13 marks total

MAST30026 Metric and Hilbert Spaces

Assignment 1 Solutions — 2018 Semester 2

Notation and conventions

The set $\mathbb N$ is the set of positive integers $\{1,2,3,\dots\}$.

The set \mathbb{N}_0 is the set of nonnegative integers $\{0,1,2,\dots\}.$

The transpose of a matrix X is denoted X'.

Question 1 (2 marks)

Lemma L2-2. The pair (S^1, d_a) is a metric space.

Exercise L2-3. Give a direct proof of Lemma L2-2 by dividing into cases as follows: Given $x, y, z \in S^1$, set $\theta := \Phi^{-1}(x)$, $\theta' := \Phi^{-1}(y)$, and $\theta'' := \Phi^{-1}(z)$. Consider the following three statements:

$$P_1 \mid \theta - \theta' \mid \leqslant \pi$$

$$P_2 |\theta' - \theta''| \leqslant \pi$$

$$P_3 \mid \theta - \theta'' \mid \leqslant \pi$$

Each is either true or false for a particular triple (x, y, z), and this means there are $2^3 = 8$ cases (e.g. P_1 , P_2 true but P_3 false). Prove each case individually, and in this way prove the lemma.

Recall that $d_a : S^1 \times S^1 \longrightarrow \mathbb{R}_{\geqslant 0}$ is defined as

$$d_a(\Phi(\omega), \Phi(\omega')) = \min\{|\omega - \omega'|, 2\pi - |\omega - \omega'|\} = \begin{cases} |\omega - \omega'|, & |\omega - \omega'| \leqslant \pi, \\ 2\pi - |\omega - \omega'|, & |\omega - \omega'| > \pi. \end{cases}$$

for every $\omega, \omega' \in [0, 2\pi)$. We note that

- (i) d_a is nonnegative: If $\omega, \omega' \in [0, 2\pi)$ then $0 \le |\omega \omega'| < 2\pi$ so that $|\omega \omega'|$ and $2\pi |\omega \omega'|$ are both nonnegative;
- (ii) d_a is symmetric: If $\omega, \omega' \in [0, 2\pi)$ then $|\omega \omega'| = |\omega' \omega|$.
- (iii) d_a separates distinct elements: If $\omega, \omega' \in [0, 2\pi)$ and $d_a(\Phi(\omega), \Phi(\omega')) = 0$ then $|\omega \omega'| = 0$ (since $2\pi |\omega \omega'| > 0$) and $\omega = \omega'$. Conversely if $\omega \in [0, 2\pi)$ then $d_a(\Phi(\omega), \Phi(\omega)) = \min\{0, 2\pi\} = 0$.

To prove that (S^1, d_a) is a metric space, it remains to establish that d_a satisfies the triangle equality: For our given $x, y, z \in S^1$ we need to prove that

$$d_a(x,y) + d_a(y,z) \geqslant d_a(x,z).$$

We proceed by considering cases in the following order:

- (a) P_1 , P_2 , and P_3 are all false.
- (b) P_1 is true, while P_2 and P_3 are both false.
- (c) P_2 is true, while P_1 and P_3 are both false.
- (d) P_1 and P_2 are true, while P_3 is false.
- (e) P_3 is true, while P_1 and P_2 are both false.
- (f) P_1 and P_3 are true, while P_2 is false.
- (g) P_2 and P_3 are true, while P_1 is false.
- (h) P_1 , P_2 , and P_3 are all true.

For $a, b \in \mathbb{R}$, we will use T(a, b) to denote the triangle inequality for $|\cdot|$ in \mathbb{R} , i.e. that $|a| + |b| \ge |a + b|$.

