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Notation and conventions

The set N is the set of positive integers {1, 2, 3, . . . }.

The set N0 is the set of nonnegative integers {0, 1, 2, . . . }.
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Question 1

Exercise L5-7. Determine the hyperbolic angle θ such that the Lorentz boost F from p. 13 is a hyperbolic
rotation Hθ. That is, given 0 6 r < c and γ = (1− r2)−1/2, solve (here we set c = 1)[

cosh θ sinh θ
sinh θ cosh θ

]
=
[
γ γr
γr γ

]
,

for θ. This shows that the geometry that we have extracted from Einstein’s postulates is precisely hyberbolic
geometry (at least in the (t, x) plane).

cosh θ = γ = 1√
1− r2

eθ + e−θ = 2√
1− r2

e2θ − 2√
1− r2

eθ + 1 = 0(
eθ − 1√

1− r2

)2
+ 1− 1

1− r2 = 0(
eθ − 1√

1− r2

)2
= r2

1− r2

eθ − 1√
1− r2

∈
{

r√
1− r2

,
−r√
1− r2

}
eθ ∈

{ 1 + r√
1− r2

,
1− r√
1− r2

}
Now

1− r√
1− r2

= 1− r√
1− r

√
1 + r

=
√

1− r
1 + r

< 1,

while
1 + r√
1− r2

=
√

1 + r

1− r > 1.

Since sinh θ = γr = r(1− r2)−1/2 > 0, we know that θ > 0 and eθ > 1. Hence

eθ =
√

1 + r

1− r ⇐⇒ θ = 1
2 log

(1 + r

1− r

)
.

Thus the only possible solution is given by θ = 1/2 log((1 + r)/(1− r)). Check that this is in fact a solution:

cosh θ = eθ + e−θ

2 = 1
2

(√
1 + r

1− r +
√

1− r
1 + r

)

= 2
2
√

1− r2
= 1√

1− r2
= γ.

sinh θ = eθ − e−θ

2 = 1
2

(√
1 + r

1− r −
√

1− r
1 + r

)

= 2r
2
√

1− r2
= r√

1− r2
= γr.
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Question 2

Exercise L6-3. Prove that X = {0, 1} with T = {∅, X, {1}} is a topological space. This is called the
Sierpiński space and is usually denoted Σ. Prove Σ is not metrisable.

Begin by showing T is a topology on X.

By inspection ∅ ∈ T and X ∈ T .

Suppose V1, V2 ∈ T . We wish to check that V1 ∩ V2 ∈ T . We may assume V1 and V2 are distinct, since if
V1 = V2 we have V1 ∩ V2 = V1 ∈ T . Furthermore, if either of V1 or V2 is ∅ ∈ T then V1 ∩ V2 = ∅ ∈ T . Thus
assume V1 and V2 are distinct and that neither is ∅ ∈ T . Then it is only possible to have V1 = {1} and
V2 = X or V1 = X and V2 = {1}. In both of these cases V1 ∩ V2 = {1} ∈ T .

Let U ⊆ T be arbitrary. We wish to check that
⋃
U ∈ T . If U is empty then

⋃
U = ∅ ∈ T . If X ∈ U then⋃

U = X ∈ T . Thus assume U is nonempty and X /∈ U .

U = {∅} =⇒
⋃
U = ∅ ∈ T .

U = {{1}} =⇒
⋃
U = {1} ∈ T .

U = {∅, {1}} =⇒
⋃
U = {1} ∈ T .

This shows that T = {∅, X, {1}} is a topology on X = {0, 1}.

To show that the space Σ is not metrisable, we will assume the existence of a metric d : X ×X R inducing
T as the topology on X and then reach a contradiction. Let ε := d(0, 1). Since 0 6= 1, we know that ε > 0.
Consider the open ball

B := {y ∈ X | d(0, y) < ε/2}

centred at 0. We know that 0 ∈ B and 1 /∈ B. Since the metric d induces the topology T , the set B must be
in T . However, no set in T contains 0 while not containing 1, so B /∈ T . We have reached a contradiction,
so indeed the space Σ is not metrisable.
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Question 3

Lemma L7-1. Let X be a set and B a collection of subsets of X satisfying

(B1) For each x ∈ X there exists B ∈ B with x ∈ B.

(B2) Given B1, B2 ∈ B and x ∈ B1 ∩B2 there exists B3 ∈ B with x ∈ B3 ⊆ B1 ∩B2.

Then there is a unique topology T on X for which B is a basis. We call T the topology generated by B.

Definition. Let {Xi}i∈I be an indexed family of topological spaces. The product space
∏
i∈I Xi is the

usual product set with the topology generated by the basis consisting of sets∏
i∈I

Ui = {(xi)i | xi ∈ Ui for all i}

where each Ui ⊆ Xi is open and Ui 6= Xi for only finitely many i ∈ I.

Exercise L7-2. Prove that the
∏
i Ui as defined above satisfy (B1), (B2), so that the topology on

∏
i∈I Xi

is well-defined.

If we take Ui = Xi for every i ∈ I, then we see that the set
∏
i∈I Ui =

∏
i∈I Xi is in the basis. In this case

Ui 6= Xi for no i ∈ I at all, but nevertheless this is still finitely many i ∈ I. This shows that (B1) is satisfied:
For each x ∈

∏
i∈I Xi we may choose the set

∏
i∈I Xi in the basis, and we see that

∏
i∈I Xi is a set in the

basis containing x.

Next we show (B2). For every i ∈ I let Ui and Vi be open sets in Xi such that Ui 6= Xi for only finitely
many i ∈ I and Vi 6= Xi for only finitely many i ∈ I. Suppose x = (xi)i∈I ∈ (

∏
i=I Ui)∩ (

∏
i∈I Vi). We wish

to produce a set in the basis which contains x and is contained in (
∏
i=I Ui) ∩ (

∏
i∈I Vi). Observe that(∏

i=I
Ui

)
∩
(∏
i∈I

Vi

)
=
∏
i=I

(Ui ∩ Vi).

