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1 L7-5.5 (box product)

Given topological spaces {Xi}i2I , let
Qalt

i2I Xi denote the set
Q

i2I Xi with the
alternate topology which has a basis the sets

Q
i2I Ui where Ui ✓ Xi is open for

all i 2 I. (i.e. we do not impose the condition that {i 2 I|Ui 6= Xi} is finite).

Prove that this is a valid basis, but give a counterexample to show
Qalt

i2I Xi does
not have the universal property of Lemma L7-2.

Background story: The basis of a product space is,

� =
�Q

i2I Ui|8i 2 I, Ui ✓ Xi is open and Q is finite
 

where Q = {i 2 I|Ui 6= Xi} and I = Q [ (I \Q). And this basis helps us to
establish the so-called Universal Property of the Product.

Y
Q

i2I Xi

Xi

fi

f

⇡i

The three actors in this Universal Property are three functions f 2 Cts
�
Y,
Q

i2I Xi

�
,

fi 2 Cts (Y,Xi) and ⇡j :
Q

i2I Xi ! Xj which is called j-projection and defined
as ⇡j

�
(xi)i2I

�
= xj for some (xi)i2I 2

Q
i2I Xi. In fact, from the Exercise

L7-5 that the j-projection is continuous. The full statement is: given fi that is
continuous, there exists unique f which is defined as 8i 2 I,⇡i � f = fi which is
continuous.

Sketch of proof: Define the basis for the alternative topology to be
Qalt

i2I Xi is

�alt which is defined by

�alt =
�Q

i2I Ui|8i 2 I, Ui ✓ Xi is open
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The proof has two parts. First part is showing that �alt is indeed a basis. This
is done by checking the condition

8U 2
Q

i2I Xi, 8x 2 U, 9B 2 �alt, (x 2 B ^B ✓ U)

We will check an equivalent condition that every U open in the product topology
can be written as the union set of a subset Calt ✓ �alt.

The second part is to show it fails Universal Property of the Product. The
idea is to construct a counter example. Assume the topological space X =Q

i2I Xi is also a metric space (X, d) with an arbitrary metric d. In fact, let’s
assume d = d2. Further assume Y and all Xi’s are equal to the real line R, the
unknown indexed family I equals to the natural number N. By this assumption,
we can see the basis will be a set of open balls {B✏ (x) |x 2 X, ✏ > 0} =: �alt.
The setup is now complete. The strategy of the proof is by using proof by
contradiction. Given fi be the identity function idi for all i 2 N, and assume
such continuous function f exists. Pick an arbitrary open set U from

Q
i2N R =

RN, consider the preimage of the intersection of these U ’s under f . Since U ’s is
open, it can be represented as a union of open balls. And at some stage, we can
see the preimage of this arbitrary open set U can be represented by an infinite
intersection of open balls. We know this intersection of open balls will shrink
to a point, which is NOT open in the metric setting. Hence by contradiction, f
cannot be continuous, and the Universal Property of the Product failed.

1.1 Prove �alt
is a basis

Proof. WTS: 8U ✓
Q

i2I Xi open , 9Calt ✓ �alt, U =
S

B2Calt

B.

Pick an arbitrary U 2
Q

i2I Xi open in the product topology.
i.e. U =

Q
i2I UI for some Ui 2 TXi .

=) U 2 �alt =
�Q

i2I Ui|8i 2 I, Ui ✓ Xi is open
 

We can use such Calt to be a set just contain U , Calt = {U}. Of course U =S
B2Calt B. Hence such Calt ✓ �alt exists. Therefore, �alt is indeed a basis for

the product topology.

1.2 Prove the Universal Property of the Product failed

Proof. Make the following assumptions:

1. Assume Xi = R for all i 2 I and Y = R also be a metric space with metric
d. Hence, each Xi = R has the topology Td.

2. Assume fi = idi for all i 2 I to be the identity function. Identity function
idi : R ! R is course continuous, so idi 2 Cts (R,R).

3. Let the indexed set I be the natural numbers N

Assume by contradiction that the Universal Property of the Product hold
under the basis �alt. Therefore, if we have a function f : R !

Q
n2N Rn,
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then by Universal Property of the Product, such bijection of j-projection ⇡j :Q
n2N Rn ! R which make ⇡j � f = idj exist for all j 2 N. And f should also

be continuous. We can define such inverse of ⇡j to have f(y) = (idn)n2N.
Pick an arbitrary U ✓ RN be open in product topology generated by the basis
�alt.
i.e. U =

Q
n2N Un for some Un 2 Td.

Because Un 2 Td, and the basis of the topology Td is a set of open balls B✏ (x) =
{y 2 R|d (x, y) < ✏} for some x 2 Un and ✏ > 0.
i.e. Un =

S
x2Un

B✏ (x)
In fact, we can choose U have some Un = B✏ (x) and we just focus on a single
point x = 0 and consider the product of open balls around it.
Choose ✏ = 1

n , so that our open ball B 1
n
(0) =

�
� 1

n ,
1
n

�
will shrink as n 2 N

grows.
Consider f�1U , which is open in R by our hypothesis:

f�1U = f�1

 
Y

n2N
Un

!