1(a) All false

- 1(a) This case is not actually possible: Writing $[0, 2\pi)$ as the disjoint union $[0, \pi) \cup [\pi, 2\pi)$, the pigeonhole principle tells us that either $[0, \pi)$ or $[\pi, 2\pi)$ contains two of θ , θ' , and θ'' . The difference of those two must therefore be strictly less than π , so that P_1 , P_2 , and P_3 cannot simultaneously all be false.
 - (b) P_1 true; P_2 , P_3 false

In this case we have

$$d_a(x,y) + d_a(y,z) = |\theta - \theta'| + (2\pi - |\theta' - \theta''|),$$

$$d_a(x,z) = 2\pi - |\theta - \theta''|.$$

Observe:

$$d_{a}(x,y) + d_{a}(y,z) \geqslant d_{a}(x,z)$$

$$\iff |\theta - \theta'| + (2\pi - |\theta' - \theta''|) \geqslant 2\pi - |\theta - \theta''|$$

$$\iff |\theta - \theta'| + |\theta - \theta''| \geqslant |\theta' - \theta''|$$

$$\iff |\theta' - \theta| + |\theta - \theta''| \geqslant |\theta' - \theta''|.$$

The final inequality is precisely $T(\theta' - \theta, \theta - \theta'')$, so we have shown that the triangle inequality holds for d_a when only P_1 is true.

(c) P_2 true; P_1 , P_3 false

In this case we have

$$d_a(x,y) + d_a(y,z) = (2\pi - |\theta - \theta'|) + |\theta' - \theta''|,$$

$$d_a(x,z) = 2\pi - |\theta - \theta''|.$$

Observe:

$$d_{a}(x,y) + d_{a}(y,z) \geqslant d_{a}(x,z)$$

$$\iff (2\pi - |\theta - \theta'|) + |\theta' - \theta''| \geqslant 2\pi - |\theta - \theta''|$$

$$\iff |\theta' - \theta''| + |\theta - \theta''| \geqslant |\theta - \theta'|$$

$$\iff |\theta' - \theta''| + |\theta'' - \theta| \geqslant |\theta' - \theta|.$$

The final inequality is precisely $T(\theta' - \theta'', \theta'' - \theta)$, so we have shown that the triangle inequality holds for d_a when only P_2 is true.

(d) P_1 , P_2 true; P_3 false

In this case we have $d_a(x,y) + d_a(y,z) = |\theta - \theta'| + |\theta' - \theta''|$. By $T(\theta - \theta', \theta' - \theta'')$, this means that $d_a(x,y) + d_a(y,z) \ge |\theta - \theta''|$. By definition, $d_a(x,z) \le |\theta - \theta''|$, so we have shown that the triangle inequality holds for d_a when P_1 and P_2 are true. (Note that we did not actually use the fact that P_3 is false.)

(e) P_3 true; P_1 , P_2 false

In this case we have

$$d_a(x,y) + d_a(y,z) = (2\pi - |\theta - \theta'|) + (2\pi - |\theta' - \theta''|) = 4\pi - (|\theta - \theta'| + |\theta' - \theta''|),$$

$$d_a(x,z) = |\theta - \theta''|.$$

Observe:

$$d_{a}(x,y) + d_{a}(y,z) \geqslant d_{a}(x,z)$$

$$\iff 4\pi - (|\theta - \theta'| + |\theta' - \theta''|) \geqslant |\theta - \theta''|$$

$$\iff |\theta - \theta'| + |\theta' - \theta''| + |\theta - \theta''| \leqslant 4\pi.$$

$$1(a)-1(e)$$
 Page 2 of 10

1(e) Now, as a function of $(\theta, \theta', \theta'')$, the left-hand side of the last inequality is invariant under permutations, so without loss of generality we may assume that $0 \le \theta \le \theta' \le \theta'' < 2\pi$. The left-hand side then becomes

$$(\theta' - \theta) + (\theta'' - \theta') + (\theta'' - \theta) = 2(\theta'' - \theta) < 4\pi,$$

where the last inequality is because $\theta'' - \theta < 2\pi$. Thus we have shown that the triangle inequality holds for d_a when only P_3 is true.

