MAST30026: Metric and Hilbert Spaces: Assignment 1 Tutor: Daniel Murfet Tutorial time: Wednesday, 10am Student: Brett Eskrigge 31st of August ## Two Circles In the following exercise, we make use of: **Definition.** If (X, d_X) , (Y, d_Y) are metric spaces, a function $f: X \to Y$ is distance preserving if $$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2) \quad \forall x_1, x_2 \in X$$ A distance preserving function which is bijective is called an <u>isometry</u>. #### Exercise L6-2 Prove that (S^1, d_a) , (S^1, d_2) are <u>not</u> isometric (that is, no isometry exists between them), but that $\mathcal{T}_{d_a} = \mathcal{T}_{d_2}$, i.e. in the associated topologies on S^1 the same sets are declared open. Proof (not isometric). We notice that over S_1 , the maximal possible distance between two points under d_a is π , whereas the maximum distance between two points under d_2 is 2 (which is less than π). So since there is no map that takes $x, y \in S^1$ to make $d_2(x, y) = \pi$, we can conclude that no isometry exists between (S^1, d_a) and (S^1, d_2) , so they are <u>not</u> isometric. \square Proof (topologies are equal). To show $\mathcal{T}_{d_a} = \mathcal{T}_{d_2}$, we first show $\mathcal{T}_{d_a} \subseteq \mathcal{T}_{d_2}$, then $\mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_a}$. $\mathcal{T}_{d_a} \subseteq \mathcal{T}_{d_2}$: If $U \in \mathcal{T}_{d_a}$, then $U \subseteq S^1$ is such that $\forall x \in U \exists \epsilon > 0$ $B_{\epsilon}^{d_a}(x) \subseteq U$. Now, if we wish to find the chord length that $B\epsilon^{d_a}(x)$ forms around the unit circle, we use the Pythagorean theorem to find that it is equal to $$2\sin\left(\frac{\epsilon}{2}\right)$$ We take $\epsilon' = 2\sin\left(\frac{\epsilon}{2}\right)$, to see that $B_{\epsilon'}^{d_2}(x) \subseteq B_{\epsilon}^{d_a}(x)$. Hence $U \in \mathcal{T}_{d_2}$. $\underline{\mathcal{T}_{d_2} \subseteq \mathcal{T}_{d_a}}$: If $U \in \mathcal{T}_{d_2}$, then $U \subseteq S^1$ is such that $\forall x \in U \exists \epsilon > 0$ $B^{d_2}_{\epsilon}(x) \subseteq U$. Now, if we wish to find the "angle" that $B^{d_2}_{\epsilon}(x)$ forms around the unit circle, we use the cosine rule $(a^2 = b^2 + c^2 - 2bc\cos\theta)$ with b = c = 1 (as we are on the unit circle) and $a = \epsilon$. So, $$\epsilon^{2} = 2 - 2\cos\theta$$ $$\implies 1 - \frac{\epsilon^{2}}{2} = \cos\theta$$ $$\implies \theta = \arccos\left(1 - \frac{\epsilon^{2}}{2}\right)$$ We take $\epsilon' = \arccos\left(1 - \frac{\epsilon^2}{2}\right)$, to see that $B_{\epsilon'}^{d_a}(x) \subseteq B_{\epsilon}^{d_2}(x)$. Hence $U \in \mathcal{T}_{d_a}$. # Sierpiński In the following exercise, we make use of: **Definition.** A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a set of subsets of X, such that - (T1) \emptyset , X both belong to \mathcal{T} - (T2) if $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$ - (T3) if $\{V_i\}_{i\in I}$ is any indexed set with $V_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} V_i \in \mathcal{T}$. We call such a set \mathcal{T} a topology on X and say that the sets $V \in \mathcal{T}$ are open in the topology. A set $C \subseteq X$ is closed in the topology if there exists $U \in \mathcal{T}$ with $C = X \setminus U$. Claim. Every singleton is closed in a metrisable space. *Proof.