Exercise L7-20

In Exercise L10-3 (see below) we prove that RP" = S™ /~_ where S™/~ is the quotient space on S™ with
the equivalence relation defined by x ~y (x,y € S") if x = —y or x = y. So, to prove that RP" is a
finite CW-complex, it is equivalent to show that S™/~ is a CW-complex. We will do this with induction.
In fact, we will show that S™/~ is a CW-complex for all integers n > 0.

For the base case, notice that S/~ must be the one-point space {*}. This is because the underlying
set of S¥is {—1,1}, and 1 ~ —1 which means S°/~ has only one element, so must be the one-point space.
Letting Xo = SY/~ = {x}, clearly Xj is a finite set with a discrete topology. So S°/~ is a CW-complex.

Now we show that for each n > 1, we can obtain S™/~ from S™~1/~ by attaching an n-cell. Indeed,
fix some n > 1 and let p: S"~1 — S"~!/~ be the quotient map (note that p is continuous since it’s a
quotient map), where ~ is as defined before. Now consider the following pushout:

Snfl P Snfl/N

P

where W = "1/~ ][ g1 D". We'd like to show that W =2 5™ /~.

To see this, we’ll first show that W = D™/~ where D™/~ is the quotient space on D™ with the
equivalence relation defined by: for x,y € D", x ~y if x,y € S"~! and x ~ y as elements of S"~!. Note
that this definition makes sense (it defines an equivalence relation) since S"~! C D". Let pp: D" —
D"/~ be the corresponding quotient map, which must be continuous. Then, the map pp o ¢: S*~ 1 —
D™/~ which is a composition of continuous maps, must also be continuous. Moreover, by our definition
of ~ on D", we have that whenever x ~ y (as elements of S"~1), it is also true that t(x) ~ v(y), i.e.
pp(t(x)) = pp(e(y)). So, the universal property of quotient spaces tells us that there exists a unique
continuous map f: S" !/~ — D"/~ such that f o p = pp o« In other words, the following diagram
commutes:

Sn—1 P Sn—l/N
[ I
D P2 pn/n

So, since f and pp are continuous and the diagram commutes, the universal property of the pushout tells
us that there exists a unique continuous map t: W — D"/~ making the following diagram commute:

Sn—1 P Sn—l/N

Pk

L

Dr —2 W

ie. tow; = f and towy = pp where ¢t; and 1o are defined in the obvious way. We claim ¢ defines a
homeomorphism between W and D™/~. To prove this, we’ll find its inverse. By our definition of ~ on
D", whenever x ~ y (as elements of D" /~), then x,y € S"~! and x ~ y as elements of S"~!. In other
words, when x ~ y we have

p(x) = p(y) (makes sense since x,y € S" 1)
= u(p(x)) = ulp(y))
= 13(1(x)) = 12(t(x)) (since t1 0 p =19 01)
= 13(x) = 12(x)



where above we abuse notation slightly so that x may refer to either the element in S”~! or the corre-
sponding element in D™. Anyway, the point of that is that whenever x ~ y (as elements of D"), we have
t2(x) = t2(y). Since i9 is continuous, we may then use the universal property of the quotient space to
see that there must be a unique continuous map g: D"/~ — W such that

gopp = La.
We claim that g and ¢ are inverses. Indeed, since g o pp =t and t o 1y = pp we have

togopp =toty=pp
= (tog)(pp(x)) = pp(x) vx € D"
= (tog)(z) == Vo € D"/~

since pp, the quotient map, is surjective. Also since go pp = 13 and to s = pp,

gotoia=gopp =t
= (got)(t2(x)) = t2(x) Vx € D"

At this point we just want t5 to be surjective. But from the definition of W (as some quotient space of
(S"=/~) ] D™), every element of w € W can be written in the form w = 15(x) for some x € D™ (so that
w is in the range of t2) or w = 11 (x) for some z € S"~!/~. In the latter case, since p: S"~1 — S"~ 1/~
is the quotient map and hence surjective, there must be some x € S"~! such that = p(x). Then, using
t10p =120, we get w=11(p(x)) = t2(¢(x)), which is still in the range of t5. Thus, every w € W is in
the range of 1o, so 1o is surjective. Then

(got)(t2(x)) = t2(x) Vx € D" = (got)(z) = ta(x) Vo € W.