(f) P_1 , P_3 true; P_2 false

In this case we have

$$d_a(x,y) + d_a(y,z) = |\theta - \theta'| + (2\pi - |\theta' - \theta''|),$$

$$d_a(x,z) = |\theta - \theta''|.$$

Observe:

$$d_{a}(x,y) + d_{a}(y,z) \geqslant d_{a}(x,z)$$

$$\iff |\theta - \theta'| + (2\pi - |\theta' - \theta''|) \geqslant |\theta - \theta''|$$

$$\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leqslant 2\pi$$

$$\iff |\theta - \theta''| + |\theta' - \theta''| - |\theta - \theta'| \leqslant 2|\theta - \theta''| \quad \text{since } |\theta - \theta''| \leqslant \pi$$

$$\iff |\theta' - \theta''| - |\theta - \theta''| \geqslant |\theta' - \theta''|$$

$$\iff |\theta' - \theta| + |\theta - \theta''| \geqslant |\theta' - \theta''|.$$

The final inequality is precisely $T(\theta' - \theta, \theta - \theta'')$, so we have shown that the triangle inequality holds for d_a when P_1 and P_3 are true but P_2 is false.

(g) P_2 , P_3 true; P_1 false

In this case we have

$$d_a(x,y) + d_a(y,z) = (2\pi - |\theta - \theta'|) + |\theta' - \theta''|,$$

$$d_a(x,z) = |\theta - \theta''|.$$

Observe:

$$d_{a}(x,y) + d_{a}(y,z) \geqslant d_{a}(x,z)$$

$$\iff (2\pi - |\theta - \theta'|) + |\theta' - \theta''| \geqslant |\theta - \theta''|$$

$$\iff |\theta - \theta''| + |\theta - \theta'| - |\theta' - \theta''| \leqslant 2\pi$$

$$\iff |\theta - \theta''| + |\theta - \theta'| - |\theta' - \theta''| \leqslant |\theta - \theta''| \quad \text{since } |\theta - \theta''| \leqslant \pi$$

$$\iff |\theta - \theta'| - |\theta' - \theta''| \leqslant |\theta - \theta''|$$

$$\iff |\theta - \theta''| + |\theta' - \theta''| \geqslant |\theta - \theta'|$$

$$\iff |\theta - \theta''| + |\theta'' - \theta''| \geqslant |\theta - \theta'|$$

The final inequality is precisely $T(\theta - \theta'', \theta'' - \theta')$, so we have shown that the triangle inequality holds for d_a when P_2 and P_3 are true but P_1 is false.

(h) All true

Please refer to the case where only P_1 and P_2 are true.

1(e)-1(h)

Question 2 (3 marks)

Exercise L3-3. Prove that any element of $Isom(S^1, d_a)$ of the form

$$F = g_1 g_2 \dots g_r, \quad r \geqslant 0,$$

where each g_i is either R_{θ} for some $\theta \in \mathbb{R}$ or T, may be proven equal to $R_{\psi}T^n$ for some $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$, using relations (R1), (R2), and (R3).

Recall that the relations were (R1) $R_{\theta_1}R_{\theta_2}=R_{\theta_1+\theta_2}$, (R2) $R_{\theta}T=TR_{-\theta}$, and (R3) $T^2=\mathrm{id}$.

We proceed by induction. For each $m \in \mathbb{N}_0$, let P(m) be the following proposition: For every m-tuple (g_1, g_2, \ldots, g_m) where each g_i is either R_{θ} for some real θ or T, there exist $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$ such that $g_1 g_2 \ldots g_m = R_{\psi} T^n$.

Note that P(0) is simply the proposition that $\mathrm{id} \in \mathrm{Isom}(S^1, d_a)$ may be written as $R_{\psi}T^n$ for some $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$. Taking $\psi := 0$ and n := 0, we see that P(0) holds.

Suppose $k \in \mathbb{N}_0$ is such that P(k) holds. We will show that P(k+1) holds. For a given $(g_1, g_2, \dots, g_{k+1})$, we wish to show that there exist $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$ such that $g_1g_2 \dots g_{k+1} = R_{\psi}T^n$. Since P(k) holds, there exist $\psi \in [0, 2\pi)$ and $p \in \{0, 1\}$ such that $g_1g_2 \dots g_k = R_{\omega}T^p$. Hence it is sufficient to show that there exist $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$ such that $R_{\omega}T^pg_{k+1} = R_{\psi}T^n$.