=

(
y 2 R|f (y) 2

Y

n2N
Un

)

=

(
y 2 R| (idn (y))n2N 2

Y

n2N
Un

)

= {y 2 R|8n 2 N, y 2 Un}

=
\

n2N
Un

=
\

n2N

[

x2Un

B 1
n
(x)

=
\

n2N
B 1

n
(0)

=
\

n2N

✓
� 1

n
,
1

n

◆

= {⇤} , where {0} indicates a point set

The last line is because as n ! 1, no matter which point x 2 Un we are
considering, the distance between x and points around it will shrink to 0. i.e.
d (x, y) < 1

n ! 0 for all y 2 R as n ! 1.
But a point set {0} is NOT open in R Because it contains no open balls

around it. Hence we have a contradiction. By proof of contraction, f is not
continuous and hence the Universal Property of the Product has failed for the
basis �alt.
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2 L7-17 (continuous components)

Given spaces {Xi}i2I and Y , prove a function Y
f!
Q

i2I Xi with components
fi : Y ! Xi is continuous i↵ fi is continuous for all i 2 I

Background story: We have a function f : Y !
Q

i2I Xi with its components,
say fi : Y ! Xi. So that we can write f as a tuple of its components f = (fi)i2I .
For example, if we use f to map a y 2 Y into

Q
i2I Xi, we can write

f (y) = (fi (y))i2I

Note that there is no implies order of this tuple because the indexed set I is
arbitrary.

We also make use of the product topology, which a topology generated by
the basis

� =
�Q

i2I Ui|8i 2 I, Ui ✓ Xi is open and Q is finite
 

where Q = {i 2 I|Ui 6= Xi} and I = Q [ (I \Q).

Sketch of proof: We will prove in the first part of the forward direction

f 2 Cts
�
Y,
Q

i2I Xi

�
=) fi 2 Cts (Y,Xi)

by using fact that the preimage of all open sets in
Q

i2I Xi are open in Y . In
execution, we will choose an arbitrary open set V 2

Q
i2I Xi

1, and we will focus
on a particular j 2 I. Without loss of generality, we can choose the open set of
interest V to be an arbitrary set from the basis �. We write such open as V = U
to identify it is from the basis. In addition, because we are only interested in
that particular j 2 I, we will choose the set Q to be Q = {j|j 2 I for Uj = Xj}.
This Uj will be the arbitrary choice from TXj . The consequence is you can
imagine that if we pick an arbitrary U 2 �, it will has the form

U =

 
Q

i2I\{j}
Xj

!
⇥ Uj = . . . Xj�1 ⇥ Uj ⇥Xj+1 ⇥ . . .

Then at some point, you can find the set f�1(U) will become f�1
i (U) which is

the set of interest.
And prove the backward direction in the second part

fi 2 Cts (Y,Xi) =) f 2 Cts
�
Y,
Q

i2I Xi

�

Just pick an arbitrary U from the basis of product topology. Proceed will get
the result.

1Note here, V =
Q

i2I Vi for some Vi ✓ Xi open in Xi for all i 2 I. Because all elements
in the product topology are generated by the basis �, and all elements U =

Q
i2I Ui 2 � has

its components Ui open in Xi. So if we pick an element, say V =
Q

i2I Vi from the product
topology, each V will be an arbitrary union or finite intersection of U ’s, hence each Vi will
also be some arbitrary union or finite intersection of Ui’s. We know topology is closed under
finite intersection and arbitrary unions. Therefore, we know each Vi will also be open in each
Xi for all i 2 I.
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2.1 Forward direction

Proof. Assume f is continuous.
i.e. 8U ✓

Q
i2I XiU open in

Q
i2I Xi =) f�1U 2 Y.

Pick one aribrary Uj 2 TXj . Choose a U ✓
Q

i2I Xi that has its jth component
equal to Uj and other component equal to Xk forall k 2 I \ {j}. By definition
of product topology, such U is open in product topology, more precisely, the
product topology with the basis has Q = {j|j 2 I for Uj = Xj} and the indexed
family I = Q [ I \Q.
Consider f�1U 2 TY :

f�1U = {y 2 Y |fy 2 U}

=

8
<

:y 2 Y |fy 2
Y

i2I\{j}

Xi [ Uj

9
=

;

=

8
<

:y 2 Y | (fiy)i2I 2
Y

i2I\{j}

Xi [ Uj

9
=

;

= {y 2 Y |8i 2 I \ {j} fiy 2 Xi ^ fjy 2 Uj}

=

8
<

:y 2 Y |8i 2 I \ {j} y 2 f�1
i Xi| {z }
=Y

^y 2 f�1
i Uj

9
=

;

=
�
y 2 Y |y 2 f�1

i Uj

 

= f�1
i Uj

2 TY

Hence, we proved Uj open in Xi implies f�1
i Uj . Since the choice of j and

Uj are all arbitrary, so we can infer fi are continuous 8i 2 I.