* Let us denote our metrisable space with (X, \mathcal{T}_d) . Let $\{*\} \subseteq X$ be a singleton in X. To prove our claim, we need only show that $X \setminus \{*\}$ is open. So we need to prove that $\forall x \in X \setminus \{*\} \exists \epsilon > 0$ $B_{\epsilon}(x) \subseteq X \setminus \{*\}$. Let our $x \in X \setminus \{*\}$ be given (as if $X \setminus \{*\}$ were empty, our statement would be vacuously true). This means that d(*,y) > 0. Set $\epsilon = d(*,y)/2$. Clearly, $B_{\epsilon}(x) \subseteq X \setminus \{*\}$, which completes the proof. #### Exercise L6-3 Prove that $X = \{0,1\}$ with $\mathcal{T} = \{\emptyset, X, \{1\}\}$ is a topological space. This is called the Sierpiński space and is usually denoted Σ . Prove that Σ is <u>not</u> metrisable. *Proof.* (T1) is clear, (T2) Intersections can only be one of \emptyset , $\{1\}$, X, so it is clear, (T3) Only possible unions are \emptyset , $\{1\}$, X, so it is also clear. Hence, Σ is a topological space. To show that Σ is not metrisable, we need only consider the above claim (since $\{1\}$, a singleton, is open in Σ). ## Fake Interval In the following exercise, we make use of: **Definition.** Let (X, \mathcal{T}) , (Y, \mathcal{S}) be topological spaces. A <u>continuous map</u> $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ is a function $f: X \to Y$ with the property that $$\forall V \subseteq Y (V \in \mathcal{S} \implies f^{-1}(V) \in \mathcal{T})$$ #### Exercise L6-11 Consider the topological space (X, \mathcal{T}) with X = [0, 1] and $\mathcal{T} = \{\emptyset, X, [0, \frac{1}{2}], (\frac{1}{2}, 1]\}$. Classify all the continuous function $X \to \mathbb{R}$. **Claim.** A function is continuous $X \to \mathbb{R}$ if and only if it is of the form, $$f(x) = \begin{cases} a & x \in \left[0, \frac{1}{2}\right] \\ b & x \in \left(\frac{1}{2}, 1\right] \end{cases}$$ for some $a, b \in \mathbb{R}$. *Proof.* (\Rightarrow) Clearly, any continuous function $X \to \mathbb{R}$ must be a hybrid function (due to the discreteness of \mathcal{T}). So let us suppose (for a contradiction), that we have some other hybrid function $g \in \text{Cts}(X, R)$ with steps in different domains. That is, for $i \in I$ we have $a_i \in \mathbb{R}$ and $A_i \subseteq X$ forming a partition of X, such that $A_i \notin \{[0, \frac{1}{2}], (\frac{1}{2}, 1]\}$ and, $$g(x) = \begin{cases} a_i & x \in A_i \end{cases}$$ [note that $|I| \ge 2$, as |I| = 1 means that f = g, with a = b] And since g is continuous, any $U \subseteq \mathbb{R}$ open $\Longrightarrow g^{-1}(U) \in \mathcal{T}$. So let us take $U \subseteq \mathbb{R}$ to be such that $a_i \in U$ and $a_j \notin U$ for all $j \neq i$, for some $i \in I$. This implies that $g^{-1}(U) = A_i \in \mathcal{T}$. But this contradicts the definition of \mathcal{T} . Hence, $g \notin \mathrm{Cts}(X,\mathbb{R})$. So we conclude that if a function is in $\mathrm{Cts}(X,\mathbb{R})$, it must be of the form listed above. (\Leftarrow) Clearly the preimage of f will be one of $\emptyset, X, \left[0, \frac{1}{2}\right], \left(\frac{1}{2}, 1\right]$ (which are precisely the elements of \mathcal{T}) for any subset of \mathbb{R} . And in particular, the open subsets of \mathbb{R} . # **Product** In the following exercise, we make use of: **Lemma** (L7-1). Let X be a set and \mathcal{B} a collection of subsets of X satisfying - (B1) For each $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$ - (B2) Given $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ there exists $B_3 \in \mathcal{B}$ with $x \in B_3 \subseteq B_1 \cap B_2$ Then there is a <u>unique</u> topology \mathcal{T} on X for which \mathcal{B} is a basis. We call \mathcal{T} the topology generated by \mathcal{B} . **Definition.