If g_{k+1} is R_{θ} for some $\theta \in \mathbb{R}$ then, using (R2) p times, we have

$$T^p g_{k+1} = T^p R_{\theta} = \begin{cases} R_{\theta}, & p = 0, \\ R_{-\theta} T, & p = 1, \end{cases}$$

which we may write as $R_{(-1)^p\theta}T^p$. Hence $R_{\omega}T^pg_{k+1}=R_{\omega}R_{(-1)^p\theta}T^p$. Using (R1), we have $R_{\omega}T^pg_{k+1}=R_{\omega+(-1)^p\theta}T^p$. Finally, taking ψ to be $(\omega+(-1)^p\theta)$ mod 2π and n:=p, we have

$$g_1 g_2 \dots g_k g_{k+1} = R_{\omega + (-1)^p \theta} T^p = R_{\psi} T^n.$$

If g_{k+1} is T then using (R3)

$$T^p g_{k+1} = T^p T = \begin{cases} T, & p = 0, \\ \text{id}, & p = 1, \end{cases}$$

which we may write as T^{1-p} . Hence $R_{\omega}T^{p}g_{k+1}=R_{\omega}T^{1-p}$. Taking $\psi:=\omega$ and n:=1-p, we have

$$g_1 g_2 \dots g_k g_{k+1} = R_{\omega} T^{1-p} = R_{\psi} T^n.$$

In both cases we have produced $\psi \in [0, 2\pi)$ and $n \in \{0, 1\}$ such that $R_{\omega}T^{p}g_{k+1} = R_{\psi}T^{n}$. Thus, we have shown that P(k+1) holds if P(k) holds. By the principle of mathematical induction, we therefore have that P(m) holds for every $m \in \mathbb{N}_{0}$.

 $\mathbf{Q2}$

Question 3 (| mark)

Exercise L3-4. Prove that $R_{\theta}T \colon S^1 \to S^1$ is the reflection of S^1 through the straight line which passes through the origin and $(\cos(\theta/2), \sin(\theta/2))$.

Let ℓ denote the line passing through the origin and $(\cos(\theta/2), \sin(\theta/2))$.

Since R_{θ} , T, and reflection in ℓ are all linear transformations, it suffices to show that the image of (1,0) and (0,1) under $R_{\theta}T$ are their respective images under reflection in ℓ .

Let us first determine these images: The (directed and counterclockwise) angles subtended at the origin are

- from (1,0) to $(\cos(\theta/2),\sin(\theta/2))$: $\theta/2$, and
- from (0,1) to $(\cos(\theta/2), \sin(\theta/2))$: $-(\pi-\theta)/2$.

Thus, the image of (1,0) should be a counterclockwise rotation of $(\cos(\theta/2), \sin(\theta/2))$ around the origin by $\theta/2$, while the image of (1,0) should be a counterclockwise rotation of $(\cos(\theta/2), \sin(\theta/2))$ around the origin by $-(\pi - \theta)/2$. That is, (1,0) is sent to $(\cos \theta, \sin \theta)$, and (0,1) is sent to

$$(\cos(\theta/2 - (\pi - \theta)/2), \sin(\theta/2 - (\pi - \theta)/2)) = (\cos(\theta - \pi/2), \sin(\theta - \pi/2)) = (\sin\theta, -\cos\theta).$$

The images of (1,0) and (0,1) under $R_{\theta}T$ are given by

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}$$

respectively. These agree with their images under reflection in ℓ . Hence the linear transformations $R_{\theta}T$ and reflection through the line passing through the origin and $(\cos(\theta/2), \sin(\theta/2))$ are the same transformations.

 $\mathbf{Q3}$

(5 marks) Question 4

Let $F: V \longrightarrow V$ be an invertible linear operator on a finite-dimensional vector space.

- (a) Prove that precisely one of the following two possibilities is realised:
 - (I) $\forall \mathcal{B} (F(\mathcal{B}) \sim \mathcal{B})$
 - (II) $\forall \mathcal{B} (F(\mathcal{B}) \nsim \mathcal{B})$

where \mathcal{B} ranges over all ordered bases and $F(\mathcal{B})$ denotes $(F(\boldsymbol{b}_1), \dots, F(\boldsymbol{b}_n))$ if $\mathcal{B} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$. In the first case we say F is orientation preserving, and in the latter case we say F is orientation reversing.

