
MAST30026 Metric and Hilbert Spaces
Assignment 1 Solutions — 2018 Semester 2



Notation and conventions

The set N is the set of positive integers {1, 2, 3, . . . }.

The set N0 is the set of nonnegative integers {0, 1, 2, . . . }.

The transpose of a matrix X is denoted X ′.
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Question 1

Lemma L2-2. The pair (S1, da) is a metric space.

Exercise L2-3. Give a direct proof of Lemma L2-2 by dividing into cases as follows: Given x, y, z ∈ S1,
set θ := Φ−1(x), θ′ := Φ−1(y), and θ′′ := Φ−1(z). Consider the following three statements:

P1 |θ − θ′| 6 π

P2 |θ′ − θ′′| 6 π

P3 |θ − θ′′| 6 π

Each is either true or false for a particular triple (x, y, z), and this means there are 23 = 8 cases (e.g. P1,
P2 true but P3 false). Prove each case individually, and in this way prove the lemma.

Recall that da : S1 × S1 R>0 is defined as

da(Φ(ω),Φ(ω′)) = min{|ω − ω′|, 2π − |ω − ω′|} =
{
|ω − ω′|, |ω − ω′| 6 π,

2π − |ω − ω′|, |ω − ω′| > π.

for every ω, ω′ ∈ [0, 2π). We note that

(i) da is nonnegative: If ω, ω′ ∈ [0, 2π) then 0 6 |ω− ω′| < 2π so that |ω− ω′| and 2π− |ω− ω′| are both
nonnegative;

(ii) da is symmetric: If ω, ω′ ∈ [0, 2π) then |ω − ω′| = |ω′ − ω|.

(iii) da separates distinct elements: If ω, ω′ ∈ [0, 2π) and da(Φ(ω),Φ(ω′)) = 0 then |ω − ω′| = 0 (since
2π − |ω − ω′| > 0) and ω = ω′. Conversely if ω ∈ [0, 2π) then da(Φ(ω),Φ(ω)) = min{0, 2π} = 0.

To prove that (S1, da) is a metric space, it remains to establish that da satisfies the triangle equality: For
our given x, y, z ∈ S1 we need to prove that

da(x, y) + da(y, z) > da(x, z).

We proceed by considering cases in the following order:

(a) P1, P2, and P3 are all false.

(b) P1 is true, while P2 and P3 are both false.

(c) P2 is true, while P1 and P3 are both false.

(d) P1 and P2 are true, while P3 is false.

(e) P3 is true, while P1 and P2 are both false.

(f) P1 and P3 are true, while P2 is false.

(g) P2 and P3 are true, while P1 is false.

(h) P1, P2, and P3 are all true.

For a, b ∈ R, we will use T (a, b) to denote the triangle inequality for | · | in R, i.e. that |a|+ |b| > |a+ b|.

1(a) All false

1–1(a) Page 1 of 10
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1(a) This case is not actually possible: Writing [0, 2π) as the disjoint union [0, π)∪[π, 2π), the pigeonhole principle
tells us that either [0, π) or [π, 2π) contains two of θ, θ′, and θ′′. The difference of those two must therefore
be strictly less than π, so that P1, P2, and P3 cannot simultaneously all be false.

(b) P1 true; P2, P3 false

In this case we have

da(x, y) + da(y, z) = |θ − θ′|+ (2π − |θ′ − θ′′|),
da(x, z) = 2π − |θ − θ′′|.

Observe:

da(x, y) + da(y, z) > da(x, z)
⇐⇒ |θ − θ′|+ (2π − |θ′ − θ′′|) > 2π − |θ − θ′′|
⇐⇒ |θ − θ′|+ |θ − θ′′| > |θ′ − θ′′|
⇐⇒ |θ′ − θ|+ |θ − θ′′| > |θ′ − θ′′|.

The final inequality is precisely T (θ′− θ, θ− θ′′), so we have shown that the triangle inequality holds for da
when only P1 is true.

(c) P2 true; P1, P3 false

In this case we have

da(x, y) + da(y, z) = (2π − |θ − θ′|) + |θ′ − θ′′|,
da(x, z) = 2π − |θ − θ′′|.