So, g and t are inverses, and since both are continuous we can conclude that ¢ is a homeomorphism. So
we have W & D" /~.
All that remains is to show that D™/~ 2 S™/~. To see that this is true, consider the following maps:

h: D" — S™ given by h((z1,22,...,2n)) = (X1,Z2, ..., Tn, \/1 —2? 23— —12)
h: D™ — S™/~ given by h((z1,22,...,7,)) = ps(h((x1,29,...,2,)))

where pg: S™ — S™/~ is the quotient map (which is continuous). h is well-defined, since if (21, 22, ..., z,) €
D™ then 2% + 23+ -+ 22 = ||(v1,22,...,7,)||*> < 150 /1 — 27 — 23 — -+ — 22 is indeed a real number,
and it is easily verified that ||(x1,z2,...,2n,\/1 — 27 — 23 — -+ — 22)|| = 1. Also, h is continuous: to see
this, first consider the corresponding function hy: D™ — R"*! defined by ho(x) = h(x). Each component
of ho is continuous as they only involve squares and square roots, so then by the universal property of
product spaces (on R"™1), hy is continuous. It is clear then that h must also be continuous. Then,
h = psoh is a composition of continuous functions so is also continuous. Also, for all x,y € D™ we have

X~y = x,y € S" and x = +y
= h(x) = (x,0) = £(y,0) = £h(y)
= h(x) = h(y)

where above we abuse notation slightly so as to keep things neater to read: by (x,0) we mean (z1, za, ..., Z,,0),
where x = (21,2, ...,2,), and note also that h(x) = (x, 0) in the second line is a consequence of x € S"~!
(which implies that ||x|| = 1). Anyway, the point is that whenever x ~ y (as elements of D™) we also

have h(x) = h(y), so since h is continuous, by the universal property of the quotient space there must
be a unique continuous map H: D"/~ — S™/~ such that

psoh=h=Hopp.



We'll now prove that H is actually a homeomorphism between D"/~ and S™/~.

Firstly, H surjective since we can write any element in S™/~ as ps((x1,22,...,2Zns+1) for some
(x1,22,...,Znt1) € S™, such that x,1; > 0 (we can assume this by the nature of ~ since if x,11 < 0
then we can multiply the entire element by —1 and leave the equivalence class unchanged), and then we
have

H(pp((z1,22,...,2p))) = ps((x1,22, .., T, \/1 —22 — 22— —122)) = ps((z1, 22, ., Tpy Trt1))

since ||(z1, %2, ..., Zn,Tnt1)] =1 and z,41 > 0.
Secondly, H is injective since for all x,y € D", if H(pp(x)) = H(pp(y)) then

ps((x V1= x]12)) = ps((y, V1= llyl*))

(slight abuse of notation again, but it should be clear what it means) then we have one of the following
scenarios:

o if \/1 —||x]|2 = 0 we must also have /1 — ||y||> = 0 and then x = +y by the definition of ~ for
S™. This all implies ||x||, ||| = 1 and so x,y € S"~1. All of this together implies pp(x) = pp(y)-

e otherwise /1 — [|x]2 > 0, which would then imply /1 — [ly]|> = /1 — [|x]|> > 0 from which we
also conclude x =y, so pp(x) = pp(y) is also true.

So, whenever H(x) = H(y) for some x,y € D"/~ we must also have = y. Hence H is injective.

So now we know that H is a continuous bijection. Also, D™/~ is compact by Corollary L10-4, and
we can also show S™/~ is Hausdorff: for any z,y € S™/~ such that x # y, we can pick x,y € S™ such
that x #y, x # —y and = = pg(x) and y = ps(y). Now, letting ¢ = 3 min{||x — y]|, [x + y||, 1}, which
is strictly positive since x # y and x # —y, we’'ll define the following open sets in S™:

Uy = B(x)NS™, Vi = B.(y)nS", Us = Bc(—x)N S", Vo = B(—y)NnsS"

(where B.(x), B(y), Be(—x), B.(—y) are open balls in R"*!, so the above are indeed open in the subspace
topology S™). From our choice of € it is clear that the four sets are pairwise disjoint, so also U; U Us and
V1 U V4 are disjoint. Now let U = ps(Uy) and V = pg(V1), then clearly

pst(U) = Uy Uy, pst(V)=V1UV,

and then we see that U,V must be open by the definition of the quotient topology (since Uy U Uy and
V1 UV; are unions of open sets so are open), and moreover must be disjoint as their preimages are disjoint.
It is also clear that x = pg(x) € U and y = ps(y) € V, thus 8™/~ is Hausdorff as claimed.

