤ 1. Hence
|xn − yn| < ε.
Therefore Bd

ε (x) ⊆ V ⊆ U2. So we have proved that the product topology is contained
within the metric topology.
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Quotients

In the following exercise, we make use of:

Definition . A topological space is a pair (X, T ) where X is a set and T is a set of subsets
of X, such that

(T1) ∅, X both belong to T

(T2) if U, V ∈ T then U ∩ V ∈ T

(T3) if {Vi}i∈I is any indexed set with Vi ∈ T for all i ∈ I, then
⋃
i∈I Vi ∈ T .

We call such a set T a topology on X and say that the sets V ∈ T are open in the topology.
A set C ⊆ X is closed in the topology if there exists U ∈ T with C = X \ U .

Definition . Let X be a topological space and ∼ be an equivalence relation on X. The

quotient space X�∼ is the set of equivalence classes with the topology given by (ρ : X →
X�∼ denotes the quotient map)

T :=
{
U ⊆ X�∼

∣∣∣ ρ−1(U) is open in X
}

Exercise L7-7

Prove this is a topology on X�∼ and that for any space Y and for any continuous f : X → Y
s.t. f(x1) = f(x2) whenever x1 ∼ x2, there is a unique continuous map F making the
following diagram commute:

X X�∼

Y

ρ

f
F

Proof (topology). To show that T is indeed a topology, we need to show that it satisfies the
above definition.

(T1) ∅ ⊆ X�∼, and ρ−1(∅) = ∅, which is open in X. So ∅ ∈ T .

Similarly, X�∼ ⊆ X�∼, and ρ−1
(
X�∼

)
= X, which is open in X. So X�∼ ∈ T .

(T2) Suppose we have U, V ∈ T . This means that ρ−1(U) and ρ−1(V ) are open in X.

Now, suppose we have

x ∈ ρ−1(U ∩ V )

⇐⇒ ρ(x) ∈ U ∩ V
⇐⇒ ρ(x) ∈ U and ρ(x) ∈ V
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⇐⇒ x ∈ ρ−1(U) and x ∈ ρ−1(V )

⇐⇒ x ∈ ρ−1(U) ∩ ρ−1(V )

Hence,
ρ−1(U ∩ V ) = ρ−1(U) ∩ ρ−1(V )

So U∩V ∈ T , since ρ−1(U∩V ) is the intersection of two open sets in X and is therefore
open in X.

(T3) Suppose we have {Ui}i∈I is an indexed set with U ∈ T . This means that ρ−1(Ui) is
open in X for all i ∈ I.

Now, suppose we have

x ∈ ρ−1
(⋃
i∈I

Ui

)
⇐⇒ ρ(x) ∈

⋃
i∈I

Ui

⇐⇒ ρ(x) ∈ Ui for some i ∈ I
⇐⇒ x ∈ ρ−1(Ui) for some i ∈ I

⇐⇒ x ∈
⋃
i∈I

ρ−1(Ui)

Hence,

ρ−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

ρ−1(Ui)

So
⋃
i∈I Ui ∈ T , since ρ−1

(⋃
i∈I Ui

)
is the union of arbitrary open sets in X and is

therefore open in X.

So we conclude that T is indeed a topology on X�∼.

Proof (universal property). We first note that such an F is well-defined, as it is sending

equivalence classes in X�∼ to what f preserves in the equivalence relation, which are of
course equal (by the definition of f).

Uniqueness:

Suppose that we have another continuous G such that G◦ρ = f . Let [x] ∈ X�∼ be the class
of elements equivalent to x ∈ X under ∼.
We notice that,

F ([x]) = F (ρ(x)) = f(x) = G(ρ(x)) = G([x])

Which is to say that F = G as functions, as every element of X�∼ are of the form [x] for
some x ∈ X.

Existence: To show that such an F is continuous, we must show that the preimage of open

subsets of Y map to open subsets of X�∼.
Let U ⊆ Y be an open subset. To show that F−1(U) ∈ T , we need to consider ρ−1(F−1(U)).
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Now, suppose we have

x ∈ ρ−1(F−1(U))

⇐⇒ ρ(x) ∈ F−1(U)

⇐⇒ F (ρ(x)) ∈ U
⇐⇒ f(x) ∈ U as f = F ◦ ρ
⇐⇒ x ∈ f−1(U)

Hence,
ρ−1(F−1(U)) = f−1(U)

So F−1(U) ∈ T , since ρ−1(F−1(U)) = f−1(U), which is open in X, as f is continuous.
We then conclude that F is continuous.
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