** Let $\{X_i\}_{i\in I}$ be an indexed family of topological spaces. The <u>product space</u> $\prod_{i\in I} X$ is the usual product set with the topology generated by the basis consisting of sets $$\prod_{i \in I} U_i = \left\{ (x_i)_{i \in I} \prod_{i \in I} X_i \mid x_i \in U_i \text{ for all } i \right\}$$ where each $U_i \subseteq X_i$ is open and the set $\{i \in I \mid U_i \neq X_i\}$ is finite. (i.e. something like ... $\times X_{-2} \times X_{-1} \times U_0 \times U_1 \times ... \times U_k \times X_{k+1} \times ...$ if $I = \mathbb{Z}$) #### Exercise L7-2 Prove that $\prod_i U_i$ as defined above satisfy (B1), (B2), so that the topology on $\prod_{i \in I} X_i$ is well-defined. - *Proof.* (B1) We may take $U_i = X_i$ for every $i \in I$. This is a valid thing to do since now $\{i \in I \mid U_i = X_i\} = \emptyset$, which is certainly finite. - This means that $\prod_{i\in I} X_i \in \mathcal{B}$, so we can pick any $(x_i)_{i\in I} \in \prod_i X_i$, and it will lie within at least one of the basis elements (namely, $\prod_i X_i$ itself). So (B1) is satisfied. - (B2) We are concerned with subsets of the form $\prod_{i \in I} U_i$ and $\prod_{i \in I} V_i$, where only finitely many of the U_i 's and V_i 's are not equal to X_i . Let, $$(x_i)_{i \in I} \in \left(\prod_{i \in I} U_i\right) \cap \left(\prod_{i \in I} V_i\right)$$ $$\iff (x_i)_{i \in I} \in \prod_{i \in I} U_i \text{ and } (x_i)_{i \in I} \in \prod_{i \in I} V_i$$ $$\iff x_i \in U_i \quad \forall i \in I \text{ and } x_i \in V_i \quad \forall i \in I$$ $$\iff x_i \in U_i \cap V_i \quad \forall i \in I$$ $$\iff (x_i)_{i \in I} \in \prod_{i \in I} (U_i \cap V_i)$$ Hence, $$\left(\prod_{i\in I} U_i\right)\cap \left(\prod_{i\in I} V_i\right) = \prod_{i\in I} \left(U_i\cap V_i\right)$$ Now, we claim that $\prod_{i \in I} (U_i \cap V_i)$ is in the basis. To show this, we need only show that $\{i \in I \mid U_i \cap V_i \neq X_i\}$ is finite (since $U_i \cap V_i$ is clearly open). So $U_i \cap V_i \neq X_i$ will hold if and only if at least one of U_i or V_i are not X_i . This means that $$\{i \in I \mid U_i \cap V_i \neq X_i\} = \{i \in I \mid U_i \neq X_i\} \cup \{i \in I \mid V_i \neq X_i\}$$ Now both $\{i \in I \mid U_i \neq X_i\}$ and $\{i \in I \mid V_i \neq X_i\}$ are finite, so $\{i \in I \mid U_i \cap V_i \neq X_i\}$ must be finite as well. Hence, $\prod_{i \in I} (U_i \cap V_i)$ is a basis element. Now, we may pick $x \in (\prod_{i \in I} U_i) \cap (\prod_{i \in I} V_i)$, and we see that if we take $B = \prod_{i \in I} (U_i \cap V_i)$ as a basis element, that $x \in B \subseteq (\prod_i U_i) \cap (\prod_i V_i)$. So (B2) is satisfied. So by Lemma L7-1, the basis of the product topology is well defined, and it uniquely defines a topology of the product. \Box # R-Omega In the following exercises, we make use of: **Definition.