We claim that
∏
i=I(Ui ∩ Vi) is a set in the basis. We can see that Ui ∩ Vi ⊆ Xi is open for each i ∈ I (since

Ui and Vi are both open), so it suffices to show that Ui ∩ Vi 6= Xi for finitely many i ∈ I.

Now Ui ∩ Vi 6= Xi if and only if at least one of Ui and Vi is not Xi. Alternatively, Ui ∩ Vi = Xi if and only
if Ui = Vi = Xi. Let S := {i ∈ I | Ui 6= Xi} and T := {i ∈ I | Vi 6= Xi}. We know that S and T are finite
subsets of I. From the discussion above, we know that

{i ∈ I | Ui ∩ Vi 6= Xi} = S ∪ T ,

and S ∪ T is a finite subset of I since each of S and T is a finite subset of I. Hence Ui ∩ Vi 6= Xi for finitely
many i ∈ I.

This shows that (∏
i=I

Ui

)
∩
(∏
i∈I

Vi

)
=
∏
i=I

(Ui ∩ Vi)

is a set in the basis. Now observe that we have

x ∈
∏
i=I

(Ui ∩ Vi) ⊆
(∏
i=I

Ui

)
∩
(∏
i∈I

Vi

)
.

We have thus produced a set in the basis which contains x and is contained in (
∏
i=I Ui) ∩ (

∏
i∈I Vi). (Of

course, we actually know that the set in the basis is precisely equal to (
∏
i=I Ui) ∩ (

∏
i∈I Vi).) Hence (B2)

is satisfied also.
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Question 4

Exercise L7-10. Let us write {∗0, ∗1} := {∗} t {∗} and f : {∗0, ∗1} [0, 1] for the inclusion of the
endpoints f(∗0) = 0, f(∗1) = 1. We may form the pushout

{∗} t {∗} {∗}

[0, 1] P := [0, 1] t{∗0,∗1} {∗}.

Prove that P ∼= S1.

Consider the following diagram. We will prove that a continuous map h : P S1 exists such that the
diagram commutes and then show that h is bijective and open. This will be sufficient to show that P ∼= S1.

{∗} t {∗} {∗}

P

[0, 1] S1.

g

f

ι2

v

∃!h

u

ι1

Here, f , g, ι1, and ι2 are the maps in the original commutative diagram, while u : [0, 1] S1 and v : {∗} S1

are given by

u(t) := (cos(2πt), sin(2πt)), ∀t ∈ [0, 1]
v(∗) := (1, 0).

Let T := (1, 0) ∈ S1, and let X := [0, 1] t {∗}. Note that P is a quotient space of X.

Such a map h : P S1 exists and is continuous

We will use the universal property of the pushout to induce h.

We claim that u and v are continuous. That v is continuous can be seen because the preimage of any subset
of S1 (but open subsets in particular) under v is either {∗} or ∅, both of which are open.

We now argue that u is continuous: Recall that a basis for the topology on S1 is the set of arcs along the
circle connecting two distinct points on the circle but excluding those two endpoints. (We will call such arcs
open arcs.) We need only check that the preimage under u of an open arc is an open subset of [0, 1].

Let ω1 and ω2 be distinct points of S1. Let θ1 and θ2 be the directed and counterclockwise angles subtended
at the origin from T to ω1 and ω2 respectively. That is,

ω1 = (cos θ1, sin θ1), ω2 = (cos θ2, sin θ2), and θ1, θ2 ∈ [0, 2π).

Without loss of generality, assume that θ1 < θ2. There are two open arcs with endpoints ω1 and ω2:
one beginning at ω1 and traversed counterclockwise to ω2 and another beginning at ω2 and traversed
counterclockwise to ω1. The first (counterclockwise from ω1) is

{(cos θ, sin θ) | θ1 < θ < θ2} ⊆ S1,
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4. the preimage of which under u is (θ1/(2π), θ2/(2π)), which is an open subset of (0, 1). The second (coun-
terclockwise from ω2) is

{(cos θ, sin θ) | θ ∈ [0, θ1) ∪ (θ2, 2π)} ⊆ S1,

the preimage of which under u is [0, θ1/(2π)) ∪ (θ2/(2π), 1], which is an open subset of (0, 1). Since ω1 and
ω2 were arbitrary distinct points of S1, we have shown that u is continuous.

T

ω1

ω2

θ1

θ2

Next, observe that u ◦ f = v ◦ g as maps from {∗} t {∗} to S1.

u(f(∗0)) = u(0) = T

v(g(∗0)) = v(∗) = T

= u(f(∗0)).

u(f(∗1)) = u(1) = T

v(g(∗1)) = v(∗) = T

= u(f(∗1)).

Since u ◦ f = v ◦ g, by the universal property of the pushout
there exists a continuous map h : P S1 such that

u = h ◦ ι1 and v = h ◦ ι2.

These equalities in fact specify h completely: It must be that

h([t]) = (cos(2πt), sin(2πt)) ∀0 < t < 1 and h([0]) = h([1]) = h([∗]) = T .

(We use [ · ] to denote the equivalence class in P of an element
from X = [0, 1]t{∗}.) Let us note that the equivalence classes
comprising P induce the following partition of X:

{{0, 1} t {∗}} ∪ {{t} | 0 < t < 1}.

h : P S1 is bijective

Observe that
h([s]) 6= h([t]) if 0 < s < t < 1 and h([t]) 6= T = h([0]) if 0 < t < 1

so we can see that h is injective. Furthermore, h is surjective since

S1 = {(cos(2πt), sin(2πt)) | 0 6 t < 1} and (cos(2πt), sin(2πt)) = h([t]) ∀0 6 t < 1.