2.2 Backward direction

Proof. Assume 8i 2 I, fi 2 Cts (Y,Xi).
i.e. 8Ui ✓, (Ui 2 T )Xi =) f�1

i Ui 2 TY .
Pick an U ✓

Q
i2I Xi open.

i.e. U = {(xi)i2I 2
Q

i2I Xi|i 2 I, xi 2 Ui where Ui are open in Xi}. And we
have Q = {i 2 I|Ui 6= Xi} finite and I = Q [ (I \Q).
Consider f�1U :
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f�1U = {y 2 Y |fy 2 U}
= {y 2 Y |8i 2 I, fiy 2 Ui}
=
�
y 2 Y |8i 2 (Q [ I \Q) , y 2 f�1

i Ui

 

=
\

i2(Q[I\Q)

f�1
i Ui

=

0

@
\

i2Q

f�1
i Ui

1

A
\

0

BBBBB@

\

i2I\Q

f�1
i Ui|{z}

=Xi| {z }
=Y

1

CCCCCA

=

0

B@
\

i2Q

f�1
i Ui| {z }
2TY

1

CA
\

Y

2 TY , because topology is closed under finite intersection.

Finally, since the choice of U is arbitrary. Hence, we proved f is continuous.

6



3 L7-18 (fun torus)

Prove the torus as a finite CW-complex with one 0-cell (i.e. |X0| = ⇤), two
1-cells and one 2-cell.

Background story: For presenting finite CW complex, we need to show a se-

quence ofX0, X1, . . . , Xn = X together with the attaching maps
�
f↵ : Si�1 ! Xi�1

 
↵2⇤i

,

where �i is the family of cells in ith attaching step. This process of attaching
n-cells 2, is to attach the boundary of our n-cells Sn�1 onto the previous pre-
sentation Xn�1. The function f =

`
↵2⇤i

f↵, with its individual components
f↵ indicates how do we attach those boundaries to the previous presentation
Xn�1. The attaching process from presentation (n�1) to n can be summarized
as the following commute diagram:

`
↵2⇤i

Sn�1
↵ Xn�1

`
↵2⇤i

Dn
↵ Xn

f

`
↵ ◆↵

p

Sketch of proof: Focus to our question, we have two attaching actions. What
we know are:

1. X0 = {⇤} is a single point set, this is our 0-cell.

2. We have two 1-cells, which is the disjoint union of two 2-discs: D1
`

D1,
where D1 is an interval D1 = [�1, 1]. We need to attach their boundaries
S0
`

S0{(a,�1), (a, 1), (b,�1), (b, 1)}, where S0 = {�1, 1}, to the 0-cell
X0. Note that we use a to indicate first component of the coproduct and
b indicates the second component

3. We have one 2-cell, which is an 2-disc, D2. We have to attach it to the
X1, where X1 by inspection is the ”number eight”.

So we consider two such commute diagrams:

S0
`

S0 X0

D1
`

D1 X1

fS0
`

fS0

ı1
`

i2

p

S1 X1

D2 X2

f

i

p

2n-cell is just the n-disc Dn.
`

↵2⇤i
Dn

↵ means there are |⇤i| to be attached.
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More precisely, we have to come up with how to ”attach” those cells, i.e. to
find two attaching maps fS0

`
fS0 and f , and two presentations X1 and X2.

The map fS0 : {�1, 1} ! {⇤} is obvious. We have fS0(�1) = ⇤ = fS0(1).
Note the set S0

`
S0 = {(a,�1), (a, 1), (b,�1), (b, 1)}. So

8x 2 S0
`

S0, (fS0

`
fS0) (x) = ⇤

The map f : S1 ! X1 is trickier. Aside of that, let’s consider what is X1 in
order to get some clue about what f should be. Graphically, we know X1 is two
circles S1 attached to a single point. S1 here is actually [�1, 1]/⇠ = {[1], x|x 2
(�1, 1)}, with the equivalence relation is 1 ⇠ �1. We have two such circles, and
the point of attachment is where we have attached �1 and 1. Hence, we can
imagine that X1 is also a disjoint union of circles quotient out some equivalence
relation. That equivalence relation will be (a, [1]) ⇠ (b, [1]) where we use a and
b to indicate the [1] 2 S1 come from the first and second circle respectively. The
disjoint union looks like S1

`
S1 = {(i, y)|i 2 {a, b}, y 2 S1}. So we have:

X1 =
⇣
S1
a

S1
⌘
/⇠

= {[(a, [1])], (i, x)|i 2 {a, b}, x 2 (�1, 1)}
= {[(a, [1])]} [ {(a, x)|x 2 (�1, 1)} [ {(b, x)|x 2 (�1, 1)}
= {[(a, [1])], (a, x)|x 2 (�1, 1)} [ {[(b, [1])], (b, x)|x 2 (�1, 1)}
= S1

a [ S1
b

where [(a, [1])] = [(b, [1])] = [(a, [�1])] = [(b, [�1])], and we use S1
a and S1

b to
indicate X1 is really the union of some circles. Another thing to be noted is we
can display what D1

`
D1 looks like:

D1
a

D1 = {(i, x)|i 2 {a, b}, x 2 D1 = [�1, 1]}

It is possible to construct a map from D1 to S1
a for S1

b . Define fa : D1 ! S1
a

and fb : D1 ! S1
b where they has the form

fa (x) =

⇢
(a, x) , if x 2 (�1, 1)

[(a, [1])] , if x 2 {�1, 1}

fb (x) =

⇢
(b, x) , if x 2 (�1, 1)

