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Exercise L9-7

Let (X, d) be a metric space and K ⊆ X a nonempty compact subset and x ∈ X\K. Set

λx := inf{d(k, x)|k ∈ K}

Prove that there exists ko ∈ K with

d(k0, x) = λx

Answer

For any fixed y, let δ : X → R, x 7→ d(y, x). Let R 3 U = Bε(d(x, y)) ∈ R. Let
V = Bε(x) ∈ X. Then for v ∈ V we have

δ(v) < δ(x) + ε

δ(x) < δ(v) + ε

=⇒ δ(x)− ε < δ(v) < δ(x) + ε

v ∈ V ⊆ δ−1(U)

and so by Lemma L6-4, δ is a continuous function. Now, restricting δ to K, by Corollary
9.4, since K is compact, there exists k0, d ∈ K such that δ(k0) ≤ δ(k) ≤ δ(d) ∀ k ∈ K =⇒
δ(k0) = d(k0, x) = λx

Exercise L11-9

Prove that any compact Hausdorff space is normal (Hint: We use the proof of Lemma 11-5)

Answer

Given a compact Hausdorff space X take any two closed sets say K,L. Given l ∈ L choose
for each k ∈ K a pair of disjoint open sets Uk, Vk with k ∈ Uk and l ∈ Vk. The {Uk}k∈K
cover K, and since it is compact, finitely many, say {Uk1 , . . . , Ukn} will do.

So for every l ∈ L we have a pair of dijoint open sets Ul = Uk1 ∪ · · · ∪ Ukn and Vl =
Vk1 ∩ · · · ∩ Vkn , which is open since it is a finite intersection of open sets. Clearly K ⊂ Ul
for all l, and the {Vl}l∈L covers L. Since it is compact, finitely many, say {Vl1 , . . . , Vln} will
do. Consider the open sets V = Vl1 ∪ · · · ∪ Vln , and U = Ul1 ∩ · · · ∩Uln . K ⊂ U and L ⊂ V .
But U ∩ V = ∅ by construction. Therefore X is normal.
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Exercise L12-3

(i) Prove that if {Ti}i∈I is a collection of topologies on a single set X that
⋂
i∈I Ti is a

topology on X.

(ii) With the above notation, prove that U ∈ 〈S〉 if and only if U can be written as a
union of sets, each of which is a finite intersection of elements of S

(iii) If f : X → Y is a function and S is a sub-basis for the topology on Y, then f is
continuous iff. f−1(U) ⊆ X is open for every U ∈ S.

Answer

(i) Let T =
⋂
i∈I Ti. X, ∅ ∈ Ti by definition of a topology, so X, ∅ ∈

⋂
i∈I Ti.

For the second condition, take any two U, V ∈ T . U, V are in all Ti, so U ∩ V ∈ Ti,
and hence in T
For the final condition, take {Ui}i∈I where I is some indexed with Vi ∈ T , for all
i ∈ I. Vi ∈ Ti for all Ti, so

⋃
i∈I Vi ∈ Ti for all Ti, and hence must be in T

(ii) For ⇐= . Given that S ⊆ 〈S〉, all finite intersections of elements of S must be in T
by definition. All unions of such sets must also be in 〈S〉 by definition.

For =⇒ , consider β = {finite intersections of elements of S}. We show this is a basis.
For all x ∈ X, there exists B ∈ β such that x ∈ B since X ∈ β (as the intersection
of no elements). Given B1, B2 ∈ β, B3 = B1 ∩ B2 ∈ β, since the intersection of two
finite intersections is itself a finite intersection, so B3 ∈ β. Therefore if x ∈ B1 ∩ B2,
x ∈ B3 ⊆ B1 ∩B2. By Lemma L7-1, β is a basis, which generates a topology Tβ.

By definition 〈S〉 ⊆ Tβ. All elements of Tβ are unions of sets in β which are in turn
finite intersections of elements of S. Therefore for U to be in 〈S〉, it must be a union
of sets, each of which a finite intersection of elements of S.

(iii) For =⇒ if f is continuous, since U ∈ S ∈ T , and is open, so by definition of
continuity f−1(U) ⊆ X must be open.

For ⇐= , take an arbitrary open set V ∈ X. V is the union of sets, each of which a
finite intersection of elements of S.

Consider f−1(U1 ∩ · · · ∩Un) = f−1(U1)∩ · · · ∩ f−1(Un), Ui ∈ S. The intersection of a
finite number of open sets is open. Also given Ai of the form just described, we have
f−1(A1 ∪A2 ∪ . . . ) = f−1(A1)∪ f−1(A2)∪ . . . , and we just showed that any f−1(Ai)
is open, so the union of such sets must also be open.

By the previous question, all open sets in 〈S〉 are of the form described above, so f
must be continuous.
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Exercise L12-12

The map R+ → (0, 1), x 7→ tanh(x) is a homeomorphism, and composing with (0, 1) ↪→
[0, 1] → [0, 1]/ ∼= S1 embeds Y = R as a subspace of S1 with complement a point. With
X = (0, 1) and f : X → Y given by f(x) = 1

x sketch the closed subset of X× Ỹ = (0, 1)×S1

associated to f by (?).

Answer

To start off, we can easily graph f , since Y = R+

Now for the transformation from Y to Ỹ , we first send Y → (0, 1) by x 7→ tanh(x). In
other words we have X → (0, 1), x 7→ tanh( 1x). This is graphed below:
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We now just have to send (0, 1) ↪→ [0, 1] → [0, 1]/ ∼= S1. This is defined by the
equivalence relation 0 ∼ 1. Graphically representing this, we can take y = 0 and y = 1 and
glue them together as such:

The solid black line is where the gluing has occurred, and going from [0,1] along the ’x’
axis. Credit to my housemate Joshua McKinley for using his architecture program to help
me render the final cylinder. Note the end points on the graph are open.

Exercise L13-10

Suppose X is compact and Y is metrisable, with d1Y , d2Y being Lipschitz equivalent metrics
inducing the topology. Prove that the two associated metrics d1∞, d2∞, do on Cts(X,Y ) are
also Lipschitz equivalent

Answer

Let d1Y = d1, and d2Y = d2. There exists some h, k > 0 such that for any x, y ∈ Y ,

hd2(x, y) ≤ d1(x, y) ≤ kd2(x, y)

So therefore, for f, g : X → Y ,

hd2(f(x), g(x)) ≤d1(f(x), g(x)) ≤ kd2(f(x), g(x)) ∀x ∈ X
=⇒ sup{hd2(f(x), g(x))|x ∈ X} ≤ sup{d1(f(x), g(x))|x ∈ X} ≤ sup{kd2(f(x), g(x))|x ∈ X}
=⇒ h sup{d2(f(x), g(x))|x ∈ X} ≤ sup{d1(f(x), g(x))|x ∈ X} ≤ k sup{d2(f(x), g(x))|x ∈ X}

=⇒ hd2∞(f, g) ≤d1∞(f, g) ≤ kd2∞(f, g)

Therefore d1∞, d2∞ are Lipschitz equivalent.
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