Thus h is a bijection.

h : P S1 is open

Since h : P S1 is a continuous bijection, in order to show that P ∼= S1, it is sufficient to show that h is
an open map. Let q : X P be the quotient map.

Take an arbitrary open set U ⊆ P , and take an arbitrary point ω ∈ h(U) ⊆ S1. We will show that h(U)
contains an open neighbourhood of ω.

If ω = T then it must be that [∗] ∈ U , since h−1({T}) = {[∗]}, and, since [∗] ∈ U , it must be that
{0, 1} t {∗} ⊆ q−1(U). Now, by the definition of the quotient topology, since U ⊆ P is open, q−1(U) must
be an open subset of X = [0, 1] t {∗}. Now q−1(U) ⊆ X is an open set containing {0, 1} t {∗}, so it must
contain open neighbourhoods in X of each of 0, 1, and ∗. Hence for some a, b ∈ (0, 1) we must have

([0, a) ∪ (b, 1]) t {∗} ⊆ q−1(U)
=⇒ q((0, a)) ∪ q((b, 1)) ∪ {[∗]} ⊆ q(q−1(U)) ⊆ U
=⇒ h(q((0, a))) ∪ h(q((b, 1))) ∪ {T} ⊆ h(U).
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4. Without loss of generality we may assume that a < b. Then h(q((0, a))) ∪ h(q((b, 1))) ∪ {T} is an open arc
traversed counterclockwise from

(cos(2πb), sin(2πb)) to (cos(2πa), sin(2πa)).

In particular T = ω is a point on the arc. Thus, in the case where ω = T , we have produced an open arc
contained in h(U) which contains ω.

2πa
2πb

h(q((0, a))) ∪ h(q((b, 1))) ∪ {T}

ω = T

If ω 6= T then ω = h([t]) for some 0 < t < 1. This
is because

h−1(S1\{T}) = P\{[∗]} and q−1(P\{[∗]}) = (0, 1).

Since ω = h([t]) and the restriction of the maps q
and h in

(0, 1)︸ ︷︷ ︸
⊆X

P \ {[∗]} S1 \ {T}q h

are injective, it must be that [t] ∈ U and t ∈ q−1(U).
Now, by the definition of the quotient topology the
set q−1(U) ⊆ X is open, so if t ∈ q−1(U) then for
some open subinterval (a, b) ⊆ (0, 1) we have

t ∈ (a, b) ⊆ q−1(U)
=⇒ [t] = q(t) ∈ q((a, b)) ⊆ q(q−1(U)) ⊆ U
=⇒ ω = h([t]) ∈ h(q((a, b))) ⊆ h(U).

At this point we note that h(q((a, b))) is an open
arc traversed counterclockwise from (cos(2πa), sin(2πa)) to (cos(2πb), sin(2πb)). Thus, in the case where
ω 6= T , we have produced an open arc contained in h(U) which contains ω.

In the case where ω = T as well as in the case where ω 6= T , we have produced an open arc contained in
h(U) which contains ω ∈ U . Since ω ∈ h(U) was arbitrary, we have shown that h(U) ⊆ S1 is open, and
since U ⊆ P was an arbitrary open set, we have shown that h : P S1 is an open map.

Conclusion

Altogether we have shown that there exists a continuous map h : P S1 which is bijective and open. It
follows that P ∼= S1.
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Question 5

Exercise L7-12.

(a) Prove (a, b) is homeomorphic to R for any a < b.

(b) Prove Π ∼= S1 × S1.

5(a) Firstly, every open bounded interval (a, b) is homeomorphic to the open interval (−π/2, π/2): Take the map

g : (a, b) (−π/2, π/2)

t −π2 + t− a
b− a

π.

The map g is continuous since it is polynomial. It has an inverse

g−1 : (−π/2, π/2) (a, b)

t a+ t+ π/2
π

(b− a)

which is continuous since it is also polynomial. This shows that (a, b) ∼= (−π/2, π/2) if a < b.

To show that (a, b) ∼= R for all a, b ∈ R where a < b it now suffices to show that (−π/2, π/2) ∼= R. To show
this homeomorphism, define the map

f : (−π/2, π/2) R

x tan(x).

That is, let f be the restriction of tan(−) to (−π/2, π/2). Since tan(−) is continuous, the map f is also
continuous. Moreover, the range of f is R, and f is strictly increasing, so f is a bijection. Finally, since f is
strictly increasing and continuous, the image under f of any open interval (s, t) ⊆ (−π/2, π/2) is an open
interval (tan(s), tan(t)) ⊆ R. Thus f : (−π/2, π/2) R is a continuous and open bijection, and it follows
that (−π/2, π/2) ∼= R.

(b) Recall that the torus Π is defined as follows: Let C := S1 × [0, 1] be the cylinder, and define the functions
f : S1 C and g : S1 C by

f(x) := (x, 0) ∀x ∈ S1

g(x) := (x, 1) ∀x ∈ S1.

We define ∼ to be the equivalence relation on C generated by {(f(x), g(x)) | x ∈ S1}. Then the torus Π is
defined as Π := C/∼.

We proceed as follows.

(i) Produce a continuous map h : C S1 × S1 using the universal property of the product.

(ii) Produce a continuous map p : Π S1 × S1 induced by h using the universal property of the quotient
space.

(iii) Prove that p is bijective and open.

Producing continuous h : C S1 × S1

Define the function u : [0, 1] S1 by

u(t) := (cos(2πt), sin(2πt)) ∀t ∈ [0, 1].
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5(b) As shown in Exercise L7-10 (Question 4), the map u is continuous. Define a function h : C S1 × S1 by

h(x, t) := (x, u(t)) ∀x ∈ S1 ∀t ∈ [0, 1].