Anyway, the point is that H: D™/~ — 8™/~ is a continuous bijection from a compact space to a
Hausdorff space, so by Lemma L11-6 H is a homeomorphism and so D™/~ 2 S™ /~.

We are now done, but just to summarise everything: we proved S°/~ is a CW-complex, then we
showed that D™/~ can be obtained from S"~!/~ by attaching a single n-cell. Then, we showed S™/~ =2
D"/~ so actually it is possible to obtain S™/~ from S"~!/~ by attaching a single n-cell. By induction,
it then follows that each S™/~, n > 0, is a finite CW-complex. Finally, since RP™ 2 S™/~ (as proved in
the next question), RP™ must also be a finite CW-complex.

Exercise L10-3

Recall that for n > 1, the real projective space is defined to be the quotient space RP" = (R"*1\{0})/ ~
where (ag,ai,...,a,) ~ (bo,b1,...,by,) if there exists A € R\{0} with Aa; = b; for all 0 < i < n. Call the
corresponding quotient map p;: R"*1\{0} — RP".

Consider the quotient space S™/~ where x ~y (x,y € S") if x = —y or x =y (clearly ~ is reflexive,
symmetric and transitive). Call the corresponding quotient map pg: S™ — S™/~.



We claim that S/~ = RP". Indeed, consider the following functions:
f: 8" =R\ {0} given by f(x) =
f: 8" = RP" given by f(x) = p1(f(x))
i.e. f is the inclusion S™ — R™*1\{0}, and f is the composition p; o f. Note that f is well-defined since
S™ CR™ 1 and ||x|| =1 # 0 for all x € S™ so we do have S™ C R"*!\{0}. Now, since f is an inclusion
map it must be continuous (by the definition of subspace topology). Then, since p; is also continuous (by

the definition of quotient space), f = p1 o f must also be continuous as it is the composition of continuous
functions. Moreover, for all x,y € S™ we have

X~y = x=yorx=-y = JA€Rs.t. x= )Xy

(i.e. either A = 1 or A = —1 will do). Then if x ~ y (as elements in S™), there exists A such that
f(x) = x = Ay = Af(y), which implies f(x) ~ f(y) (as elements in R"*1), so that f(x) = p1(f(x)) =
p1(f(y¥)) = f(y) whenever x ~ y. Then (recalling that f is continuous), from the universal property of
quotient spaces, there must exist a unique continuous map F': S/~ — RP" such that

fT:FOpQ.

We claim that F' is a homeomorphism S/~ — RP". We already know F' is continuous, so now it suffices
to show F' has a continuous inverse. To go about constructing this inverse, we’ll consider the following
functions:

g: R"\{0} — s given by g(x) = ﬁ
x
g: R"N\{0} — 5"/~ given by g(x) = p2(g(x)).
Clearly g is well-defined since for all x € R"*1\{0} we have ‘ el = % = 1. Moreover, since ||—|| is

continuous and non-zero in R"*1\ {0}, we see that g must also be continuous. Then, since ps is continuous
(by the definition of quotient space), § = p2 o g must also be continuous as it is the composition of
continuous functions. Also, for all x,y € R**1\{0} we have

x~y = JAeRst. x= Ny

X Ay
— gX) = +—7 = —F—F
%=l ~ T
and either 53 yH =57 =90 or 1555 =~ = —9(¥)- Soif x ~y (as elements in R"+1\{0}) we have
g(x) = g(y) or g(x) = —g(y). Either way, we will have g(x) ~ g(y) (as elements in S™), so that

9(x) = p2(9(x)) = p2(9(y)) = 9(y)

whenever x ~ y. Thus (recalling that g is continuous), from the universal property of quotient spaces
there must exist a unique continuous map G: (R**1\{0})/~ — S™/~ such that

g=Gop.
Now we will show that this G is the inverse of F. Indeed, for all x € R**1\ {0} we have
(FoG)(p1(x)) = (FoGopi)(x)