** A metric space is a pair (X, d) consisting of a set X and a function $$d: X \times X \to \mathbb{R}$$ satisfying the axioms: - (M1) $d(x,y) \ge 0 \quad \forall x, y \in X \text{ (non-negativity)}$ - (M2) $d(x,y) = 0 \iff x = y \quad \forall x,y \in X \text{ (separation)}$ - (M3) $d(x,y) = d(y,x) \quad \forall x,y \in X \text{ (symmetry)}$ - (M4) $d(x,y) + d(y,z) \ge d(x,z) \quad \forall x,y,z \in X$ (triangle inequality) **Exercise** (L6-10). The metrics d_1 , d_2 and d_{∞} (on \mathbb{R}^2) are all Lipschitz equivalent, so $$(\mathbb{R}^2, \mathcal{T}_{d_1}) = (\mathbb{R}^2, \mathcal{T}_{d_2}) = (\mathbb{R}^2, \mathcal{T}_{d_{\infty}})$$ ## Exercise L7-4 (i) Prove \mathbb{R}^n (with the metric topology) is <u>equal</u> as a topological space to the product of n copies of \mathbb{R} , in the above sense. *Proof.* Let us denote the topology of \mathbb{R}^n (with the metric topology) by \mathcal{T}_1 , and the product topology of n copies of \mathbb{R} by \mathcal{T}_2 . We proved in an Exercise L6-10 that \mathbb{R}^2 has equivalent induced topologies under the metrics d_1 , d_2 , or d_{∞} . So we may choose any of these metrics for \mathbb{R}^2 as we please. This can be extended to \mathbb{R}^n , so we will choose d_2 as our metric for \mathbb{R}^n . ## $\mathcal{T}_1 \subseteq \mathcal{T}_2$: Let us take $x \in \mathbb{R}^n$ and some $U_1 \in \mathcal{T}_1$ such that $x \in U_1$. Since U_1 is open, we can find a ball $B_{\epsilon}^{d_2}(x) \subseteq U_1$ (for some $\epsilon > 0$), which contains x. This ball contains the open box $U_2 \in \mathcal{T}_2$ where $U_2 := (x - \delta, x + \delta)^n$ (that is, the product of n copies of $(x - \delta, x + \delta)$), where $\delta \leq n^{-1/2} \epsilon$. This open box clearly contains x. This means that $x \in U_2 \subseteq B_{\epsilon}^{d_2}(x) \subseteq U_1$. So we have proved that the metric topology is contained within the product topology. ## $\mathcal{T}_2 \subseteq \mathcal{T}_1$: Again, we take $x \in \mathbb{R}^n$, and some $U_2 \in \mathcal{T}_2$ such that $x \in U_2$. Since U_2 is generated by unions of the products of open sets in \mathbb{R} (by definition of the product topology), we can find a box $(x - \delta, x + \delta)^n \subseteq U_2$ (for some $\delta > 0$), which contains x. This box contains the ball $U_1 \in \mathcal{T}_1$ where $U_1 := B_{\epsilon}^{d_2}(x)$, where $\epsilon \leq \delta/2$. This ball clearly contains x. This means that $x \in U_1 \subseteq (x - \delta, x + \delta)^n \subseteq U_2$. So we have proved that the product topology is contained within the metric topology. ### Exercise L7-4 (ii) Is the space $\mathbb{R}^{\omega} := \prod_{n \in \mathbb{N}} \mathbb{R}$ metrisable? Prove it, either way. **Claim.** \mathbb{R}^{ω} is metrisable, with metric $d(x,y) = \sup_{n \in \mathbb{N}} \left(\frac{\min\{1,|x_n-y_n|\}}{n} \right)$ *Proof.* The following proof makes reference to \underline{this} website, in inspiration for a suitable metric. Before we proceed with our proof, we must of course prove that d is in fact a metric for \mathbb{R}^{ω} : d is a metric: - (M1) Clear, since neither 1 or |-| are negative. - (M2) Clear, since d(x,y) = 0 iff $|x_n y_n| = 0$ for all $n \in \mathbb{N}$ iff x = y. - (M3) Clear, since $|x_n y_n|$ is symmetric about x_n and y_n for all $n \in \mathbb{N}$. - (M4) Suppose we are given $x, y, z \in \mathbb{R}^{\omega}$. Now for all $n \in \mathbb{N}$, $$\min\{1, |x_n - z_n|\} \le \min\{1, |x_n - y_n| + |y_n - z_n|\}$$ by the triangle inequality $\le \min\{1, |x_n - y_n|\} + \min\{1, |y_n - z_n|\}$ And in particular, $$\frac{\min\{1, |x_n - z_n|\}}{n} \le \frac{\min\{1, |x_n - y_n|\}}{n} + \frac{\min\{1, |y_n - z_n|\}}{n} \le d(z, y) + d(y, z)$$ And since this is true for all $n \in \mathbb{N}$, we conclude that $$d(x,z) \le