We use the universal property of the product to show that h is continuous. Observe that

(i) The map (x, t) x, which is h projected to the first coordinate, is continuous: The inverse image of
an open set U ⊆ S1 is U × [0, 1], which is an open set in C.

(ii) The map (x, t) u(t), which is h projected to the second coordinate, is continuous: The inverse
image of an open set V ⊆ S1 is S1 × u−1(V ). Since u : [0, 1] S1 is continuous, u−1(V ) is open in
[0, 1] and S1 × u−1(V ) is open in C.

It follows by the universal property of the product that the map h : C S1 × S1 is continuous.

Producing continuous p : Π S1 × S1

Our next step is to produce p : Π S1 × S1 from h using the universal property of the quotient space. Let
q : C Π be the quotient map.

C Π

S1 × S1

q

h
∃!p

We wish to check that h(x1, t1) = h(x2, t2) whenever (x1, t1) and (x2, t2) are elements of C where (x1, t1) ∼
(x2, t2), with ∼ as defined before. Since ∼ was the equivalence relation on C generated by {(f(x), g(x)) | x ∈
S1}, it suffices to check that h(f(x)) = h(g(x)) for every x ∈ S1. Observe that

h(f(x)) = h(x, 1) = (x, u(1)) = (x, u(0)) = h(g(x)) ∀x ∈ S1,

where we have used the fact that u(1) = (1, 0) = u(0) in S1. Thus h(x1, t1) = h(x2, t2) whenever (x1, t1)
and (x2, t2) are elements of C equivalent under ∼. Invoking the universal property of the quotient space,
there exists a unique continuous map p : Π S1 × S1 satisfying h = p ◦ q as maps from C to S1 × S1.

p : Π S1 × S1 is bijective

We now turn to showing that the induced map p is bijective. Since h : C S1 × S1 is surjective and
h = p ◦ q, the map p : Π S1 × S1 must also be surjective. Next we show that p is injective. Since the
quotient map q : C Π is surjective, in order to show that p is injective it is sufficient to show that the
following holds:

∀(x1, t1), (x2, t2) ∈ C
(
p(q(x1, t1)) = p(q(x2, t2)) =⇒ q(x1, t1) = q(x2, t2)

)
.

Since h = p ◦ q, this is equivalent to

∀(x1, t1), (x2, t2) ∈ C
(
h(x1, t1) = h(x2, t2) =⇒ q(x1, t1) = q(x2, t2)

)
.

Now, h projected to the first coordinate is the map (x, t) x, so if h(x1, t1) = h(x2, t2) then x1 = x2.
Hence to show injectivity of p it is sufficient to show that

∀x ∈ S1 ∀t1, t2 ∈ [0, 1]
(
h(x, t1) = h(x, t2) =⇒ q(x, t1) = q(x, t2)

)
.

Let x ∈ S1 and t1, t2 ∈ [0, 1] be arbitrary. Since h(x, t1) = (x, u(t1)) and h(x, t2) = (x, u(t2)), if h(x, t1) =
h(x, t2) then u(t1) = u(t2). Recalling that u(s) = (cos(2πs), sin(2πs)) for every s ∈ [0, 1], if u(t1) = u(t2)
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5(b) then t1 = t2 or {t1, t2} = {0, 1}. If t1 = t2 then q(x, t1) = q(x, t2). If {t1, t2} = {0, 1} then {(x, t1), (x, t2)} =
{f(x), g(x)}. That is, if {t1, t2} = {0, 1} then (x, t1) ∼ (x, t2) and thus by definition q(x, t1) = q(x, t2). This
establishes injectivity of p. Altogether, we have shown that p is injective and surjective, so p is bijective.

p : Π S1 × S1 is open

The last step is to show that p is open. Take an arbitrary open set U ⊆ Π, and take an arbitrary point
(x, t) ∈ q−1(U). We will show that p(U) contains an open neighbourhood of (p ◦ q)(x, t). Since (x, t) was an
arbitrary point in q−1(U) and U = q(q−1(U)), this will be sufficient to show that p(U) is open. Note that
U = q(q−1(U)) is a consequence of q being surjective.

If t ∈ {0, 1} then since q−1(U) ⊆ C is saturated with respect to ∼ we must have that both (x, 0) and (x, 1)
are points in q−1(U). Since q−1(U) ⊆ C is open there must exist some open neighbourhood A ⊆ S1 of x
and a, b ∈ (0, 1) such that

(x, t) ∈ A× ([0, a) ∪ (b, 1]) ⊆ q−1(U).

We will assume that a < b, and there is no loss of generality in doing so.

(x, t) ∈ A× ([0, a) ∪ (b, 1]) ⊆ q−1(U)
=⇒ (p ◦ q)(x, t) ∈ (p ◦ q)(A× ([0, a) ∪ (b, 1])) ⊆ q(q−1(U)) = p(U)

Define the point T := (1, 0) ∈ S1. Recalling that h(w, s) = (w, u(s)) for every (w, s) ∈ C = S1 × [0, 1], we
have

(p ◦ q)(A× ([0, a) ∪ (b, 1]))
= (p ◦ q)(A× {0, 1}) ∪ (p ◦ q)(A× (0, a)) ∪ (p ◦ q)(A× (b, 1))
= h(A× {0, 1}) ∪ h(A× (0, a)) ∪ h(A× (b, 1))
= (A× {T}) ∪ (A× u((0, a))) ∪ (A× u((b, 1)))
= A× (u((b, 1)) ∪ {T} ∪ u((0, a))).

Since a < b, the set u((b, 1))∪ {T} ∪ u((0, a)) ⊆ S1 is an open arc, and since A ⊆ S1 is open, it follows that

A× (u((b, 1)) ∪ {T} ∪ u((0, a))) ⊆ S1 × S1

is an open set. Thus if t ∈ {0, 1} then we have identified an open neighbourhood of (p ◦ q)(x, t) in p(U).