- (b) Prove that F is orientation preserving iff det(F) > 0 and orientation reversing iff det(F) < 0.
- (c) Define

$$O(n) := \{X \in M_n(\mathbb{R}) \mid X \text{ is orthogonal, i.e. } X'X = I_n\}$$

 $SO(n) := \{X \in O(n) \mid \det(X) = 1\}.$

Prove that $X \in O(n)$ if and only if for all $v, w \in \mathbb{R}^n$

$$(X\boldsymbol{v})\cdot(X\boldsymbol{w})=\boldsymbol{v}\cdot\boldsymbol{w}.$$

By part (b), SO(n) are precisely the matrices in O(n) that give rise to orientation preserving linear transformations $\mathbb{R}^n \longrightarrow \mathbb{R}^n$.

(d) Prove that O(n) is a group under multiplication, and SO(n) is a subgroup. Produce an element $T \in O(n)$ such that $T^2 = \text{id}$ and every element of O(n) not in SO(n) may be written as XT for some $X \in SO(n)$. Thus prove $SO(n) \subseteq O(n)$ is a normal subgroup and that there is a group isomorphism

$$O(n)/SO(n) \cong \mathbb{Z}/2\mathbb{Z}.$$

 $\mathbf{4}(a)$ Fix an ordered basis \mathcal{C} of V. Since F is a linear operator on a finite-dimensional vector space, for some matrix $A \in M_n(\mathbb{R})$ (where $n = \dim V$) we have $F(\mathcal{C}) = A\mathcal{C}$. Note that because F is invertible, A must be an invertible matrix. That is, $\det A \neq 0$.

Now, our definition of A above means that $A = [\mathrm{id}]_{F(\mathcal{C})}^{\mathcal{C}}$, where $[\mathrm{id}]_{F(\mathcal{C})}^{\mathcal{C}} \in M_n(\mathbb{R})$ is the matrix which changes $F(\mathcal{C})$ -coordinates to \mathcal{C} -coordinates. For our basis \mathcal{C} we have by definition (from Tutorial 1)

$$F(\mathcal{C}) \sim \mathcal{C} \iff \det A > 0.$$

By negating (and noting that det $A \neq 0$ as mentioned above) we also have for our basis \mathcal{C} that

$$F(\mathcal{C}) \not\sim \mathcal{C} \iff \det A < 0.$$

Next, consider another arbitrary ordered basis \mathcal{B} of V. Then $[\mathrm{id}]_{F(\mathcal{B})}^{\mathcal{B}}$ is the matrix which changes $F(\mathcal{B})$ coordinates to \mathcal{B} -coordinates. We can see that this matrix is the same as $[F]_{\mathcal{B}}^{\mathcal{B}}$, the matrix corresponding to applying F under \mathcal{B} -coordinates. We now carry out a change of basis to relate $[F]_{\mathcal{B}}^{\mathcal{B}}$ and $[F]_{\mathcal{C}}^{\mathcal{C}} = [\mathrm{id}]_{F(\mathcal{C})}^{\mathcal{C}} = A$: We write

$$[F]_{\mathcal{B}}^{\mathcal{B}} = [\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} [F]_{\mathcal{C}}^{\mathcal{C}} [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}} = [\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} A [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}.$$

From this we can see that

$$F(\mathcal{B}) \sim \mathcal{B} \quad \Longleftrightarrow \quad \det([\mathrm{id}]_{F(\mathcal{B})}^{\mathcal{B}}) > 0 \quad \Longleftrightarrow \quad \det([\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} A [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}) > 0.$$

4(a) We simplify the last condition by writing

$$\det([\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} A [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}) = \det([\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}})(\det A) \det([\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}),
= (\det A) \det([\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}}) \det([\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}),
= (\det A) \det([\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}}),
= \det A \qquad \text{since } [\mathrm{id}]_{\mathcal{C}}^{\mathcal{B}} [\mathrm{id}]_{\mathcal{B}}^{\mathcal{C}} = [\mathrm{id}]_{\mathcal{B}}^{\mathcal{B}} = I_n.$$