[(b, [1])] , if x 2 {�1, 1}

Observe these two functions, we can find a continuous map from S1 = [�1, 1]/⇠
to D1. Such map is x 7! x, x 2 (�1, 1) and x 7! {�1, 1}, x = [�1] = [1]. Then
by factor through the quotient, I can find an unique continuous map between S1

and S1
a or S1

b . However, I cannot imagine how to find a map from S1 to S1
a [S1

b
that can let S1 covers the entire S1

a[S1
b . So I decide to use some other approach

by inspect how I walk around the circle using some parametric functions. First,

8



let (x, y) = (cos (✓) , sin (✓)) for some ✓ 2 [0, 2⇡]. So as ✓ rotates from 0 to 2⇡,
we have walked along S1 once. Next is my friend’s contribution, she showed
me how she walked around the number eight by walking along each circle twice
with just walking along the S1 once.

f (x, y) = f (cos (✓) , sin (✓))

=

8
>><

>>:

(a, (cos (4✓) , sin (4✓))) , if ✓ 2
⇥
0, ⇡2

⇤
�
b,
�
cos
�
4
�
✓ � ⇡

2

��
, sin

�
4
�
✓ � ⇡

2

����
, if ✓ 2

⇥
⇡
2 ,⇡

⇤

(a, (cos (4 (⇡ � ✓)) , sin (4 (⇡ � ✓)))) , if ✓ 2
⇥
⇡, 3⇡

2

⇤
�
b,
�
cos
�
4
�
3⇡
2 � ✓

��
, sin

�
4
�
3⇡2 � ✓

����
, if ✓ 2

⇥
3⇡
2 , 2⇡

⇤

=

8
>>>><

>>>>:

�
a, ei4✓

�
, if ✓ 2

⇥
0, ⇡2

⇤
⇣
b, ei4(✓�

⇡
2 )
⌘

, if ✓ 2
⇥
⇡
2 ,⇡

⇤
�
a, ei4(⇡�✓)

�
, if ✓ 2

⇥
⇡, 3⇡

2

⇤
⇣
b, ei4(

3⇡
2 �✓)

⌘
, if ✓ 2

⇥
3⇡
2 , 2⇡

⇤
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After all, we have to show our final presentation X2 is indeed a torus. That
is to find a homeomorphism between X2, and one of the (S1 ⇥ S1), ([0, 1]2/⇠),
((S1 ⇥ [0, 1])/⇠). This can be done via a pushout construction.

So the goal is to show X2
⇠= [0, 1]2/⇠, meaning to show a function t : X2 !

[0, 1]2 /⇠ is continuous, bijective and its inverse function s : [0, 1]2 /⇠ ! X2 is
also continuous. First, the continuity of t can be obtained from the pushout
construction, and t is in the position of the following pushout diagram:

S1 X1

D2 X2

[0, 1]2 /⇠

i

f

u2

u1

t

in order to prove such t is continuous using the theory of the pushout, we need to
check for some functions u1 and u2, they are continuous and satisfy the contion
of u2 � f = u1 � i. Note that the red arrow u2 in above diagram contains exactly
the same information as the following red-dashed arrow:

S0
`

S0 X0

D1
`

D1 X1

[0, 1]2 /⇠

fS0
`

fS0

ı1
`

i2 v2

v1

u2

That means in order to claim that u2 is continuous for free, we have to find
another two functions v1 and v2 such that v2 � fS0

`
fS0 = v1 � i1

`
i2.

So to wrap up, if we can find u1, u2, v1, v2 are continuous and make the
relative diagram commutes, then we can claim t is continuous for free. The only
part in the process that we can use pushout construction is when we trying to
find u2. Now let’s think about how to find other maps.

For u1 : D2 ! [0, 1]2 /⇠. The trick is to see the 2-disc D2 is homeomorphic
to the square [0, 1]2. If that is established, then we can instead consider u0

1 :
[0, 1]2 ! [0, 1]2 /⇠, which is exactly the quotient map. And that quotient map
is exactly what we have seen in Tutorial 2. We know by definition of quotient
map, it is continuous.

For v2 : {⇤} ! [0, 1]2 /⇠, this can be thought as attaching a single point
to the four vertices of the square [0, 1]2 and then compose with the quotient
map from [0, 1]2 7! [0, 1]2 /⇠, say v2 = v

0

2 � �. The v
0

2 here is a surjective
map from {⇤} to four vertices on the square [0, 1]2, which is the map {⇤} 7!
{(1, 0), (0, 0), (1, 1), (0, 1)}. Clearly this map is NOT injective. We know from
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the tutorial 2, the four vertices form an equivalence class. Hence, we can define
such map v2 to be {⇤} 7! [(1, 0)] where

[(1, 0)] = {(x, y) 2 [0, 1]2 /⇠} = {(1, 0), (0, 0), (1, 1), (0, 1)}

This established a one-to-one correspondence. The question to be asked is that
is it continuous? It turns out it is. First note that the topology of {⇤} is just
{⇤,?}. Because v2 will map all set contains that equivalence class [(1, 0)] back
to the whole space {⇤}, and others to the empty set, which are both open in
the single point topology.