d(x,y) + d(y,z)$$ Hence, d is a metric upon \mathbb{R}^{ω} . Let the metric topology induced by d over \mathbb{R}^{ω} be denoted by \mathcal{T}_1 , and the product topology of \mathbb{R}^{ω} be denoted by \mathcal{T}_2 . We wish to show that $\mathcal{T}_1 = \mathcal{T}_2$. ## $\underline{\mathcal{T}_1 \subseteq \mathcal{T}_2}$: Let us take $x \in \mathbb{R}^{\omega}$ and some $U_1 \in \mathcal{T}_1$ such that $x \in U_1$. Since U_1 is open, we can find a ball $B_{\epsilon}^d(x) \subseteq U_1$ (for some $\epsilon > 0$). Consider now the open 'box' $U_2 \in \mathcal{T}_2$ where $U_2 := (x_1 - \epsilon, x_1 + \epsilon) \times \ldots \times (x_N - \epsilon, x_N + \epsilon) \times \mathbb{R} \times \mathbb{R} \times \ldots$, where $N \in \mathbb{N}$ is large enough that $1/N < \epsilon$. This is certainly a valid basis element of \mathcal{T}_2 , since we have the product of open sets in \mathbb{R} with only finitely many of them being not equal to \mathbb{R} itself. Notice now that given any $y \in \mathbb{R}^{\omega}$, $$\frac{\min\{1, |x_n - y_n|\}}{n} \le \frac{1}{N}$$ for $n \ge N$ Hence, $$d(x,y) \le \max\left\{\frac{\min\{1,|x_1-y_1|\}}{1},\ldots,\frac{\min\{1,|x_N-y_N|\}}{N},\frac{1}{N}\right\}$$ And if $y \in U_2$, this expression is less than ϵ . So $U_2 \subseteq B_{\epsilon}^d(x) \subseteq U_1$. So we have proved that the metric topology is contained within the product topology. #### $\mathcal{T}_2 \subseteq \mathcal{T}_1$: Again, we take $x \in \mathbb{R}^{\omega}$, and some $U_2 \in \mathcal{T}_2$ to be such that $x \in U_2$. Since U_2 is in the product topology of \mathbb{R}^n , we can find a $V \in \mathcal{T}_2$ defined $V := \prod_{n \in \mathbb{N}} V_n$ where V_n are open subintervals in \mathbb{R} for $n \in \{\alpha_1, \ldots, \alpha_N\}$ (for some $N \in \mathbb{N}$) and $V_n = \mathbb{R}$ for all other values of n, such that $x \in V$ (this V is a basis element of \mathcal{T}_2). We now choose an interval $(x_n - \epsilon_n, x_n + \epsilon_n) \subseteq V_n \subseteq \mathbb{R}$ for $n \in \{\alpha_1, \dots, \alpha_N\}$, where each $\epsilon_n \leq 1$ (since any open set in \mathbb{R} contains a sufficiently small open interval). This allows us to define, $$\epsilon = \min\{\epsilon_n/n \mid n \in \{\alpha_1, \dots, \alpha_N\}\}\$$ which certainly exists as we are finding the minimum over a finite domain. Consider now $y \in B^d_{\epsilon}(x)$. Then for all $n \in \mathbb{N}$, $$\frac{\min\{1, |x_n - y_n|\}}{n} \le d(x, y) < \epsilon$$ Now if $n \in \{\alpha_1, \ldots, \alpha_N\}$, we know that $\epsilon \leq \epsilon_n/n$. So $\min\{1, |x_n - y_n|\} < \epsilon_n \leq 1$. Hence $|x_n - y_n| < \epsilon$. Therefore $B_{\epsilon}^d(x) \subseteq V \subseteq U_2$. So we have proved that the product topology is contained within the metric topology. # Quotients In the following exercise, we make use of: **Definition.** A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a set of subsets of X, such that - (T1) \emptyset , X both belong to \mathcal{T} - (T2) if $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$ - (T3) if $\{V_i\}_{i\in I}$ is any indexed set with $V_i \in \mathcal{T}$ for all $i \in I$, then $\bigcup_{i \in I} V_i \in \mathcal{T}$. We call such a set \mathcal{T} a topology on X and say that the sets $V \in \mathcal{T}$ are open in the topology. A set $C \subseteq X$ is closed in the topology if there exists $U \in \mathcal{T}$ with $C = \overline{X \setminus U}$. **Definition.