— (Fopmog)() (since G o1 =7 = p2 o)
= (p1ofog)(x) (since F'opy = f=p10of)
=m(f(g(x)))

= (|§|> (using the definition of f and g)
= p1(x)



since it is clear that x ~ ﬁ (as elements of x € R\ {0}, you'd just take \ = ”—i” in the given

definition of ~), so since p; is the quotient map and hence surjective, we have that (F o G)(z) = x for
all x € (R"™1\{0})/~. Similarly, for all y € S™ we have

(G o F)(pa(y)) = (G o Fopa)(y)

=(Gopiof)y) (since Fopy = f=piof)

= (p20g0 f)y) (since Gop1 =g = paog)

= p2(9(f(¥)))

= po (H;) (using the definition of f and g)
= pa(y) (since y € S™ implies ||y]| = 1).

Then, since py is the quotient map and hence surjective, the above actually shows that (G o F)(y) =y
for all y € S™/~.

Therefore, F' and G are indeed inverses, and since both are continuous we now see that S"/~ =
(R**1\{0})/~ = RP" as we had initially claimed.

Now, Corollary L10-4 tells us S™ is compact, then Lemma L10-1 tells us S™/~ must also be compact.
Finally, since S/~ and RP" are homeomorphic (as we just proved), Exercise L10-1 tells us that since
S™/~ is compact, RP" must also be compact. Or, if T can’t quote the exercise, we can instead use
Proposition L9-3 on F to conclude that F(S™/~) = RP" is compact. (Note that the image of F' is indeed
RP" since F has an inverse, G, so F is a bijection, which must be surjective).

Exercise L12-2

Let f: X1 — Y7 and g: X2 — Y5 be continuous maps. We would like to show that the map
fxg: X1 x Xo = Y1 xYa, given by (z1,22) = (f(21), 9(z2))

is continuous.
From the definition of product spaces, the set B={U x V | U CY; open in Y7, V C Y5 open in Y5}
is a basis for the topology associated with Y7 x Y. So, from Exercise L7-1 part (ii) (see Assignment 1),
to show that f x g is continuous, it suffices to show that (f x g)~(B) is open in X; x X, for all B € B.
Let B € B, then B can be written as U x V for some U C Y7, V C Y5 open. Then

(fxg9)H(B)=(fx9) ' (UxV)
={(z1,m2) € X1 x Xo | (f x g)(w1,22) €U x V'}
={(z1,22) € X1 x Xa [ (f(#1),9(22)) €U x V}
={(z1,72) € X1 X Xo | f(z1) €U, g(x2) € V}
={(z1,22) € Xy x Xo |21 € f7HU), 22 € g~ (V)}
=[HU) x g7 H(V).

Now, since U C Y} is open and f: X; — Y} is continuous, f~1(U) must be open in X;. Similarly, since
V C Y; is open and g: Xo — Y, is continuous, g~*(V) must be open in X. Then, by the definition of
the topology of a product space, f~*(U) x g~*(V) must be open in X; x X. Thus we have shown that
(fxg) " Y(B)=f"1(U) x g1 (V) is open, and since this holds for any B € B, f x g must be continuous
(as explained earlier).

Exercise L12-5

Call the map given in the question ¥, i.e. let ¥: Cts(X,Y) — [[,cy Y be the map given by
U(f) = (f(z))aex-



We want to prove that ¥ is a homeomorphism. Let’s first prove that it is a bijection:

¥ is injective: Suppose f,g € Cts(X,Y) are such that ¥(f) = ¥U(g). We have:

U(f)=¥(9) = (f(2)rex = (9(2))2ex = f(z)=g@)VeeX = f=g

Hence ¥ is injective.

U is surjective: Consider any (as)zex € [[,cx. Consider the function f: X — Y defined by
f(z) =a, Vo € X.

Since X is discrete (i.e. every subset of X is open), it immediately follows that f~1(A) is open for every
open set A C [[,cx Y. Hence f is continuous, so since f € Cts(X,Y) and ¥(f) = (f(2))zex = (az)zex,
we see that ¥ is surjective.