Observe:

da(x, y) + da(y, z) > da(x, z)
⇐⇒ (2π − |θ − θ′|) + |θ′ − θ′′| > 2π − |θ − θ′′|
⇐⇒ |θ′ − θ′′|+ |θ − θ′′| > |θ − θ′|
⇐⇒ |θ′ − θ′′|+ |θ′′ − θ| > |θ′ − θ|.

The final inequality is precisely T (θ′ − θ′′, θ′′ − θ), so we have shown that the triangle inequality holds for
da when only P2 is true.

(d) P1, P2 true; P3 false

In this case we have da(x, y) + da(y, z) = |θ − θ′| + |θ′ − θ′′|. By T (θ − θ′, θ′ − θ′′), this means that
da(x, y)+da(y, z) > |θ−θ′′|. By definition, da(x, z) 6 |θ−θ′′|, so we have shown that the triangle inequality
holds for da when P1 and P2 are true. (Note that we did not actually use the fact that P3 is false.)

(e) P3 true; P1, P2 false

In this case we have

da(x, y) + da(y, z) = (2π − |θ − θ′|) + (2π − |θ′ − θ′′|) = 4π − (|θ − θ′|+ |θ′ − θ′′|),
da(x, z) = |θ − θ′′|.

Observe:

da(x, y) + da(y, z) > da(x, z)
⇐⇒ 4π − (|θ − θ′|+ |θ′ − θ′′|) > |θ − θ′′|
⇐⇒ |θ − θ′|+ |θ′ − θ′′|+ |θ − θ′′| 6 4π.

1(a)–1(e) Page 2 of 10
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1(e) Now, as a function of (θ, θ′, θ′′), the left-hand side of the last inequality is invariant under permutations, so
without loss of generality we may assume that 0 6 θ 6 θ′ 6 θ′′ < 2π. The left-hand side then becomes

(θ′ − θ) + (θ′′ − θ′) + (θ′′ − θ) = 2(θ′′ − θ) < 4π,

where the last inequality is because θ′′− θ < 2π. Thus we have shown that the triangle inequality holds for
da when only P3 is true.

(f) P1, P3 true; P2 false

In this case we have

da(x, y) + da(y, z) = |θ − θ′|+ (2π − |θ′ − θ′′|),
da(x, z) = |θ − θ′′|.

Observe:

da(x, y) + da(y, z) > da(x, z)
⇐⇒ |θ − θ′|+ (2π − |θ′ − θ′′|) > |θ − θ′′|
⇐⇒ |θ − θ′′|+ |θ′ − θ′′| − |θ − θ′| 6 2π
⇐= |θ − θ′′|+ |θ′ − θ′′| − |θ − θ′| 6 2|θ − θ′′| since |θ − θ′′| 6 π

⇐⇒ |θ′ − θ′′| − |θ − θ′| 6 |θ − θ′′|
⇐⇒ |θ − θ′|+ |θ − θ′′| > |θ′ − θ′′|
⇐⇒ |θ′ − θ|+ |θ − θ′′| > |θ′ − θ′′|.

The final inequality is precisely T (θ′− θ, θ− θ′′), so we have shown that the triangle inequality holds for da
when P1 and P3 are true but P2 is false.

(g) P2, P3 true; P1 false

In this case we have

da(x, y) + da(y, z) = (2π − |θ − θ′|) + |θ′ − θ′′|,
da(x, z) = |θ − θ′′|.

Observe:

da(x, y) + da(y, z) > da(x, z)
⇐⇒ (2π − |θ − θ′|) + |θ′ − θ′′| > |θ − θ′′|
⇐⇒ |θ − θ′′|+ |θ − θ′| − |θ′ − θ′′| 6 2π
⇐= |θ − θ′′|+ |θ − θ′| − |θ′ − θ′′| 6 2|θ − θ′′| since |θ − θ′′| 6 π

⇐⇒ |θ − θ′| − |θ′ − θ′′| 6 |θ − θ′′|
⇐⇒ |θ − θ′| − |θ′ − θ′′| 6 |θ − θ′′|
⇐⇒ |θ − θ′′|+ |θ′ − θ′′| > |θ − θ′|
⇐⇒ |θ − θ′′|+ |θ′′ − θ′| > |θ − θ′|.

The final inequality is precisely T (θ − θ′′, θ′′ − θ′), so we have shown that the triangle inequality holds for
da when P2 and P3 are true but P1 is false.