** Let X be a topological space and \sim be an equivalence relation on X. The quotient space X/\sim is the set of equivalence classes with the topology given by $(\rho: X \to X/\sim$ denotes the quotient map) $$\mathcal{T} := \left\{ U \subseteq X /_{\sim} \mid \rho^{-1}(U) \text{ is open in } X \right\}$$ #### Exercise L7-7 Prove this is a topology on X/\sim and that for any space Y and for any continuous $f: X \to Y$ s.t. $f(x_1) = f(x_2)$ whenever $x_1 \sim x_2$, there is a <u>unique</u> continuous map F making the following diagram commute: *Proof (topology)*. To show that \mathcal{T} is indeed a topology, we need to show that it satisfies the above definition. - (T1) $\emptyset \subseteq X/\sim$, and $\rho^{-1}(\emptyset) = \emptyset$, which is open in X. So $\emptyset \in \mathcal{T}$. Similarly, $X/\sim \subseteq X/\sim$, and $\rho^{-1}(X/\sim) = X$, which is open in X. So $X/\sim \in \mathcal{T}$. - (T2) Suppose we have $U, V \in \mathcal{T}$. This means that $\rho^{-1}(U)$ and $\rho^{-1}(V)$ are open in X. Now, suppose we have $$x \in \rho^{-1}(U \cap V)$$ $$\iff \rho(x) \in U \cap V$$ $$\iff \rho(x) \in U \text{ and } \rho(x) \in V$$ $$\iff x \in \rho^{-1}(U) \text{ and } x \in \rho^{-1}(V)$$ $\iff x \in \rho^{-1}(U) \cap \rho^{-1}(V)$ Hence, $$\rho^{-1}(U \cap V) = \rho^{-1}(U) \cap \rho^{-1}(V)$$ So $U \cap V \in \mathcal{T}$, since $\rho^{-1}(U \cap V)$ is the intersection of two open sets in X and is therefore open in X. (T3) Suppose we have $\{U_i\}_{i\in I}$ is an indexed set with $U\in T$. This means that $\rho^{-1}(U_i)$ is open in X for all $i\in I$. Now, suppose we have $$x \in \rho^{-1} \left(\bigcup_{i \in I} U_i \right)$$ $$\iff \rho(x) \in \bigcup_{i \in I} U_i$$ $$\iff \rho(x) \in U_i \qquad \text{for some } i \in I$$ $$\iff x \in \rho^{-1}(U_i) \qquad \text{for some } i \in I$$ $$\iff x \in \bigcup_{i \in I} \rho^{-1}(U_i)$$ Hence, $$\rho^{-1}\left(\bigcup_{i\in I} U_i\right) = \bigcup_{i\in I} \rho^{-1}(U_i)$$ So $\bigcup_{i\in I} U_i \in \mathcal{T}$, since $\rho^{-1}\left(\bigcup_{i\in I} U_i\right)$ is the union of arbitrary open sets in X and is therefore open in X. So we conclude that \mathcal{T} is indeed a topology on \mathbb{Z}_{\sim} . *Proof (universal property).* We first note that such an F is well-defined, as it is sending equivalence classes in X/\sim to what f preserves in the equivalence relation, which are of course equal (by the definition of f). #### Uniqueness: Suppose that we have another continuous G such that $G \circ \rho = f$. Let $[x] \in X/_{\sim}$ be the class of elements equivalent to $x \in X$ under \sim . We notice that, $$F([x]) = F(\rho(x)) = f(x) = G(\rho(x)) = G([x])$$ Which is to say that F = G as functions, as every element of X/\sim are of the form [x] for some $x \in X$. Existence: To show that such an F is continuous, we must show that the preimage of open subsets of Y map to open subsets of X/\sim . Let $U \subseteq Y$ be an open subset. To show that $F^{-1}(U) \in \mathcal{T}$, we need to consider $\rho^{-1}(F^{-1}(U))$. Now, suppose we have $$x \in \rho^{-1}(F^{-1}(U))$$ $$\iff \rho(x) \in F^{-1}(U)$$ $$\iff F(\rho(x)) \in U$$ $$\iff f(x) \in U \qquad \text{as } f = F \circ \rho$$ $$\iff x \in f^{-1}(U)$$ Hence, $$\rho^{-1}(F^{-1}(U)) = f^{-1}(U)$$ So $F^{-1}(U) \in \mathcal{T}$, since $\rho^{-1}(F^{-1}(U)) = f^{-1}(U)$, which is open in X, as f is continuous. \Box