This allows us to conclude that

$$F(\mathcal{B}) \sim \mathcal{B} \iff \det(A) > 0.$$

Since \mathcal{B} was an arbitrary ordered basis of V, we have in fact established that

$$F(\mathcal{B}) \sim \mathcal{B} \quad \forall \text{bases } \mathcal{B} \text{ of } V \iff \det A > 0,$$

as well as

$$F(\mathcal{B}) \nsim \mathcal{B} \quad \forall \text{bases } \mathcal{B} \text{ of } V \iff \det A < 0.$$

by negating. Precisely one of det A > 0 and det A < 0 is true, so we may conclude that either (I) $F(\mathcal{B}) \sim \mathcal{B}$ for every basis \mathcal{B} of V, or (II) $F(\mathcal{B}) \not\sim \mathcal{B}$ for every basis \mathcal{B} of V.

- (b) In the previous part we proved that it makes sense to classify the invertible linear operator F itself as being orientation-preserving or orientation-reversing, since applying F either preserves the orientation of all bases or preserves the orientation of no bases at all. As demonstrated above, since $\det F \neq 0$, F is orientation-preserving if and only if $\det F > 0$, while F is orientation-reversing if and only if $\det F < 0$.
- (c) First observe that for every $X \in M_n(\mathbb{R})$ and for every $v, w \in \mathbb{R}^n$ we have

$$(X\boldsymbol{v})\cdot(X\boldsymbol{w})=(X\boldsymbol{v})'(X\boldsymbol{w})=\boldsymbol{v}'X'X\boldsymbol{w}.$$

 (\Rightarrow) Suppose $X \in O(n)$. Then $X'X = I_n$, so for every $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$ we have

$$(X\boldsymbol{v})\cdot(X\boldsymbol{w})=\boldsymbol{v}'I_n\boldsymbol{w}=\boldsymbol{v}\cdot\boldsymbol{w}.$$

(\Leftarrow) Suppose that $(X\boldsymbol{v})\cdot(X\boldsymbol{w})=\boldsymbol{v}\cdot\boldsymbol{w}$ for every $\boldsymbol{v},\boldsymbol{w}\in\mathbb{R}^n$. For every $i\in\{1,2,\ldots,n\}$, let $\boldsymbol{e}_i\in\mathbb{R}^n$ denote the column vector consisting of 1 as the *i*th coordinate and 0 in every other coordinate. Then for every $i,j\in\{1,2,\ldots,n\}$ we have

$$(X\mathbf{e}_i) \cdot (X\mathbf{e}_j) = \mathbf{e}_i' X' X \mathbf{e}_j = (X'X)_{i,j},$$

where $(X'X)_{i,j}$ is the (i,j)th entry of X'X. By hypothesis, this must be equal to $\mathbf{e}_i \cdot \mathbf{e}_j = \mathbf{1}(i=j)$. That is, the (i,j)th entry of X'X must be 1 if i=j and 0 if $i\neq j$. Thus $X'X=I_n$ and $X\in O(n)$.

(d) We begin by showing that O(n) is a group under multiplication. The identity element is I_n (which is orthogonal).

We claim that the inverse of $X \in O(n)$ is $X' \in O(n)$. Recall that X and X' are inverses in the group GL(n) if X is orthogonal (i.e. $X'X = XX' = I_n$), so it remains to show that $X' \in O(n)$. Observe that $X''X' = (XX')' = (XX^{-1})' = I_n$, so indeed $X' \in O(n)$.

Next, if $X, Y \in O(n)$ then

$$(XY)'(XY) = Y'\underbrace{(X'X)}_{=I_n}Y = Y'Y = I_n,$$

so that $XY \in O(n)$. This shows that O(n) is a group under matrix multiplication.