So, since V¥ is injective and surjective, it must be a bijection. We now need to prove that ¥ and W1
are both continuous. To do this, we’ll make use of the following result:

“V identifies S(x,U) with 7 1(U )” More precisely, we will show that for any open subset U C Y

and z € X, that ¥(S(z,U)) = n; ' (U) and (71 (U)) = S(x,U) (where mp: [[,cx Y — Y is the

projection and by S(z, U) we mean S({z},U)). So, given any = € X and open U CY, we have
U(S(z,U)) = ¥({f € Cts(X,Y) | f(z) € U})

= {(az)zeX S H Y | Ay € U}
zeX

={(a:):ex € H Y [ ma((az):ex) € U}

zeX
=, Y (U)

x

and

U (r N (U)) = {f € Cts(X,Y) |
={feCts(X,Y) |
={feCts(X,Y) |
=S(z,U)

(f(2))zex €1 1 (U)}
72 ((f(2))zex) € U}
f(z) e U}

as required.
Now we’ll get onto proving ¥ and ¥ ! are continuous.

U is continuous: By the definition of the product space, a basis B for [], .y Y is given by sets of the
form

I

zeX

where each U, C Y is open. (Note that usually there is the condition that U, # Y for finitely many
2 € X, but since X is finite this is true for any of the products of the above form). Now, from Exercise
L7-1 (ii) (see proof in Assignment 1), to prove that f is continuous it suffices to prove that U=1(B) is
open for each B € B. Each set B € B can be written in the form [], .y U, (where U, C Y is open for



each x € X), so we have

\1171 (H UT) {f € CtS(X7Y) ‘ (f(x))"cEX € H Ur}
reX 2eX

{feCts(X,Y) | f(x) e U, YV € X}
() {f €Cts(X,Y) | f(x) € U}

rzeX

(N {f € Cts(X,Y) | (f(2))zex € 7' (Un)}

reX

— ﬂ T (n N (UL))

zeX

But from what we previously proved, we know that ¥~! (77(U,)) = S(z,U,) which is open (by the
definition of the compact-open space, since {2} is one element and hence compact, while U, was said to
be open earlier), so since ¥~ ([],cx Us) is a finite intersection (since X is finite) of these open sets, it
follows that U—! (HIGX Uw) is open. Thus ¥ is continuous.

U~1 is continuous: To prove this, we’ll make use of part of the result from Exercise L12-3 (iii),
ie. if f: A — B is a function and S is a sub-basis for the topology on B, then f is continuous if
f~Y(U) is open for every U € S. Now, from the definition of the compact-open subspace, the set
{S(K,U) | K C X compact,U C Y open} is a sub-basis for Cts(X,Y), so since ¥ is the inverse of ¥~}
we just need to show that W(S(K,U)) is open whenever K C X is compact and U C Y is open. But,
since X is finite, we can write K = {x1,z2,...,z,} so that

U(S(K,U)) =V({f € Cts(X,Y) | f(z) €U Vo € K})
= {(az)eex € HY|am€UVx€K}

reX

={(aa)zex € [[ Y @z, €U 1<i<n}
reX

ﬂ {(aaf)xeX S H Y | ag; € U}

1<i<n zeX

() Y({feCts(X,Y) | f(z;) €U}

1<i<n

N (S, V)

1<i<n

But from what we’ve previously proved, we know that that W(S(z;,U)) = 7' (U), which is open as it
is the preimage of an open set U under a continuous function m,. So, since ¥(S(K,U)) is the finite
intersection of sets of this form, it follows that W(S(K,U)) is open. Thus ¥~! is continuous as we
discussed.

To conclude, ¥ is a continuous bijection with a continuous inverse, hence it is a homeomorphism.

Lemma for the next two questions

The next two questions both involve proving that some function ¥: A — B, where A and B are topological
spaces, is a homeomorphism onto its image. Suppose @ is a sub-basis for the topology on A. Here we
will show that proving the following is enough to to prove ¥ is a homeomorphism onto its image:

e U is continuous, and



e VU is injective, and
e For all open sets U in Q, ¥(U) is open in Im ¥ (which is given the subspace topology, In ¥ C B).