For v1 : D1
`

D1 ! [0, 1]2 /⇠, the idea is to map the two intervals D1 to
the four edges of the square [0, 1]2. Previously we see that D1

`
D1 looks like:

D1
a

D1 = {(i, x)|i 2 {a, b}, x 2 D1 = [�1, 1]}

but it seems that knowing its form do not give me any inspiration. So I would
incline to use the Universal Property of Disjoint Union by defining the canonical
maps of injection ◆ : D1 ! D1

`
D1. And fD1

a
: D1

a ! [�1, 1]2 /⇠ and fD1
b
:

D1
b ! [�1, 1]2 /⇠ are defined as:

fD1
a
(x) = [(x, 0)] ,�1  x  1

fD1
b
(x) = [(0, x)] ,�1  x  1

where the subscript just to distinguish the two 1-cells in the disjoint union.
Note here I cheat a little bit that I’m using the square [�1, 1]2 instead of the
square [0, 1]2, but that’s okay since we have a homeomorphism between [0, 1]
and [�1, 1]. Now claim these maps are well-defined and continuous. Because the
function x 7! (x, 0) is continuous, and we composite this map with a quotient
map, we know the composition of the continuous maps is continuous. Therefore,
by Universal Property of Disjoint Union, there is a unique continuous map v1
which let the following diagram commutes:

D1 D1

D1
`

D1

[0, 1]2 /⇠

◆

fD1
a

◆

fD1
bv1

Hence, the continuity of v1 is proved. But after all, eventually I found that I
can just claim

v1 ((i, x)) =
⇣
fD1

a

a
fD1

b

⌘
((i, x)) =

⇢
[(x, 0)] , �1  x  1, i = a
[(0, x)] , �1  x  1, i = b
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Second, we have to prove the s is continuous, the following diagram shows
a good indication of what we should do.

D2 [0, 1]2 /⇠

X2

s

so from the diagram, we can get some sense that the trick is to use the Universal
Property of the Quotient. If we can replace D2 with [0, 1]2, we can apply
Universal Property of the Quotient without hesitation. That requires us to show
that the 2-disc D2 is homeomorphic to the square [0, 1]2. If homeomorphism is
proved, then we have the following commute diagram.

[0, 1]2 [0, 1]2 /⇠

X2

◆[0,1]2

�

s

From the diagram, we know the quotient map � is continuous, and we know the
map ◆[0,1]2 : [0, 1]2 ! X2 is continuous from the Exercise L7-8. Hence, we can
claim s is continuous for free.

Lastly, we have to show

3.1 Preliminary Results

We will prove some results like a 2-disc D2 is homeomorphic to a square [0, 1]2

in this section.

Claim: A 2-disc is defined as D2 = {(x, y) 2 R2|x2 + y2  1} ✓ R2, and a
square is defined as X = [0, 1]2 = {(x, y) 2 R2|0  x, y  1} ✓ R2. Then D2

and C are homeomorphic.

Proof. Before the proof, let’s use the fact that the function x 7! x+1
2 is a home-

omorphism between [0, 1] and [�1, 1]. Thus, we can show that the 2-disc D2

is homeomorphic to the square Y = [�1, 1]2 instead of [0, 1]2. Firstly, because
they are both subset of R2, then their topology is the subspace topology of R2.

TY =
n
[�1, 1]2 \B✏ ((x, y)) |(x, y) 2 R2, ✏ > 0

o

TD2 =
�
D2 \B✏ ((x, y)) |(x, y) 2 R2, ✏ > 0

 

Next question is how to define a homeomorphism f : [�1, 1]2 ! D2? Start by
imagining what would happen if we want to stretch the boundary of a 2-disc is
sitting in the square with the boundary points (�1,�1), (�1, 1), (1,�1), (1, 1).
When we say a point on the boundary of D2 has distance 1, we really mean
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the quadratic norm of that point is 1. On the other hand, when we say a
point on the boundary of a unit square has distance 1, the implicit metric is
the maximum norm. So for example, if we have two observers, one is using
the quadratic norm d2 and the other is using the metric of the maximum norm
d1. Note that although two observers may both observe some points that have
distances ”1”, actually they do not agree on that distance. In fact, they have
to use some machine to convert the language the other observer talk into their
own language. For example, the observer who is using the d1 gives the other
observer a coordinate, the other observer only knows the distance from their
point of view. In order to acquire the coordinate from quadratic point of view,
the quadratic observer has to divide the coordinate that the other observer gave
in order to obtain the coordinate from their point of view. In short, the functions
that maps boundary to boundary are:

f : @Y ! @D2 : (x, y) 7! 1

d2 (x, y)
(x, y)

g : @D2 ! @Y : (x, y) 7! 1

d1 (x, y)
(x, y)

where in this case the symbol @ indicates the boundary of each plane. Therefore,
to wrap up, if we want to define a homeomorphism f : Y ! D2, the candidate
homeomorphism will have the form:

f (x, y) =

(
0 , if (x, y) = (0, 0)

d1(x,y)
d2(x,y)

(x, y) , otherwise

Its inverse will be g : D2 ! Y

g (x, y) =

(
0 , if (x, y) = (0, 0)

d2(x,y)
d1(x,y) (x, y) , otherwise

It is obvious that these two functions are bijections. Because when consider
f � g (x, y) and g � f (x, y), the coe�cients will just cancel each other out. So by
f � g (x, y) = idY and g � f (x, y) = idD2 , we have they to be bijections. Next
we show they are continuous. Because they are metric spaces, we just consider
the usual limit arguments.
Case 1: Continuity at point 0. Suppose d1 (x, y) ! 0, then

d2 (f (x, y)� f (0, 0) , f (x, y)� f (0, 0)) = d2 (f (x, y) , f (x, y))

= d2

✓
d1 (x, y)

d2 (x, y)
(x, y) ,

d1 (x, y)

d2 (x, y)
(x, y)