To show that SO(n) is a subgroup of O(n), we need to show that (i) SO(n) contains the identity I_n ; (ii) SO(n) is closed under inversion; and (iii) SO(n) is closed under matrix multiplication.

$$4(a)-4(d)$$
 Page 7 of 10

4(d) Since $\det I_n = 1$, we know that $I_n \in SO(n)$, so SO(n) contains the identity. Next, if $X \in O(n)$ and $\det X = 1$ then $X' \in O(n)$ and $\det(X') = \det(X^{-1}) = (\det X)^{-1} = 1$, so $X' \in SO(n)$. Hence SO(n) is closed under inversion. Finally, if $X, Y \in O(n)$ and $\det X = \det Y = 1$, then $XY \in O(n)$ and $\det(XY) = (\det X)(\det Y) = 1$, so $XY \in SO(n)$. Thus, SO(n) is a subgroup of O(n).

We claim that a suitable choice of $T \in O(n)$ is

$$\begin{bmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix},$$

the $n \times n$ diagonal matrix with -1 in the upper left entry and 1 everywhere else along the diagonal. We verify that T is orthogonal: Note that T' = T and $T^2 = I_n$, so that $T'T = T^2 = I_n$ and $T \in O(n)$. In our discussion below we will use the fact that $\det T = -1$.

Next, consider $Y \in O(n)$. Both Y and YT are elements in O(n). Since $Y'Y = I_n$, we know that $(\det Y)^2 = 1$, so that $\det Y = 1$ or $\det Y = -1$. If $Y \notin SO(n)$, we necessarily have that $\det Y = -1$, so that $\det(YT) = (\det Y)(\det T) = 1$ and $YT \in SO(n)$. With the choice of X := YT, we have $X \in SO(n)$ and $XT = YT^2 = Y$. Thus our T satisfies the required criteria.

Before showing that SO(n) is a normal subgroup of O(n), we will first show that T in fact satisfies a further similar property. In particular, we will show that if $Y \in O(n) \setminus SO(n)$, then Y = TZ for some $Z \in SO(n)$: We simply take $Z := TY \in O(n)$ and note that $\det Y = -1$ since $Y \in O(n) \setminus SO(n)$, so that $\det Z = (\det T)(\det Y) = 1$ and $Z \in SO(n)$. Then we verify that $TZ = T^2Y = Y$.

The above results show that the right cosets of O(n) with respect to SO(n) is the set $\{SO(n), SO(n)T\}$, while the left cosets of O(n) with respect to SO(n) is the set $\{SO(n), TSO(n)\}$. Since each is a bipartition of SO(n), we have that SO(n)T = TSO(n).

We are now ready to show normality of SO(n) as a subgroup of O(n): If $Y \in SO(n)$ then YSO(n) = SO(n) = SO(n) Y. If $Y \in O(n) \setminus SO(n)$ then for some $X \in SO(n)$ and $Z \in SO(n)$ we have Y = XT = TZ and

$$Y SO(n) = TZ SO(n) = T SO(n) = SO(n) T = SO(n) XT = SO(n) Y.$$

This shows that SO(n) is a normal subgroup of O(n). Since there are only two cosets, the quotient group O(n)/SO(n) is a group of order 2, so $O(n)/SO(n) \cong \mathbb{Z}/2\mathbb{Z}$.

 $\mathbf{Q4}(\mathbf{d})$

Question 5 (| mark)

Exercise L4-0. Prove that

$$d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^n |x_i - y_i|$$
$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = \max\{|x_i - y_i|\}_{i=1}^n$$

define metrics on \mathbb{R}^n .

Since $|\cdot|$ is nonnegative, and the sum and the maximum of nonnegative numbers are nonnegative, both d_1 and d_{∞} are nonnegative. Furthermore, since |a-b|=|b-a| for all real a and b, we have $d_1(\boldsymbol{x},\boldsymbol{y})=d_1(\boldsymbol{y},\boldsymbol{x})$ and $d_{\infty}(\boldsymbol{x},\boldsymbol{y})=d_{\infty}(\boldsymbol{y},\boldsymbol{x})$ for all $\boldsymbol{x},\boldsymbol{y}\in\mathbb{R}^n$. That is, both d_1 and d_{∞} are symmetric.

It remains to show that d_1 and d_{∞} both separate distinct points and both satisfy the triangle inequality.