(h) All true

Please refer to the case where only P1 and P2 are true.
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Question 2

Exercise L3-3. Prove that any element of Isom(S1, da) of the form

F = g1g2 . . . gr, r > 0,

where each gi is either Rθ for some θ ∈ R or T , may be proven equal to RψTn for some ψ ∈ [0, 2π) and
n ∈ {0, 1}, using relations (R1), (R2), and (R3).

Recall that the relations were (R1) Rθ1Rθ2 = Rθ1+θ2 , (R2) RθT = TR−θ, and (R3) T 2 = id.

We proceed by induction. For each m ∈ N0, let P (m) be the following proposition: For every m-tuple
(g1, g2, . . . , gm) where each gi is either Rθ for some real θ or T , there exist ψ ∈ [0, 2π) and n ∈ {0, 1} such
that g1g2 . . . gm = RψT

n.

Note that P (0) is simply the proposition that id ∈ Isom(S1, da) may be written as RψTn for some ψ ∈ [0, 2π)
and n ∈ {0, 1}. Taking ψ := 0 and n := 0, we see that P (0) holds.

Suppose k ∈ N0 is such that P (k) holds. We will show that P (k + 1) holds. For a given (g1, g2, . . . , gk+1),
we wish to show that there exist ψ ∈ [0, 2π) and n ∈ {0, 1} such that g1g2 . . . gk+1 = RψT

n. Since P (k)
holds, there exist ω ∈ [0, 2π) and p ∈ {0, 1} such that g1g2 . . . gk = RωT

p. Hence it is sufficient to show that
there exist ψ ∈ [0, 2π) and n ∈ {0, 1} such that RωT pgk+1 = RψT

n.

If gk+1 is Rθ for some θ ∈ R then, using (R2) p times, we have

T pgk+1 = T pRθ =
{
Rθ, p = 0,
R−θT, p = 1,

which we may write as R(−1)pθT
p. Hence RωT pgk+1 = RωR(−1)pθT

p. Using (R1), we have RωT pgk+1 =
Rω+(−1)pθT

p. Finally, taking ψ to be (ω + (−1)pθ) mod 2π and n := p, we have

g1g2 . . . gkgk+1 = Rω+(−1)pθT
p = RψT

n.

If gk+1 is T then using (R3)

T pgk+1 = T pT =
{
T, p = 0,
id, p = 1,

which we may write as T 1−p. Hence RωT pgk+1 = RωT
1−p. Taking ψ := ω and n := 1− p, we have

g1g2 . . . gkgk+1 = RωT
1−p = RψT

n.

In both cases we have produced ψ ∈ [0, 2π) and n ∈ {0, 1} such that RωT pgk+1 = RψT
n. Thus, we have

shown that P (k + 1) holds if P (k) holds. By the principle of mathematical induction, we therefore have
that P (m) holds for every m ∈ N0.

Q2 Page 4 of 10
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Question 3

Exercise L3-4. Prove that RθT : S1 S1 is the reflection of S1 through the straight line which passes
through the origin and (cos(θ/2), sin(θ/2)).

`

(1, 0)

(0, 1)

θ/2

−(π − θ)/2

Let ` denote the line passing through the origin and
(cos(θ/2), sin(θ/2)).

Since Rθ, T , and reflection in ` are all linear trans-
formations, it suffices to show that the image of
(1, 0) and (0, 1) under RθT are their respective im-
ages under reflection in `.

Let us first determine these images: The (directed
and counterclockwise) angles subtended at the ori-
gin are

from (1, 0) to (cos(θ/2), sin(θ/2)): θ/2, and

from (0, 1) to (cos(θ/2), sin(θ/2)): −(π−θ)/2.

Thus, the image of (1, 0) should be a counterclock-
wise rotation of (cos(θ/2), sin(θ/2)) around the ori-
gin by θ/2, while the image of (1, 0) should be
a counterclockwise rotation of (cos(θ/2), sin(θ/2))
around the origin by −(π − θ)/2. That is, (1, 0) is
sent to (cos θ, sin θ), and (0, 1) is sent to

(cos(θ/2− (π − θ)/2), sin(θ/2− (π − θ)/2)) = (cos(θ − π/2), sin(θ − π/2)) = (sin θ,− cos θ).

