Exercise L14-1

Throughout this question, we will be using the d_{∞} metric on \mathbb{R}^n .

We'll first show that the function $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(\mathbf{v}) = \mathbf{v} - A\mathbf{v} + \mathbf{w}$ (where \mathbf{w} is a fixed vector and A is as given in the question) is a contraction. To do this, we will be using the hypothesis given in the problem statement, i.e. that there exists $\lambda \in (0,1)$ with

$$\sum_{j=1}^{n} |\delta_{ij} - A_{ij}| \le \lambda \qquad \text{for each } 1 \le i \le n$$
 (1)

We claim that f is a λ -contraction. Indeed, consider any two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. We have

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max\{|x_i - y_i|\}_{i=1}^n$$

and

$$d_{\infty}(f(\mathbf{x}), f(\mathbf{y})) = d_{\infty}(\mathbf{x} - A\mathbf{x} + \mathbf{w}, \mathbf{y} - A\mathbf{y} + \mathbf{w})$$

$$= \max\{|\pi_i((\mathbf{x} - A\mathbf{x} + \mathbf{w}) - (\mathbf{y} - A\mathbf{y} + \mathbf{w}))|\}\}_{i=1}^n$$

$$= \max\{|\pi_i((\mathbf{x} - \mathbf{y} - A\mathbf{x} + A\mathbf{y})|\}\}_{i=1}^n$$

$$= \max\{|\pi_i((I_n - A)(\mathbf{x} - \mathbf{y}))|\}\}_{i=1}^n$$

where $\pi_i \colon \mathbb{R}^n \to \mathbb{R}$, $1 \le i \le n$, denotes the projection and I_n is the $n \times n$ identity matrix. To calculate $\pi_i((I_n - A)(\mathbf{x} - \mathbf{y}))$ (for $1 \le i \le n$) we need to take the dot product of the *i*th row of $I_n - A$ with $\mathbf{x} - \mathbf{y}$, i.e.

$$\pi_i((I_n - A)(\mathbf{x} - \mathbf{y})) = \sum_{j=1}^n (\delta_{ij} - A_{ij})(x_j - y_j)$$

And now we have, for each $1 \le i \le n$,

$$|\pi_{i}((I_{n} - A)(\mathbf{x} - \mathbf{y}))| = \left| \sum_{j=1}^{n} (\delta_{ij} - A_{ij})(x_{j} - y_{j}) \right|$$

$$\leq \sum_{j=1}^{n} |\delta_{ij} - A_{ij}| \cdot |x_{j} - y_{j}| \qquad \text{(by the triangle inequality)}$$

$$\leq \sum_{j=1}^{n} |\delta_{ij} - A_{ij}| \cdot d_{\infty}(\mathbf{x}, \mathbf{y}) \qquad \text{(since } d_{\infty}(\mathbf{x}, \mathbf{y}) = \max\{|x_{j} - y_{j}|\}_{j=1}^{n}\}$$

$$= d_{\infty}(\mathbf{x}, \mathbf{y}) \sum_{j=1}^{n} |\delta_{ij} - A_{ij}|$$

$$\leq \lambda d_{\infty}(\mathbf{x}, \mathbf{y}) \qquad \text{(by (1))}$$

and so we have that $|\pi_i((I_n - A)(\mathbf{x} - \mathbf{y}))| \le \lambda d_\infty(\mathbf{x}, \mathbf{y})$ for every $1 \le i \le n$. This implies

$$d_{\infty}(f(\mathbf{x}), f(\mathbf{y})) = \max\{|\pi_i((I_n - A)(\mathbf{x} - \mathbf{y}))|\}\}_{i=1}^n \le \lambda d_{\infty}(\mathbf{x}, \mathbf{y})$$

so that $d_{\infty}(f(\mathbf{x}), f(\mathbf{y})) \leq \lambda d_{\infty}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ and hence f is a λ -contraction, as claimed.