If 0 < t < 1 then since q−1(U) ⊆ C is open there must exist some open neighbourhood A ⊆ S1 of x and a
subinterval (a, b) ⊆ (0, 1) such that

(x, t) ∈ A× (a, b) ⊆ q−1(U)
=⇒ (p ◦ q)(x, t) ∈ (p ◦ q)(A× (a, b)) ⊆ (p ◦ q)(q−1(U)) = p(U).

Now (p ◦ q)(A × (a, b)) = h(A × (a, b)) = A × u((a, b)). As A ⊆ S1 is open and u((a, b)) ⊆ S1 is an open
arc, it follows that A × u((a, b)) ⊆ S1 × S1 is open. Thus if 0 < t < 1 then we have identified an open
neighbourhood of (p ◦ q)(x, t) in p(U).

In the case where t ∈ {0, 1} as well as the case where 0 < t < 1, we have shown that (p ◦ q)(x, t) has an
open neighbourhood contained in p(U). Since (x, t) was an arbitrary point in q−1(U), this shows that p(U)
is open, and since U ⊆ Π was an arbitrary open set, we have shown that p : Π S1 × S1 is open.

Conclusion

We have produced a map p : Π S1 × S1 which is continuous, bijective, and open. It follows that Π ∼=
S1 × S1.

Q5(b) Page 9 of 16
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Question 6

Exercise L7-19. Write Dn/Sn−1 for the quotient space Dn/∼ where ∼ is the smallest equivalence
relation with x ∼ y for all x, y ∈ Sn−1 ⊆ Dn.

(a) Prove D2/S1 ∼= S2.

(b) Prove Dn/Sn−1 ∼= Sn for n > 2.

(c) Prove Sn is a finite CW-complex by attaching a single n-cell to a single 0-cell (i.e. all intermediate
stages have Λ empty).

Note. For this exercise only, you may use that a continuous bijection from a compact space to a Hausdorff
space is a homeomorphism.

By Corollary L10-4, for every n ∈ N, the n-disk Dn ⊆ Rn and the n-sphere Sn ⊆ Rn+1 are compact. By
Lemma L10-1, quotient spaces of compact topological spaces are compact, so Dn/Sn−1 is compact for every
n ∈ N.

6(a) This is a special case of the next part. The argument provided there holds in full generality for integers
n > 2.

(b) Fix an integer n > 2. We will define a continuous map f : Dn Sn which sends an (n− 1)-sphere (centred
at the origin) of radius r ∈ [0, 1] to the intersection of a hyperplane in Rn+1 and Sn. Our definition of f
will be such that the image of Sn−1 under f is a single point in Sn. We will then use the universal property
of the quotient space to induce a continuous map p : Dn/Sn−1 Sn, and we will show that p is bijective.
Finally, we will use the result that a continuous bijection from a compact space to a Hausdorff space is a
homeomorphism to conclude that Dn/Sn−1 ∼= Sn.

Define f : Dn Sn by

f : Dn Sn

a
(
a sin(π‖a‖)
‖a‖ , cos(π‖a‖)

)
0 (0, 1) ∈ Rn+1,

where the 0 in (0, 1) represents the first n coordinates of f(0) all being 0. On Dn \ {0}, we have

f(a1, a2, . . . , an) =
(
a1
‖a‖

sin(π‖a‖), a2
‖a‖

sin(π‖a‖), . . . , an
‖a‖

sin(π‖a‖), cos(π‖a‖)
)
∀a ∈ Dn \ {0}.

Note that our separate specification of f(0) makes f continuous at 0 ∈ Dn — we will use this fact when we
show that f is continuous. Let us verify that the map is well-defined: Since ‖(0, 1)‖ = 1, we see that f(0)
is in Sn. We also have∥∥∥∥(a sin(π‖a‖)

‖a‖
, cos(π‖a‖)

)∥∥∥∥ =

√∥∥∥∥a sin(π‖a‖)
‖a‖

∥∥∥∥2
+ cos2(π‖a‖)

=
√

sin2(π‖a‖) + cos2(π‖a‖) = 1.

Thus the image of every point in Dn under f is indeed in Sn. Let us validate our previous description of f

6–6(b) Page 10 of 16

Daniel Murfet
(5 marks)



MAST30026 Metric and Hilbert Spaces Assignment 2 Solutions

6(b) as sending (n− 1)-spheres to (n− 1)-spheres: If r ∈ [0, 1] then

f(rSn−1) = {f(rb) | b ∈ Sn−1}

=
{(

rb1
‖rb‖

sin(π‖rb‖), rb2
‖rb‖

sin(π‖rb‖), . . . , rbn
‖rb‖

sin(π‖rb‖), cos(π‖rb‖)
) ∣∣∣∣ b ∈ Sn−1

}
= {(b1 sin(πr), b2 sin(πr), . . . , bn sin(πr), cos(πr)) | b ∈ Sn−1}
= {(sin(πr)b, cos(πr)) | b ∈ Sn−1},

which is an (n− 1)-sphere contained in Sn ⊆ Rn+1 with radius sin(πr) and centre (0, cos(πr)) ∈ Rn+1.

f : Dn Sn is continuous

We now show that f is continuous. By the universal property of the product, in order to show that f is
continuous, it is equivalent to check that each of the following maps is continuous:

(πi ◦ f)(a) = ai
‖a‖

sin(π‖a‖), i ∈ {1, 2, . . . , n}.

(πn+1 ◦ f)(a) = cos(π‖a‖).

We will adopt the convention that the map from R>0 to R given by t sin(πt)/t takes 0 to π. As a
consequence, t sin(πt)/t will be continuous on all of R>0.