Let us proceed first for d_1 . Suppose $d_1(\boldsymbol{x}, \boldsymbol{y}) = 0$. Since each $|x_i - y_i|$ is nonnegative, the only way for the sum $\sum_{i=1}^{n} |x_i - y_i|$ to be 0 is to have $|x_i - y_i|$ be exactly 0 for every i. That is, we must have $x_i = y_i$ for every i, so that $\boldsymbol{x} = \boldsymbol{y}$. Hence d_1 separates distinct points. For the triangle inequality, fix $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n$. Then

$$d_1(\boldsymbol{x}, \boldsymbol{y}) + d_1(\boldsymbol{y}, \boldsymbol{z}) = \sum_{i=1}^n |x_i - y_i| + \sum_{i=1}^n |y_i - z_i| = \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) \geqslant \sum_{i=1}^n |x_i - z_i|,$$

where the inequality comes from the triangle inequality for $|\cdot|$ on \mathbb{R} . The last term is precisely $d_1(\boldsymbol{x}, \boldsymbol{z})$, so we have established that $d_1(\boldsymbol{x}, \boldsymbol{y}) + d_1(\boldsymbol{y}, \boldsymbol{z}) \geq d_1(\boldsymbol{x}, \boldsymbol{z})$. Therefore d_1 satisfies the triangle inequality, meaning that d_1 meets all the conditions of being a metric on \mathbb{R}^n .

We now turn to d_{∞} . Suppose $d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = 0$. Then for every i we must have $|x_i - y_i| \leq 0$, so that $x_i = y_i$. Hence $\boldsymbol{x} = \boldsymbol{y}$ if $d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = 0$, and d_{∞} separates distinct points. For the triangle inequality, fix $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n$. Observe that for every i we necessarily have

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) + d_{\infty}(\boldsymbol{y}, \boldsymbol{z}) \geqslant |x_i - y_i| + |y_i - z_i| \geqslant |x_i - z_i|,$$

where the first inequality comes from the definition of d_{∞} and the second inequality comes from the triangle inequality for $|\cdot|$ on \mathbb{R} . As this holds for every i, we may conclude that

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) + d_{\infty}(\boldsymbol{y}, \boldsymbol{z}) \geqslant \max\{|x_i - z_i|\}_{i=1}^n = d_{\infty}(\boldsymbol{x}, \boldsymbol{z}).$$

Hence d_{∞} satisfies the triangle inequality, and d_{∞} too meets all the conditions of being a metric on \mathbb{R}^n .

Question 6 (| Mark)

Exercise L4-4. Prove that if $P_1 = Q^{-1}P_2Q$ for some orthogonal matrix Q then multiplication by Q gives an isometry (assume P_1 , P_2 positive-definite)

$$(\mathbb{R}^n, d_{P_1}) \longrightarrow (\mathbb{R}^n, d_{P_2})$$

That is, the metric we get on \mathbb{R}^n from P_1 is essentially the same as the one we get from P_2 .

Since Q is orthogonal, Q is invertible, and multiplication by Q is a bijection from \mathbb{R}^n to \mathbb{R}^n (in particular, it is surjective). It remains to show that multiplication preserves distance. Fix $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (treated as column vectors). We wish to show that $d_{P_2}(Q\mathbf{x}, Q\mathbf{y}) = d_{P_1}(\mathbf{x}, \mathbf{y})$. We write

$$d_{P_2}(Q\boldsymbol{x},Q\boldsymbol{y}) = (Q\boldsymbol{x})'P_2(Q\boldsymbol{y}) = \boldsymbol{x}'(Q'P_2Q)\boldsymbol{y}.$$

Since Q is orthogonal, we have $Q' = Q^{-1}$, so that $Q'P_2Q = Q^{-1}P_2Q = P_1$, and

$$d_{P_2}(Q\boldsymbol{x}, Q\boldsymbol{y}) = \boldsymbol{x}' P_1 \boldsymbol{y} = d_{P_1}(\boldsymbol{x}, \boldsymbol{y}).$$

This shows that multiplication by Q is distance-preserving. As mentioned, multiplication by Q is also surjective, so altogether multiplication by Q is an isometry from (\mathbb{R}^n, d_{P_1}) to (\mathbb{R}^n, d_{P_2}) .