◆

=
d1 (x, y)

d2 (x, y)
d2 (x, y)

= d1 (x, y)

! 0

13



Case 2: Continuity in general. For simplicity of the notation, we write d2(x �
y, x�y) = kx� yk2. Suppose k((x2, y2)� (x1, y1))k2 ! 0 for some (x1, y1), (x2, y2) 2
y distinct, then

kf (x1, y1)� f (x2, y2)k2 =

����
d1 (x2, y2)

d2 (x2, y2)
(x2, y2)�

d1 (x1, y1)

d2 (x1, y1)
(x1, y1)

����
2

=

����
d1 (x2, y2)

d2 (x2, y2)
((x2, y2)� (x1, y1)) + (x1, y1)

✓
d1 (x2, y2)

d2 (x2, y2)
� d1 (x1, y1)

d2 (x1, y1)

◆����

 d1 (x2, y2)

d2 (x2, y2)
k((x2, y2)� (x1, y1))k2 +

����d2 (x1, y1)

✓
d1 (x2, y2)

d2 (x2, y2)
� d1 (x1, y1)

d2 (x1, y1)

◆����

by triangular inequality

=
d1 (x2, y2)

d2 (x2, y2)
k((x2, y2)� (x1, y1))k2 +

����d1 (x2, y2)
d2 (x1, y1)

d2 (x2, y2)
� d1 (x1, y1)

����

! 0 as k((x2, y2)� (x1, y1))k2 ! 0

In the last line, we use the fact that as k((x2, y2)� (x1, y1))k2 ! 0, the fraction
d2(x1,y1)
d2(x2,y2)

! 1.
By symmetry, we can do the exactly the same thing to function g. Hence,

we proved function f : Y ! D2 is a homeomorphism. And thus Y and D2 are
homeomorphic.

3.2 Display the presentation of the finite CW complex of

a torus

In this section, we will display the attaching map of attaching two 1-cells,
fS0

`
fS0 : S0

`
S0 ! X0. And the attaching map f : S1 ! X1.

We start from X0 = {⇤}. The map fS0 : {�1, 1} ! {⇤} is obvious. We have
fS0(�1) = ⇤ = fS0(1). Note the set S0

`
S0 = {(a,�1), (a, 1), (b,�1), (b, 1)}.

So

8x 2 S0
`

S0, (fS0

`
fS0) (x) = ⇤

Then we obtain X1 from some pushout construction:

X1 = {[(a, [1])]} [ {(a, x)|x 2 (�1, 1)} [ {(b, x)|x 2 (�1, 1)}
= {[(a, [1])], (a, x)|x 2 (�1, 1)} [ {[(b, [1])], (b, x)|x 2 (�1, 1)}
= S1

a [ S1
b

where [(a, [1])] = [(b, [1])] = [(a, [�1])] = [(b, [�1])], and we use S1
a and S1

b to
indicate X1 is really the union of some circles.

Eventually, I decide to abandon using any universal properties and instead
to find the attaching map f by considering how do I walk around the circle
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while I’m walking around the number eight. I will use the usual definition of
the circle S1 = {(x, y)|x2 + y2 = 1}. We consider (x, y) using some parametric
function of the angle ✓ to indicate how I walk around the circle. The map is
following:

f (x, y) = f (cos (✓) , sin (✓))

=

8
>><

>>:

(a, (cos (4✓) , sin (4✓))) , if ✓ 2
⇥
0, ⇡2

⇤
�
b,
�
cos
�
4
�
✓ � ⇡

2

��
, sin

�
4
�
✓ � ⇡

2

����
, if ✓ 2

⇥
⇡
2 ,⇡

⇤

(a, (cos (4 (⇡ � ✓)) , sin (4 (⇡ � ✓)))) , if ✓ 2
⇥
⇡, 3⇡

2

⇤
�
b,
�
cos
�
4
�
3⇡
2 � ✓

��
, sin

�
4
�
3⇡2 � ✓

����
, if ✓ 2

⇥
3⇡
2 , 2⇡

⇤

=

8
>>>><

>>>>:

�
a, ei4✓

�
, if ✓ 2

⇥
0, ⇡2

⇤
⇣
b, ei4(✓�

⇡
2 )
⌘

, if ✓ 2
⇥
⇡
2 ,⇡

⇤
�
a, ei4(⇡�✓)

�
, if ✓ 2

⇥
⇡, 3⇡

2

⇤
⇣
b, ei4(

3⇡
2 �✓)

⌘
, if ✓ 2

⇥
3⇡
2 , 2⇡

⇤

3.3 Homeomorphism between torus and X2

Use [0, 1]2/⇠ to denote the torus, and t : X2 ! [0, 1]2/⇠ be the function that
maps X2 to the torus. In addition, denote s : [0, 1]2/⇠ ! X2 be the candidate
inverse function of t. We want to show

1. t is continuous

2. s is continuous

3. t is bijective. i.e. t � s = idX2 and s � t = id[0,1]2/⇠

Claim: t is continuous

Proof. From the introduction part, we see the key to show t is continuous is to
use the Universal Property of Pushout twice. That is to find u1, u2, v1, v2 that
make those diagrams commute.

Because D2 is homeomorphic to [0, 1]2, u1 : D2 ! [0, 1]2 /⇠ is the quotient
map � : [0, 1]2 ! [0, 1]2 /⇠, which is defined as �(x) = [x].

u2 can be proved to be continuous using another time of Universal Property
of Pushout via constructing the continuous fucntions v1, v2.