First note that the map a ‖a‖ is continuous: If x,y ∈ Rn and ε > 0 then

‖y − x‖ < ε =⇒ ‖x‖+ ‖y − x‖ < ‖x‖+ ε

=⇒ ‖y‖ < ‖x‖+ ε by the triangle inequality.
‖y − x‖ < ε =⇒ ‖y‖+ ‖x− y‖ < ‖y‖+ ε

=⇒ ‖x‖ < ‖y‖+ ε by the triangle inequality.

That is, if y ∈ Bε(x) then |‖x‖− ‖y‖| < ε. (This is the ε–δ definition of continuity for the map a ‖a‖.)
Next, since the map from R>0 to R given by t sin(πt)/t is continuous, it follows that the composition

a ‖a‖ sin(π‖a‖)
‖a‖

is a continuous map from Dn to R. Furthermore, for every i ∈ {1, 2, . . . , n}, the projection map from Dn

to R given by a ai is continuous.

Now, for i ∈ {1, 2, . . . , n}, each map πi ◦ f : Dn R is given by

(πi ◦ f)(a) = ai
‖a‖

sin(π‖a‖),

which is a pointwise product of the two continuous maps a sin(π‖a‖)/‖a‖ and a ai, so πi ◦ f itself
must be a continuous map. This holds true for every i ∈ {1, 2, . . . , n}.

It remains to check that πn+1 ◦ f : Dn R is continuous. Observe that πn+1◦f is a composition of a ‖a‖
and t cos(πt), both of which are continuous maps. Hence πn+1 ◦ f is also continuous. Since πi ◦ f is
continuous for every i ∈ {1, 2, . . . , n, n+ 1}, the map f : Dn Sn is continuous by the universal property
of the product.

Inducing p : Dn/Sn−1 Sn from f : Dn Sn

Dn Dn/Sn−1

Sn

q

f
∃!p

Q6(b) Page 11 of 16



MAST30026 Metric and Hilbert Spaces Assignment 2 Solutions

6(b) In order to use f to induce a continuous map p : Dn/Sn−1 Sn, we must also check that f is constant on
Sn−1 ⊆ Dn. Indeed, if a ∈ Rn and ‖a‖ = 1 then

f(a) = (a sin(π), cos(π)) = (0,−1) ∈ Rn+1,

where the 0 represents the first n coordinates of f(a) all being 0. Thus f is constant on Sn−1. Letting
q : Dn Dn/Sn−1 be the quotient map, by the universal property of the quotient space there exists a
unique map p : Dn/Sn−1 Sn such that f = p ◦ q.

p : Dn/Sn−1 Sn is bijective

Our next step is to show that p : Dn/Sn−1 Sn is bijective. Let us first consider surjectivity. Since
f = p ◦ q, in order to show that p is surjective, it is sufficient to show that f is surjective. For each
z ∈ [−1, 1], define Hz := {b ∈ Sn | πn+1(b) = z}. We can see that {Hz | z ∈ [−1, 1]} is a partition of Sn, so
in order to show that f is surjective, it suffices to show that Hz is inside the range of f for every z ∈ [−1, 1].
Let us look more closely at the points inside Hz.

Hz = {b ∈ Sn | πn+1(b) = z}
= {(b1, b2, . . . , bn, z) ∈ Rn+1 | b2

1 + b2
2 + · · ·+ b2

n + z2 = 1}.

Since the map from [0, 1] to [−1, 1] given by t cos(πt) is bijective, it is equivalent to consider Hcos(πy) for
0 6 y 6 1.

Hcos(πy) = {(b1, b2, . . . , bn, cos(πy)) ∈ Rn+1 | b2
1 + b2

2 + · · ·+ b2
n + cos2(πy) = 1}

= {(b1, b2, . . . , bn, cos(πy)) ∈ Rn+1 | b2
1 + b2

2 + · · ·+ b2
n = sin2(πy)}

= {(c1 sin(πy), c2 sin(πy), . . . , cn sin(πy), cos(πy)) | c ∈ Sn−1}.

At this point we observe that Hcos(πy) is precisely the image under f of an (n− 1)-sphere (contained in Dn)
centred at the origin with radius y. That is,

Hcos(πy) = {f(a) | a ∈ Rn, ‖a‖ = y ∈ [0, 1]} = f(ySn−1).

Since this holds for every y ∈ [0, 1] and Sn =
⋃
y∈[0,1]Hcos(πy), it follows that f is surjective, and therefore

p is surjective also.

Next we wish to show that p is injective. Since q : Dn Dn/Sn−1 is surjective it is enough to check that
the following holds:

∀a, b ∈ Dn
(
p(q(a)) = p(q(b)) =⇒ q(a) = q(b)

)
.

Noting that p ◦ q = f , the above statement is equivalent to

∀a, b ∈ Dn
(
f(a) = f(b) =⇒ q(a) = q(b)

)
.

Suppose a, b ∈ Dn are such that f(a) = f(b). Then, recalling the definition of f , we have(
a1
‖a‖

sin(π‖a‖), a2
‖a‖

sin(π‖a‖), . . . , an
‖a‖

sin(π‖a‖), cos(π‖a‖)
)

=
(
b1
‖b‖

sin(π‖b‖), b2
‖b‖

sin(π‖b‖), . . . , bn
‖b‖

sin(π‖b‖), cos(π‖b‖)
)

Since ‖a‖, ‖b‖ ∈ [0, 1] and cos(π‖a‖) = cos(π‖b‖), we must have ‖a‖ = ‖b‖. Hence we also have
sin(π‖a‖)/‖a‖ = sin(π‖b‖)/‖b‖. If 0 6 ‖a‖ < 1, then sin(π‖a‖)/‖a‖ 6= 0 (recall that we consider 0
to map to π under t sin(πt)/t), so

ai
‖a‖

sin(π‖a‖) = bi
‖b‖

sin(π‖b‖) =⇒ ai = bi.
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6(b) This holds for every i ∈ {1, 2, . . . , n}, so a = b and therefore q(a) = q(b). If ‖a‖ = 1 then a and b are both
points in Sn−1, so certainly q(a) = q(b). Thus we have shown that if a, b ∈ Dn are such that f(a) = f(b)
then necessarily q(a) = q(b). This establishes injectivity of p. Since p is both injective and surjective, p is
bijective.