The images of (1, 0) and (0, 1) under RθT are given by[
cos θ − sin θ
sin θ cos θ

][
1 0
0 −1

][
1
0

]
=

[
cos θ
sin θ

]
and

[
cos θ − sin θ
sin θ cos θ

][
1 0
0 −1

][
0
1

]
=

[
sin θ
− cos θ

]

respectively. These agree with their images under reflection in `. Hence the linear transformations RθT and
reflection through the line passing through the origin and (cos(θ/2), sin(θ/2)) are the same transformations.

Q3 Page 5 of 10
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Question 4

Exercise L3-5. Let F : V V be an invertible linear operator on a finite-dimensional vector space.

(a) Prove that precisely one of the following two possibilities is realised:

(I) ∀B (F (B) ∼ B)

(II) ∀B (F (B) 6∼ B)

where B ranges over all ordered bases and F (B) denotes (F (b1), . . . , F (bn)) if B = (b1, . . . , bn). In the
first case we say F is orientation preserving, and in the latter case we say F is orientation reversing.

(b) Prove that F is orientation preserving iff det(F ) > 0 and orientation reversing iff det(F ) < 0.

(c) Define

O(n) := {X ∈Mn(R) | X is orthogonal, i.e. X ′X = In}
SO(n) := {X ∈ O(n) | det(X) = 1}.

Prove that X ∈ O(n) if and only if for all v,w ∈ Rn

(Xv) · (Xw) = v ·w.

By part (b), SO(n) are precisely the matrices in O(n) that give rise to orientation preserving linear
transformations Rn Rn.

(d) Prove that O(n) is a group under multiplication, and SO(n) is a subgroup. Produce an element
T ∈ O(n) such that T 2 = id and every element of O(n) not in SO(n) may be written as XT for some
X ∈ SO(n). Thus prove SO(n) ⊆ O(n) is a normal subgroup and that there is a group isomorphism

O(n)/SO(n) ∼= Z/2Z.

4(a) Fix an ordered basis C of V . Since F is a linear operator on a finite-dimensional vector space, for some
matrix A ∈ Mn(R) (where n = dimV ) we have F (C) = AC. Note that because F is invertible, A must be
an invertible matrix. That is, detA 6= 0.

Now, our definition of A above means that A = [id]CF (C), where [id]CF (C) ∈Mn(R) is the matrix which changes
F (C)-coordinates to C-coordinates. For our basis C we have by definition (from Tutorial 1)

F (C) ∼ C ⇐⇒ detA > 0.

By negating (and noting that detA 6= 0 as mentioned above) we also have for our basis C that

F (C) 6∼ C ⇐⇒ detA < 0.

Next, consider another arbitrary ordered basis B of V . Then [id]BF (B) is the matrix which changes F (B)-
coordinates to B-coordinates. We can see that this matrix is the same as [F ]BB, the matrix corresponding to
applying F under B-coordinates. We now carry out a change of basis to relate [F ]BB and [F ]CC = [id]CF (C) = A:
We write

[F ]BB = [id]BC [F ]CC [id]CB = [id]BC A [id]CB.

From this we can see that

F (B) ∼ B ⇐⇒ det([id]BF (B)) > 0 ⇐⇒ det([id]BC A [id]CB) > 0.

4–4(a) Page 6 of 10
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4(a) We simplify the last condition by writing

det([id]BC A [id]CB) = det([id]BC )(detA) det([id]CB),
= (detA) det([id]BC ) det([id]CB),
= (detA) det([id]BC [id]CB),
= detA since [id]BC [id]CB = [id]BB = In.

This allows us to conclude that
F (B) ∼ B ⇐⇒ det(A) > 0.

Since B was an arbitrary ordered basis of V , we have in fact established that

F (B) ∼ B ∀bases B of V ⇐⇒ detA > 0,

as well as
F (B) 6∼ B ∀bases B of V ⇐⇒ detA < 0.

by negating. Precisely one of detA > 0 and detA < 0 is true, so we may conclude that either (I) F (B) ∼ B
for every basis B of V , or (II) F (B) 6∼ B for every basis B of V .