Indeed, suppose all three of the above conditions are satisfied. We want to show that the function
U’': A — Im W given by U'(x) = ¥(z) for all x € A is a homeomorphism. Now, by the definition of Im ¥
and W', it is clear that ¥’ must be surjective. Moreover, since V¥ is injective, we have, for z,y € A,

V(x)=0'(y) = V() =V(y) = z=y

so U’ is injective. Hence ¥’ is a bijection. It remains to show that both ¥’ and its inverse are continuous.
To show that ¥’ is continuous, let U be any open set of InW. Then U = V NIm ¥ for some open
V' C B, by the definition of the subspace topology. Then

V) =0 M) =NV NIm ) = (V)N (Im W) =0 H(V)nA=0"1V)

which must be open in A since ¥ is continuous and V is open in B. Hence ¥’ is continuous.

Finally, to show that the inverse of ¥’ is continuous, it suffices to show that the images under ¥’ of
all open sets in some sub-basis of A are open in Im ¥. But this is immediate from the third dot point
above (noting that ¥/ (U) = ¥(U) for all subsets U C A). Hence the inverse of ¥’ is continuous.

Hence, ¥’ is a continuous bijection with a continuous inverse, so is a homeomorphism. So, ¥ is a
homeomorphism onto its image, as we wanted to show.

Exercise L12-11

Let X, Y7, Y3 and ¢ be as given in the problem statement. Let U: Cts(X,Y7) — Cts(X, Yz) be the map
given by

U(f)=1rof.

Then, we are required to prove that ¥ is a homeomorphism onto its image. By the lemma in the previous
section, it suffices to show that ¥ is continuous, injective, and sends all open sets in some sub-basis of
Cts(X, Y1) to open sets in the image of W.

First, notice that since ¢: Y1 — Y5 is continuous and X is locally compact Hausdorff, by Lemma 12.1
(iii) ¥ must be continuous. Also, ¥ is injective since if ¥(f) = ¥(g) for some f, g € Cts(X,Y7) then

U(f)=¥(g) = tof=rof = u«(f(x)) =ug(x) Ve e X = f(z)=ygx)VzeX — f=yg

where the second last implication follows from ¢ being injective (¢ is injective since it is an inclusion map).

Finally, note that the set {S(K,U) | K C X compact, U C Y; open} is a sub-basis for the topology
on Cts(X, Y1), so we just need to show that U(S(K,U)) is open whenever K C X is compact and U C Y
is open. So, let K C X be compact and U C Y7 be open, then U = V NY; for some open set V C Y5.
We have

Y(S(K,U))

=Y({f € Cts(X, Y1) | f(K) € U})

={ge€ Cts(X,Y2) | g(K) CU and g € Im ¥}

={geCts(X,Y2) |g(K) CVNY;and g(X) C Yy} (since U =V NYY)

— g€ Cis(X,Y2) | 9(K) C V and g(K) € i and g(X) C Vi)

={g € Cts(X,Y2) | g(K) CV and g(X) C Y1} (9(K) € Y7 redundant since g(X) C Y1)
={g € Cts(X,Y2) | g(K) CV}n{g e Cts(X,Y2) [ g(X) S Y1}

=S(K,V)NIm ¥



and since K C Y7 C Y2 is compact and V' C Y5 is open, S(K, V) is open by the definition of compact-
open topology on Cts(X,Y3). So, S(K,V)NIm ¥ is open in the subspace topology on Im ¥, which means
that U(S(K,U)) is open.

So, U satisfies all three dot points of our lemma from the previous section, so ¥ is a homeomorphism
onto its image.

Exercise L13-2
(i)

Let Y, X, ~ and p be as given in the question. Let ¥: Cts(X/~,Y) — Cts(X,Y) be the map given by

V()= fop.

Then we are required to prove that ¥ is a homeomorphism onto its image. By the lemma we proved
before the previous question, it suffices to show that that ¥ is continuous, injective and maps all open
sets in some sub-basis of Cts(X/~,Y") to open sets of Im ¥ (with the subspace topology).

So now, the question statement already mentions why W is continuous. And to see that U is injective,
suppose f, g € Cts(X/~,Y) are such that ¥(f) = ¥(g). Then

U(f)=¥(g) = fop=gop = [(p(x)) =g(p(z)) Ve eX = f=g

where above we are using the fact that p is surjective (it is a quotient map), so that any element of X/~
can be written in the form p(z) for some x € X. Anyway, this proves that ¥ is injective.