Conclusion

We have now exhibited a continuous bijection p from Dn/Sn−1 to Sn. Now, Dn/Sn−1 is a compact space
as reasoned at the beginning of the question. Since Sn is a subspace of the Hausdorff space Rn+1, we know
that Sn itself is Hausdorff. Finally, using the fact that a continuous bijection from a compact space to a
Hausdorff space is a homeomorphism, in light of the continuous bijection p : Dn/Sn−1 Sn, it must be
that Dn/Sn−1 ∼= Sn.

(c) Begin with X0 := {∗}, a single 0-cell. Set Xi := X0 for i ∈ {1, 2, . . . , n − 1}. That is, for every i ∈
{1, 2, . . . , n− 1}, at stage i of attaching i-cells to Xi−1, we choose not to attach any (Λi = ∅). At stage n,
we attach a single n-cell according to the pushout

Sn−1 Xn−1 = {∗}

Dn Xn := ({∗} tDn)/≈.

f

The map f sends every point in Sn−1 to ∗ ∈ Xn−1. This map is continuous since the open sets in Xn−1 are
∅ and {∗} which have respective preimages under f of ∅ and Sn−1, both of which are open in Sn−1. The
equivalence relation ≈ on {∗} tDn is generated by

{(x, y) | x, y ∈ {∗} t Sn−1}.

If we can show that Sn ∼= Xn, then we are done. From the previous part, we know that Sn ∼= Dn/Sn−1, so
we only have to show that Dn/Sn−1 ∼= Xn = ({∗} tDn)/≈. Intuitively this seems very obvious, since the
equivalence relation ≈ on {∗} tDn induces the following partition on {∗} tDn:

{{∗} t Sn−1} ∪ {{x} | x ∈ Dn \ Sn−1}.

Meanwhile the equivalence relation ∼ on Dn generated by declaring everything in Sn−1 to be equivalent is

{Sn−1} ∪ {{x} | x ∈ Dn \ Sn−1}.

Fix a point Tn ∈ Sn−1. Define the maps f : Dn/Sn−1 Xn and g : Xn Dn/Sn−1 by

f([x]) = [x], x ∈ Dn.

g([x]) = [x], x ∈ Dn \ Sn−1,

g([∗]) = [Tn].

It can be checked that these maps are well-defined by referring to the explicit partitions induced by each
equivalence relation on {∗} t Dn and Dn. We will show that f and g are inverse to each other and that
each is continuous, thereby showing Dn/Sn−1 ∼= Xn.

f : Dn/Sn−1 Xn and g : Xn Dn/Sn−1 are inverses

Note that (g ◦ f)([x]) = [x] for every x ∈ Dn. Also

(f ◦ g)([x]) = [x], x ∈ Dn \ Sn−1,

(f ◦ g)([x]) = (f ◦ g)([∗]) = f([Tn])
= [Tn] = [x], x ∈ {∗} t Sn−1,

6(b)–6(c) Page 13 of 16
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6(c) so that (f◦g)([x]) = [x] for every x ∈ {∗}tDn. This means that f : Dn/Sn−1 Xn and g : Xn Dn/Sn−1

are inverse to each other.

f : Dn/Sn−1 Xn and g : Xn Dn/Sn−1 are both continuous

Now we show continuity of f and g. Since they are inverse to each other, it is equivalent to show that f and g
are each open. Let q : Dn Dn/Sn−1 and w : {∗} tDn Xn be the quotient maps. Let Bn := Dn \Sn−1

denote the open unit ball in Rn.

The important underlying argument in the following (opaque and uninteresting) discussion is that open
sets in Dn/Sn−1 and Xn are images under q and w of saturated open sets in Dn and {∗} tDn respectively.
By the nature of the equivalence relations on each of Dn and {∗} tDn, saturated open sets in one can be
changed into saturated open sets of the other by adding or removing ∗ as appropriate. More specifically, if
U0 ⊆ Dn and V0 ⊆ {∗}tDn are open sets that are saturated in Dn and {∗}tDn respectively, then defining

U1 :=
{
{∗}, Sn−1 ⊆ U0,

∅, Sn−1 ∩ U0 = ∅,
and V1 :=

{
{∗}, ∗ ∈ V0,

∅, ({∗} t Sn−1) ∩ V0 = ∅,

we can see that U1 t U0 is a saturated open set in {∗} tDn, while V0 \ V1 is a saturated open set in Dn by
the definition of the disjoint union topology.

Below is the (opaque and uninteresting) formal argument for why f and g are open.

We first show that f is open. Let U ⊆ Dn/Sn−1 be an open subset. We will show that f(U) ⊆ Xn is open.
First observe that f(U) = w(q−1(U)) since f sends [x] ∈ Dn/Sn−1 to [x] ∈ Xn. We know that q−1(U) is
open when regarded as a subset of {∗} tDn (since it is open as a subset of Dn). Thus, to show that f(U)
is open, it suffices to show that q−1(U) is saturated as a subset of {∗} t Dn. However, this is not always
true, since ∗ /∈ q−1(U) but q−1(U) may contain elements of Sn−1. There is a resolution by splitting into
cases: one where [Tn] /∈ U and the other where [Tn] ∈ U .

Now, if [Tn] /∈ U then q−1(U) ⊆ Bn, and indeed this must be saturated in {∗} t Dn in light of the
induced partition on {∗} tDn. That is, if [Tn] /∈ U then f(U) ⊆ Xn is open. Otherwise, if [Tn] ∈ U then
Sn−1 ⊆ q−1(U), and we can in fact write f(U) = w({∗} t q−1(U)). Since {∗} t q−1(U) is an open subset of
{∗} tDn which contains {∗} t Sn−1, the open set {∗} t q−1(U) is in fact saturated, so f(U) is open.