From here, observe that since $(\mathbb{R}^n, d_{\infty})$ is a complete metric space and $f: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction, we may use the Banach fixed point theorem to conclude that f has a unique fixed point. Thus there is a unique value of $\mathbf{v} \in \mathbb{R}^n$ such that $f(\mathbf{v}) = \mathbf{v}$, i.e. $\mathbf{v} - A\mathbf{v} + \mathbf{w} = \mathbf{v}$. This implies that $A\mathbf{v} = \mathbf{w}$ has a unique solution \mathbf{v} , as required.

Exercise L14-2

Let (X,d) be a compact metric space, and let $\lambda \in (0,1)$. To show that the map fix : $Cts_{\lambda}(X,X) \to X$ is continuous, it suffices (by Lemma L6-4) to show that for all $f \in Cts_{\lambda}(X,X)$, given any $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_{\infty}(f,g) < \delta \implies d(\operatorname{fix}(f),\operatorname{fix}(g)) < \epsilon \qquad \forall g \in \operatorname{Cts}_{\lambda}(X,X).$$

Here d_{∞} is defined as usual, i.e.

$$d_{\infty}(f,g) = \sup\{d(f(x),g(x)) \mid x \in X\}$$

(which is indeed a metric on Cts(X, X) by Theorem L13-2 since X is compact and metrisable, and then $Cts_{\lambda}(X, X) \subseteq Cts(X, X)$, given the subspace topology, also inherits this metric.)

So, fix some $f \in \text{Cts}_{\lambda}(X,X)$. Note that f is a λ -contraction so for all $x,y \in X$ we have

$$d(f(x), f(y)) \le \lambda \, d(x, y). \tag{1}$$

Now, let $\epsilon > 0$ be given. Let $\delta = \epsilon(1 - \lambda)$, which is positive since $\epsilon > 0$ and $\lambda < 1$. Suppose that some $g \in \text{Cts}_{\lambda}(X,X)$ satisfies $d_{\infty}(f,g) < \delta$. We want to show that $d(\text{fix}(f),\text{fix}(g)) < \epsilon$. To do this, first let a = fix(f) and b = fix(g). Then, by definition of the fix function we have

$$f(a) = a$$
 and $g(b) = b$. (2)

And now we have

$$\begin{aligned} d(a,b) &\leq d(a,f(b)) + d(f(b),b) & \text{(by the triangle inequality)} \\ &= d(f(a),f(b)) + d(f(b),g(b)) & \text{(by (2))} \\ &\leq \lambda \, d(a,b) + d(f(b),g(b)) & \text{(by (1))} \\ &< \lambda \, d(a,b) + \delta & \text{(since } d(f(b),g(b)) \leq \sup_{x \in X} \{d(f(x),g(x))\} = d_{\infty}(f,g) < \delta) \end{aligned}$$

i.e. $d(a,b) < \lambda d(a,b) + \delta$. Rearranging, we get $(1-\lambda)d(a,b) < \delta$, which gives (remembering that $1-\lambda > 0$):

$$d(\operatorname{fix}(f), \operatorname{fix}(g)) = d(a, b) < \frac{\delta}{1 - \lambda} = \frac{\epsilon(1 - \lambda)}{1 - \lambda} = \epsilon.$$

So indeed, whenever some $g \in \text{Cts}_{\lambda}(X, X)$ satisfies $d_{\infty}(f, g) < \delta$, we have $d(\text{fix}(f), \text{fix}(g)) < \epsilon$.

As we discussed earlier, this shows that the function fix sending a contraction mapping to its unique fixed point is continuous, which is what we wanted.