Now, {S(K,U) | K C X/~ compact,U C Y open} a sub-basis for Cts(X/~,Y") by the definition of
compact-open topology, so we just need to show that U(S(K,U)) is open in ¥(X/~) whenever K C X/~
is compact and U C Y is open. We have

U(S(K,U)) =Y({f € Cts(X/~,Y) | f([z]) € U whenever [z] € K})
={g € Cts(X,Y) | (g(z) € U whenever p(z) € K) and g € Im ¥}
={g € Cts(X,Y) | g(x) € U whenever z € p~*(K)} N Im ¥
=S(p YK),U)nIm ¥

Now, since X/~ was said to be Hausdorff and K C X/~ is compact, then by Lemma L11-5 we have that
K must be closed. Then,

pH(E) ={z e X | p(z) € K}

— X\{r € X | plx) ¢ K}

— X\{z € X | pl(x) € Y\K}

= X\(p ' (Y\K))

= (p 1K)
and since K is closed, K¢ must be open, which means p~!(K¢) must be open (since p is continuous)
which means (p~!(K¢))¢ must be closed. So, p~1(K) = (p~1(K¢))¢ is closed and it is a subset of X
which is a compact space. By Exercise L9-5, every closed subspace of a compact space is compact, so
p~L(K) must be compact. Then, recalling that U C Y was open, we have that S(p~1(K),Y) must be
open by the definition of compact-open space on Cts(X,Y). Thus, S(p~1(K),U)NIm ¥ is open in Im ¥,

which shows that ¥(S(K,U)) is open in Im U.
So, U satisfies all three conditions of our lemma, hence it is a homeomorphism onto its image.



(ii)

Let X,Y be topological spaces with X # (§, and let ¥: Y — Cts(X,Y") be the map given by
U(y) =cy

where ¢, € Cts(X,Y) is defined by ¢,(x) =y for all z € X. We will show that ¥ is a homeomorphism
onto its image by showing that ¥ satisfies the three conditions (continuous, injective, maps open sets in
some sub-basis of Y to open sets of Im ¥) of the lemma we used for the previous two problem.

U is continuous: The sets of the form S(K,U) (where K C X compact and U C Y open) form a
sub-basis for Cts(X,Y), so to show ¥ is continuous it suffices to show that ¥=!(S(K,U)) is open in
Y whenever K C X is compact and U C Y is open (Exercise L12-3). Indeed, let K C X be compact
and U C Y be open. If K = () then it is clear that S(K,U) = Cts(X,Y) so that $=1(S(K,U)) =
U~1(Cts(X,Y)) =Y, which is open. Otherwise if K # () and we have

y e UHS(K,U)) < ¥(y) € S(K,U)
< ¢, € S(K,U)
— ¢,(K)CU
— yeU

so that W=1(S(K,U)) = U, and hence it is open. This proves that ¥ is continuous.

U is injective: Suppose y;,y2 € Y such that U(y;) = ¥(y2). Since X # (), pick and fix some zy € X.
Then

\I/(yl) = \I](yQ) = Cy, = Cy, = Cy, (lL’o) = Cy2($0) — Y1 =Y2

and hence WV is injective.

¥ maps open sets of Y to open sets of Im¥: (Firstly, we’ll just remark that Y is a sub-basis for
itself, so if we prove that ¥(U) is open in Im ¥ for all open U C Y, the third dot point of our lemma will
indeed be satisfied.) So now, let U C' Y be open, and fix some o € X (which we can do since X # (),
then we have

Y(U)=1{¥(y) |y U} ={ey [y € U} =ImW¥ N S({zo}, V).

Notice that {x¢} is compact (one point space is compact), and we said earlier that U was open, hence
S({zo},U) is open by the definition of compact-open space for Cts(X,Y). Then, Im¥ N S({zo},U) is
open in Im ¥ by the definition of subspace topology for In¥ C Cts(X,Y). Hence ¥(U) is open, as
required.

Summary: We can now apply our lemma to conclude that ¥ is a homeomorphism onto its image. So
we have proved that the map given in the question is continuous and a homeomorphism onto its image
(even if X is not locally compact Hausdorfl).
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