Next, we show that g is open. Let V ⊆ Xn be an open subset. We want to show that g(V ) ⊆ Dn/Sn−1 is
open. If [∗] /∈ V then w−1(V ) ⊆ Bn inside {∗} tDn. This means that if [∗] /∈ V then g(V ) = q(w−1(V )),
because g([x]) = [x] ∈ Dn/Sn−1 if x ∈ Bn. It now suffices to show that w−1(V ) is saturated in Dn.
Indeed, w−1(V ) ⊆ Bn, so in light of the induced partition on Dn the set w−1(V ) is saturated. If [∗] ∈ V
then {∗} t Sn−1 ∈ w−1(V ). Removing ∗ from w−1(V ), the set w−1(V ) \ {∗} is an open subset of Dn (by
the definition of the disjoint union topology), and we still have g(V ) = q(w−1(V ) \ {∗}). Since Sn−1 ⊆
w−1(V ) \ {∗} inside Dn, the set w−1(V ) \ {∗} is saturated inside Dn, so g(V ) is open.

Conclusion

Since f : Dn/Sn−1 Xn and g : Xn Dn/Sn−1 are inverse maps to each other and each is open, it follows
that Dn/Sn−1 ∼= Xn. Hence Sn is indeed a finite CW-complex obtained by attaching a single n-cell to a
single 0-cell.
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Question 7

Exercise L8-5. Prove that if X ⊆ R is not sequentially compact, there exists a continuous function
f : X R which is not bounded (i.e. f(X) ⊆ R is not bounded).

Recall the Bolzano–Weierstrass theorem (Theorem L8-2), which says that a subset K ⊆ R is closed and
bounded if and only if K is sequentially compact. This means that if X ⊆ R is not sequentially compact
then X is nonempty and must be (i) not bounded; or (ii) not closed.

If X is not bounded then taking f = idX (which is continuous) we have f(X) = X ⊆ R which is not
bounded. This proves the claim in the case that X is not bounded.

Suppose then that X is not closed. Then by Lemma L8-1 the set X has an adherent point in R \X. Let
c ∈ R \X be an adherent point of X, and define f : X R by

f(x) = 1
|x− c|

, x ∈ X.

We will show that the map f as defined above is continuous by showing that the preimage of real bounded
open intervals under f is open. This is enough to show continuity since the bounded open intervals form a
basis for the topology on R. If (a, b) ⊆ R is an open interval (where a < b) we may compute f−1((a, b)) as
follows:

(a) If 0 ∈ [b,∞) (that is, a < b 6 0) then since f is positive we have f−1((a, b)) = ∅, which is an open
subset of X.

(b) If 0 ∈ [a, b) (that is, a 6 0 < b) then since f is positive we have f−1((a, b)) = f−1((0, b)). For r ∈ R
we have

1
|r − c|

∈ (0, b) ⇐⇒ |r − c| > 1
b

⇐⇒ r ∈
(
−∞, c− 1

b

)
∪
(
c+ 1

b
,∞
)
.

Hence
f−1((a, b)) = f−1((0, b)) = X ∩

((
−∞, c− 1

b

)
∪
(
c+ 1

b
,∞
))

,

which is an open subset of X under the subspace topology.

(c) If 0 ∈ (−∞, a) (that is, 0 < a < b) then for r ∈ R we have

1
|r − c|

∈ (a, b) ⇐⇒ 1
b
< |r − c| < 1

a
⇐⇒ r ∈

(
c− 1

a
, c− 1

b

)
∪
(
c+ 1

b
, c+ 1

a

)
.

Hence
f−1((a, b)) = X ∩

((
c− 1

a
, c− 1

b

)
∪
(
c+ 1

b
, c+ 1

a

))
,

which is an open subset of X under the subspace topology.

Having established that f is continuous, it remains to show that f(X) is not bounded. Since c ∈ R \X is
an adherent point of X, for every n ∈ N there exists xn ∈ X such that |xn − c| < 1/n. Having defined the
sequence (xn)n∈N in X in this manner, observe that

f(xn) = 1
|xn − c|

> n ∀n ∈ N.

This shows that f(X) ⊆ R is not bounded, which proves the claim in the case that X not closed.
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Question 8

Exercise L9-5. Every closed subspace of a compact topological space is compact.

Let (X, T ) be a compact topological space, and let K ⊆ X be closed. We wish to show that K is a compact
subspace.

Let (Ui)i∈I be an open cover of K. That is, for each i ∈ I, the set Ui ⊆ X is open and K ⊆
⋃
i∈I Ui. We

wish to produce a finite subset {ik}nk=1 ⊆ I such that K ⊆
⋃n
k=1 Uik .

Let V := X \ K. Since K is closed in X, we know V is open in X. Since K ⊆
⋃
i∈I Ui, we can see that

V ∪
⋃
i∈I Ui is an open cover of X. By compactness of X, the open cover V ∪

⋃
i∈I Ui contains a finite

subcover of X. That is, for some finite subset {ik}nk=1 ⊆ I we have

X ⊆ V ∪ Ui1 ∪ Ui2 ∪ · · · ∪ Uin .

(We can choose to include V in the subcover without loss of generality.) Since K ⊆ X this means that

K ⊆ V ∪ Ui1 ∪ Ui2 ∪ · · · ∪ Uin .

Since K and V are disjoint, we can further say that

K ⊆ Ui1 ∪ Ui2 ∪ · · · ∪ Uin .

Beginning with an arbitrary open cover (Ui)i∈I of K, we have produced a finite subcover (Uik)nk=1 for K.
This shows that K is compact.
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