Exercise L16-6

Let A be the set of polynomials in $\operatorname{Poly}(X,\mathbb{R})$ whose coefficients are all rational (or rather, the set of polynomial functions in $\operatorname{Poly}(X,\mathbb{R})$ which are induced by polynomials with rational coefficients). We claim that A is a countable dense subset of $\operatorname{Cts}(X,\mathbb{R})$. Our proof is in a couple of parts:

A is a countable set: Firstly, to distinguish between polynomials and polynomial functions we'll denote by A' the set of polynomials with rational coefficients. Clearly if A' is countable then A is countable, so we'll just show A' is countable. For each polynomial $p(x) \in A'$, we can uniquely express p(x) in the form (writing $\vec{N} = (N_1, N_2, \ldots, N_n)$)

$$p(x) = \sum_{\vec{N} \in Y} \frac{a_{\vec{N}}}{b_{\vec{N}}} \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n}$$

where $Y \subset \mathbb{N}^n$ is finite, and for each $\vec{N} \in Y$, $a_{\vec{N}}, b_{\vec{N}}$ are nonzero integers such that $b_{\vec{N}} > 0$ and $\gcd(a_{\vec{N}}, b_{\vec{N}}) = 1$ for $\vec{N} \in Y$, and $a_n \neq 0$. For p(x) as above, denote by N(p(x)) the quantity

$$N(p(x)) := \sum_{\vec{N} \in Y} |a_{\vec{N}}| + |b_{\vec{N}}| + N_1 + N_2 + \dots + N_n$$

Then, clearly the set

$$A_k := \{ p(x) \in A' \mid N(p(x)) \le k \}$$

is finite for each integer $k \geq 0$, and clearly $A' = \bigcup_{k=0}^{\infty} A_k$. So we can list out all the polynomials in A by listing out the polynomials in A_0 , then A_1 , then A_2 , and so on. This gives a bijection from \mathbb{N} to A', hence A' is countable. Hence A is also countable.

 $A \subseteq \mathbf{Cts}(X,\mathbb{R})$ is dense, i.e. $\overline{A} = \mathbf{Cts}(X,\mathbb{R})$: We'll first show that $\mathrm{Poly}(X,\mathbb{R}) \subseteq \overline{A}$. Let $p \in \mathrm{Poly}(X,\mathbb{R})$, we'll show that p can be uniformly approximated by elements of A. We can write p as

$$p(x) = \sum_{\vec{N} \in Y} c_{\vec{N}} \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n}$$

where $Y \subset \mathbb{N}^n$ is finite, and $c_{\vec{N}} \in \mathbb{R}$ for $\vec{N} \in Y$. Now, since $X \subseteq \mathbb{R}$ is compact, the image of X under the map $\pi_1^{N_1}\pi_2^{N_2}\dots\pi_n^{N_n}$ (which is continuous since it a product of projections) must be compact. Since $\pi_1^{N_1}\pi_2^{N_2}\dots\pi_n^{N_n}(X) \subseteq \mathbb{R}$ and compact sets in \mathbb{R} are bounded, it follows that $\pi_1^{N_1}\pi_2^{N_2}\dots\pi_n^{N_n}(X) \subseteq \mathbb{R}$ must be bounded for each $\vec{N} \in Y$. Since Y is finite, we then get that there must exist some K such that

$$|\pi_1(x)^{N_1}\pi_2(x)^{N_2}\dots\pi_n(x)^{N_n}| < K \qquad \forall x \in X \text{ and } \vec{N} \in Y$$
 (1)

Now, since $\overline{\mathbb{Q}} = \mathbb{R}$, for each $\vec{N} \in Y$ we can find some $q_{\vec{N}} \in \mathbb{Q}$ such that

$$|c_{\vec{N}} - q_{\vec{N}}| < \frac{\epsilon}{2|Y|K} \tag{2}$$

(here we are using Exercise L13-4, which tells us that since $c_{\vec{N}} \in \mathbb{R} = \overline{\mathbb{Q}}$, every open neighbourhood of c_i contains an element of \mathbb{Q} .) Now consider the polynomial $q \in A$ given by

$$p(x) = \sum_{\vec{N} \in V} q_{\vec{N}} \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n}.$$