For v2 : {⇤} ! [0, 1]2 /⇠, it is the map of compositing the surjective map
v

0

2 : {⇤} 7! {(1, 0), (0, 0), (1, 1), (0, 1)} with a quotient map � that maps those
four points to a single equivalence class. So v2 = v

0

2 � �. And it has the form

{⇤} 7! [(1, 0)]

where

[(1, 0)] = {(x, y) 2 [0, 1]2 /⇠} = {(1, 0), (0, 0), (1, 1), (0, 1)}
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For v1, we can define v1 to be

v1 ((i, x)) =
⇣
fD1

a

a
fD1

b

⌘
((i, x)) =

⇢
[(x, 0)] , �1  x  1, i = a
[(0, x)] , �1  x  1, i = b

with its component functions fD1
a
: D1

a ! [�1, 1]2 /⇠ and fD1
b
: D1

b ! [�1, 1]2 /⇠
are defined as:

fD1
a
(x) = [(x, 0)] ,�1  x  1

fD1
b
(x) = [(0, x)] ,�1  x  1

It’s easy to see that the component functions are well-defined and continuous.
Because the function x 7! (x, 0) is continuous, and we composite this map with
a quotient map, we know the composition of the continuous maps is continuous.
Lastly, by the Universal Property of Disjoint Union, we can claim that v1 is
unique and continuous.

Now, clearly we have v2�(fS0

`
fS0) = v1�(ı1

`
i2). Because when we depart

from S0
`

S0 = {(a,�1), (a, 1), (b,�1), (b, 1)}, there is only one destination we
can arrive at [�1, 1]2/⇠, which is

[(1, 0)] = {(x, y) 2 [0, 1]2 /⇠} = {(1, 0), (0, 0), (1, 1), (0, 1)}

Thus, we can claim that u2 is continuous by the Universal Property of Pushout.
Now we have u1, u2 both continuous, we want to know whether u1�i = u2�f .

It’s hard to show they commute by put in some specific points. But we know
u2, u1 are all unique, and f and i both have some sin and cos, so I will just
claim that they commute from some graph intuition. Hence, we proved that t
is continuous by the Universal Property of Pushout.

Claim: s is continuous

Proof. We proved in previous section that D2 is homeomorphic to [�1, 1]2/⇠,
and by transitivity of homeomorphism, D2 is homeomorphic to [0, 1]2/⇠. There-
fore, instead of considering the map D2 ! [0, 1]2/⇠, we can consider the map
[0, 1]2 ! [0, 1]2/⇠. Note that such map will be the quotient map �. By the
pushout construction, we know the map D2toX2 is continuous. Thus, by the
Universal Property of Quotient, there is a unique continuous map s making the
following diagram commutes.

[0, 1]2 [0, 1]2 /⇠

X2

◆

�

s
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Finally, we know both t and s are unique continuous functions that maps
each of their domain to their codomain, so the only possible solution of that is
they must be inverse to each other. Hence, the bijectivity is proved.

Overall, we proved t is a homeomorphism to X2 and [0, 1]2/⇠. Therefore,
this presentaion of finite CW complex present us a torus with the attaching
map.
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4 L7-21 (circle represents periodic functions)

Given P > 0, let ⇠ be the equivalence relation on R generated by x ⇠ x + P
for all x 2 R. Prove that R/⇠ ⇠= S1 (i.e. homeomorphic to S1 and hence that
there is a bijection for any space Y such that

Cts
�
S1, Y

� ⇠= {f : R ! Y |f is continuous and 8x 2 R, f (x) = f (x+ P )})

The circle is the space that represents periodic continuous functions.

Background story: In this section, we have a 1-sphere S1 =
�
(x, y) |x2 + y2 = 1

 
✓

R2. We have two equivalence relations. To make these two equivalence relations
distinct, let’s name these equivalence relations. Denote the first equivalence re-
lation of x ⇠ x+ P for some P > 0, R1. i.e.

R1 = {(x, x+ P ) |x 2 R} ✓ R⇥ R for some P > 0.

One can see that the equivalence class for an arbitrary x 2 R will look like:

[x] = {. . . , x� 2P, x� P, x, x+ P, x+ 2P, . . .} = {x+ nP |n 2 Z}

We have another equivalence relation generated by R1. Call it R2

Sketch of proof: For questions like proving the something is homeomorphic to a
quotient space, I will have the Universal Property of the quotient in my mind.

R R/⇠

S1

f��

�

f

Where in this case, we have the quotient map � : R ! R/⇠ which has the form
� (x) = [x] for x 2 R. And f : R/⇠ ! S1 is the function of interest. We want to
show f is a homeomorphism. Then the steps of solving will become following:

1. Finding a easier version of function f : R/⇠ ! S1, which is f �� : R ! S1.
And this function f � � needs to be (1) Well-defined, (2) satisfies the
equivalence relation that:

8x 2 R, (f � �) (x) = (f � �) (x+ P ) whenever x ⇠ x+ P

This property will allow us to make connection between the function f
and the function f � � in the following way:

(f � �) (x) = f ([x])

Therefore, if f �� is well-define, then f is also well-defined. By the Univer-
sal Property of the Quotient, such f is continuous. Hence, the continuity
of the candidate homeomorphism is proved.
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2. We find the inverse of function f : R/⇠ ! S1. Call it g : S1 ! R/⇠. We
need to check (1) g is bijective by checking :

f � g = idR/⇠ and g � f = idS1

And (2): check g is continuous.