(b) In the previous part we proved that it makes sense to classify the invertible linear operator F itself as
being orientation-preserving or orientation-reversing, since applying F either preserves the orientation of
all bases or preserves the orientation of no bases at all. As demonstrated above, since detF 6= 0, F is
orientation-preserving if and only if detF > 0, while F is orientation-reversing if and only if detF < 0.

(c) First observe that for every X ∈Mn(R) and for every v,w ∈ Rn we have

(Xv) · (Xw) = (Xv)′(Xw) = v′X ′Xw.

(⇒) Suppose X ∈ O(n). Then X ′X = In, so for every v,w ∈ Rn we have

(Xv) · (Xw) = v′Inw = v ·w.

(⇐) Suppose that (Xv) · (Xw) = v ·w for every v,w ∈ Rn. For every i ∈ {1, 2, . . . , n}, let ei ∈ Rn denote
the column vector consisting of 1 as the ith coordinate and 0 in every other coordinate. Then for every
i, j ∈ {1, 2, . . . , n} we have

(Xei) · (Xej) = e′iX
′Xej = (X ′X)i,j ,

where (X ′X)i,j is the (i, j)th entry of X ′X. By hypothesis, this must be equal to ei · ej = 1(i = j). That
is, the (i, j)th entry of X ′X must be 1 if i = j and 0 if i 6= j. Thus X ′X = In and X ∈ O(n).

(d) We begin by showing that O(n) is a group under multiplication. The identity element is In (which is
orthogonal).

We claim that the inverse of X ∈ O(n) is X ′ ∈ O(n). Recall that X and X ′ are inverses in the group
GL(n) if X is orthogonal (i.e. X ′X = XX ′ = In), so it remains to show that X ′ ∈ O(n). Observe that
X ′′X ′ = (XX ′)′ = (XX−1)′ = In, so indeed X ′ ∈ O(n).

Next, if X,Y ∈ O(n) then
(XY )′(XY ) = Y ′ (X ′X)︸ ︷︷ ︸

=In

Y = Y ′Y = In,

so that XY ∈ O(n). This shows that O(n) is a group under matrix multiplication.

To show that SO(n) is a subgroup of O(n), we need to show that (i) SO(n) contains the identity In;
(ii) SO(n) is closed under inversion; and (iii) SO(n) is closed under matrix multiplication.

4(a)–4(d) Page 7 of 10
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4(d) Since det In = 1, we know that In ∈ SO(n), so SO(n) contains the identity. Next, if X ∈ O(n) and
detX = 1 then X ′ ∈ O(n) and det(X ′) = det(X−1) = (detX)−1 = 1, so X ′ ∈ SO(n). Hence SO(n) is
closed under inversion. Finally, if X,Y ∈ O(n) and detX = detY = 1, then XY ∈ O(n) and det(XY ) =
(detX)(detY ) = 1, so XY ∈ SO(n). Thus, SO(n) is a subgroup of O(n).

We claim that a suitable choice of T ∈ O(n) is
−1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

,

the n × n diagonal matrix with −1 in the upper left entry and 1 everywhere else along the diagonal. We
verify that T is orthogonal: Note that T ′ = T and T 2 = In, so that T ′T = T 2 = In and T ∈ O(n). In our
discussion below we will use the fact that detT = −1.

Next, consider Y ∈ O(n). Both Y and Y T are elements in O(n). Since Y ′Y = In, we know that (detY )2 =
1, so that detY = 1 or detY = −1. If Y /∈ SO(n), we necessarily have that detY = −1, so that
det(Y T ) = (detY )(detT ) = 1 and Y T ∈ SO(n). With the choice of X := Y T , we have X ∈ SO(n) and
XT = Y T 2 = Y . Thus our T satisfies the required criteria.

Before showing that SO(n) is a normal subgroup of O(n), we will first show that T in fact satisfies a
further similar property. In particular, we will show that if Y ∈ O(n) \ SO(n), then Y = TZ for some
Z ∈ SO(n): We simply take Z := TY ∈ O(n) and note that detY = −1 since Y ∈ O(n) \ SO(n), so that
detZ = (detT )(detY ) = 1 and Z ∈ SO(n). Then we verify that TZ = T 2Y = Y .

The above results show that the right cosets of O(n) with respect to SO(n) is the set {SO(n), SO(n)T},
while the left cosets of O(n) with respect to SO(n) is the set {SO(n), T SO(n)}. Since each is a bipartition
of SO(n), we have that SO(n)T = T SO(n).