In part 2, define the function:

� : Cts
�
S1, Y

�
! {R ! Y |f is continuous and 8x 2 Rf(x) = f(x+ P )}

which is given by  (F ) = F �  for F 2 Cts
�
S1, Y

�
. So we may want to show

the following diagram commutes:

R S1

Y

f

 

F

We have to show such  is bijective. We note that the function F maps from
S1 to Y . However, since we have already showed there is a homeomorphism
between R/⇠ and S1, so we expect the following diagram commutes:

S1 R/⇠

Y

F

f

therefore, we are allowed to define a new family of continuous functions G 2
Cts (R/⇠, Y ), and instead consider the following diagram:

R R/⇠

Y

f

�

G

where � is defined as �(G) = G �� for G 2 Cts (R/⇠, Y ) and � be the quotient
map. Remember the goal is to show  is bijective. This can be achieved by
showing the function � is bijective. So we show � is injective and surjective.

4.1 To show R/⇠ ⇠= S1

Proof. Inspect that (f � �)(t) =
�
cos
�
2⇡
P t
�
, sin

�
2⇡
P t
��
.

Check that this is well-defined. Consider an arbitrary t 2 R.
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(f � �)(t+ P ) =

✓
cos

✓
2⇡

P
(t+ P )

◆
, sin

✓
2⇡

P
(t+ P )

◆◆

=

✓
cos

✓
2⇡

P
t+ 2⇡

◆
, sin

✓
2⇡

P
t+ 2⇡

◆◆

=

✓
cos

✓
2⇡

P
t

◆
, sin

✓
2⇡

P
t

◆◆

= (f � �)(t)

Because the choice of t 2 R is arbitrary, thus the function is well-defined.
Hence, the function f : R/⇠ ! S1 is defined as (f � �)(t) = f([t]) for some
t 2 R. Here, we use the fact that trigonometry functions are continuous with-
out proving. Hence, by universal property of the quotient, the function f is
continuous.

Next, we define a candidate inverse function g : S1 ! R/⇠. For each
(x, y) 2 S1, we can uniquely define (x, y) =

�
cos
�
2⇡
P t
�
, sin

�
2⇡
P t
��

for t 2 [0, P ).
(i.e. we have walked around the circle for nearly one period). As the clock hit
the point t + P , we have (x (t) , y (t)) = (x (t+ P ) , y (t+ P )). But t ⇠ t + P !.
Hence we are allowed to define g (x (t) , y (t)) = [t] for any t 2 R.

Let t 2 R, implies [t] 2 R/⇠. Consider g � f :

g � f ([t]) = g(f([t]))

= g

✓
cos

✓
2⇡

P
t

◆
, sin

✓
2⇡

P
t

◆◆

= [t]

Let (x, y) 2 S1 which is defined as (x, y) =
�
cos
�
2⇡
P t
�
, sin

�
2⇡
P t
��
. Consider

f � g:

f � g (x, y) = f(g

✓
cos

✓
2⇡

P
t

◆
, sin

✓
2⇡

P
t

◆◆
)

= f ([t])

=

✓
cos

✓
2⇡

P
t

◆
, sin

✓
2⇡

P
t

◆◆

It shows that f & g are bijective.
Next, to show g is continuous, consider the preimage of an arbitrary open

set U ✓ R/⇠. Let’s use the arc length metric da on S1.

g�1U = {[t] 2 R/⇠|g ([t]) 2 U} = fU = Bda
✏

✓
2⇡t

P

◆

20



for some 2⇡t
P 2 [0, 2⇡). The last equality hold is because if take any open balls

on the real line mod out some equivalence relation, you will always has the
corresponding open balls on the arc. [See picture]
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4.2 To show the second homeomorphism

Given two continuous functions G 2 Cts (R/⇠, Y ) and f 2 Cts (R, Y ). We
construct a map � : R ! R/⇠ and show the map � is bijective.

Proof. Given G1, G2 2 Cts (R/⇠, Y ) be arbitrary. Suppose �(G1) = �(G2).

�(G1) = �(G2)

=) (G1 � �) = (G2 � �)
=) (G1 � �) (y) = (G2 � �) (y) , 8y 2 R
=) G1 ([y]) = G2 ([y]) , 8[y] 2 R/⇠
=) G1 = G2

Hence, it proves that � is injective. Next, we prove surjective. Let f 2 Cts (R, Y )
be arbitrary, we want to show

9G 2 Cts (R/⇠, Y ) such that � (G) = f

So the task becomes showing G satisfies the definition of f = � (G) = G � � is
continuous. So we want to show

8U ✓ Y,
�
U 2 TY =) G�1 (U) 2 TR/⇠

�

G�1 (U) = {[t] 2 R/⇠|G ([t]) 2 U}
= {[t] 2 R/⇠|G (� (t)) 2 U}
= {[t] 2 R/⇠|f (t) 2 U}
=
�
[t] 2 R/⇠|t 2 f�1 (U)

 

2 TR/⇠, by definition of quotient topology

Hence, we showed that � is surjective. And hence we have � bijective.
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