We are now ready to show normality of SO(n) as a subgroup of O(n): If Y ∈ SO(n) then Y SO(n) =
SO(n) = SO(n)Y . If Y ∈ O(n) \SO(n) then for some X ∈ SO(n) and Z ∈ SO(n) we have Y = XT = TZ
and

Y SO(n) = TZ SO(n) = T SO(n) = SO(n)T = SO(n)XT = SO(n)Y .

This shows that SO(n) is a normal subgroup of O(n). Since there are only two cosets, the quotient group
O(n)/SO(n) is a group of order 2, so O(n)/SO(n) ∼= Z/2Z.

Q4(d) Page 8 of 10
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Question 5

Exercise L4-0. Prove that

d1(x,y) =
n∑
i=1
|xi − yi|

d∞(x,y) = max{|xi − yi|}ni=1

define metrics on Rn.

Since | · | is nonnegative, and the sum and the maximum of nonnegative numbers are nonnegative, both d1
and d∞ are nonnegative. Furthermore, since |a− b| = |b−a| for all real a and b, we have d1(x,y) = d1(y,x)
and d∞(x,y) = d∞(y,x) for all x,y ∈ Rn. That is, both d1 and d∞ are symmetric.

It remains to show that d1 and d∞ both separate distinct points and both satisfy the triangle inequality.

Let us proceed first for d1. Suppose d1(x,y) = 0. Since each |xi − yi| is nonnegative, the only way for the
sum

∑n
i=1 |xi − yi| to be 0 is to have |xi − yi| be exactly 0 for every i. That is, we must have xi = yi for

every i, so that x = y. Hence d1 separates distinct points. For the triangle inequality, fix x,y, z ∈ Rn.
Then

d1(x,y) + d1(y, z) =
n∑
i=1
|xi − yi|+

n∑
i=1
|yi − zi| =

n∑
i=1

(|xi − yi|+ |yi − zi|) >
n∑
i=1
|xi − zi|,

where the inequality comes from the triangle inequality for | · | on R. The last term is precisely d1(x, z),
so we have established that d1(x,y) + d1(y, z) > d1(x, z). Therefore d1 satisfies the triangle inequality,
meaning that d1 meets all the conditions of being a metric on Rn.

We now turn to d∞. Suppose d∞(x,y) = 0. Then for every i we must have |xi − yi| 6 0, so that xi = yi.
Hence x = y if d∞(x,y) = 0, and d∞ separates distinct points. For the triangle inequality, fix x,y, z ∈ Rn.
Observe that for every i we necessarily have

d∞(x,y) + d∞(y, z) > |xi − yi|+ |yi − zi| > |xi − zi|,

where the first inequality comes from the definition of d∞ and the second inequality comes from the triangle
inequality for | · | on R. As this holds for every i, we may conclude that

d∞(x,y) + d∞(y, z) > max{|xi − zi|}ni=1 = d∞(x, z).

Hence d∞ satisfies the triangle inequality, and d∞ too meets all the conditions of being a metric on Rn.

Q5 Page 9 of 10
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Question 6

Exercise L4-4. Prove that if P1 = Q−1P2Q for some orthogonal matrix Q then multiplication by Q
gives an isometry (assume P1, P2 positive-definite)

(Rn, dP1) (Rn, dP2)

That is, the metric we get on Rn from P1 is essentially the same as the one we get from P2.

Since Q is orthogonal, Q is invertible, and multiplication by Q is a bijection from Rn to Rn (in particular, it
is surjective). It remains to show that multiplication preserves distance. Fix x,y ∈ Rn (treated as column
vectors). We wish to show that dP2(Qx, Qy) = dP1(x,y). We write

dP2(Qx, Qy) = (Qx)′P2(Qy) = x′(Q′P2Q)y.

Since Q is orthogonal, we have Q′ = Q−1, so that Q′P2Q = Q−1P2Q = P1, and

dP2(Qx, Qy) = x′P1y = dP1(x,y).

This shows that multiplication by Q is distance-preserving. As mentioned, multiplication by Q is also
surjective, so altogether multiplication by Q is an isometry from (Rn, dP1) to (Rn, dP2).
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