We have, for each $x \in X$,

$$|p(x) - q(x)| = \left| \sum_{\vec{N} \in Y} c_{\vec{N}} \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n} - \sum_{\vec{N} \in Y} q_{\vec{N}} \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n} \right|$$

$$= \left| \sum_{\vec{N} \in Y} (c_{\vec{N}} - q_{\vec{N}}) \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n} \right|$$

$$\leq \sum_{\vec{N} \in Y} \left| (c_{\vec{N}} - q_{\vec{N}}) \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n} \right|$$

$$= \sum_{\vec{N} \in Y} \left| (c_{\vec{N}} - q_{\vec{N}}) \right| \cdot \left| \pi_1(x)^{N_1} \pi_2(x)^{N_2} \dots \pi_n(x)^{N_n} \right|$$

$$\leq \sum_{\vec{N} \in Y} \frac{\epsilon}{2|Y|K} \cdot K$$
(by (1) and (2))
$$= \frac{\epsilon}{2} < \epsilon.$$

So we have shown that for any $p \in \operatorname{Poly}(X, \mathbb{R})$ and any $\epsilon > 0$ there exists $q \in A$ such that $|p(x) - q(x)| < \epsilon$ for all $x \in X$. By Exercise L16-1 (which we can apply since X is compact, \mathbb{R} is a metric space and $A \subseteq \operatorname{Poly}(X, \mathbb{R}) \subseteq \operatorname{Cts}(X, \mathbb{R})$ we conclude that $p \in \overline{A}$ for every $p \in \operatorname{Poly}(X, \mathbb{R})$, that is,

$$\begin{array}{c} \operatorname{Poly}(X,\mathbb{R}) \subseteq \overline{A} \\ \Longrightarrow \overline{\operatorname{Poly}(X,\mathbb{R})} \subseteq \overline{A} \end{array}$$

(using the definition of $\overline{\operatorname{Poly}(X,\mathbb{R})}$ and the fact that \overline{A} is closed). But also, Exercise L13-4 tells us that since $A \subseteq \operatorname{Poly}(X,\mathbb{R})$ we also have

$$\overline{A} \subseteq \overline{\operatorname{Poly}(X, \mathbb{R})}$$

so together we see that we must have $\overline{A} = \overline{\operatorname{Poly}(X, \mathbb{R})}$. It remains to note that from Corollary L16-4, which we can use since $X \subseteq \mathbb{R}^n$ is compact, we also have $\overline{\operatorname{Poly}(X, \mathbb{R})} = \operatorname{Cts}(X, \mathbb{R})$, and this gives

$$\overline{A} = \overline{\operatorname{Poly}(X, \mathbb{R})} = \operatorname{Cts}(X, \mathbb{R})$$

and therefore A is a dense subset of $Cts(X, \mathbb{R})$.

Conclusion (and second countability): We have shown A is a countable dense subset of $Cts(X, \mathbb{R})$, hence $Cts(X, \mathbb{R})$ is separable. We'll now show that $Cts(X, \mathbb{R})$ is second-countable.

First note that $Cts(X, \mathbb{R})$ is metrisable with the d_{∞} metric (by Theorem L13-2, noting that X is compact and \mathbb{R} is metrisable). Consider the set $\mathcal{B} = \{B_{\epsilon}(p) \mid p \in A, \epsilon \in \mathbb{Q}_{>0}\}$, we claim \mathcal{B} is countable and is also a basis for the topology on $Cts(X, \mathbb{R})$.

Indeed, \mathcal{B} is countable since we proved previously that A is countable and we also know that $\mathbb{Q}_{>0}$ is countable, which implies that $A \times \mathbb{Q}_{>0}$ is countable (since the Cartesian product of two countable sets is countable- it is easy to see how the usual proof that \mathbb{Q} is countable extends to this), and it follows that \mathcal{B} is also countable

As for proving \mathcal{B} is a basis for the topology on $\operatorname{Cts}(X,\mathbb{R})$, let $U \subseteq \operatorname{Cts}(X,\mathbb{R})$ be open and $f \in U$. We need to show that there exists $B \in \mathcal{B}$ with $f \in B \subseteq U$. From the definition of the topology on a metric space, since U is open and $f \in U$ we know there exists $\epsilon_1 > 0$ such that $B_{\epsilon_1}(f) \subseteq U$. Now, since $f \in \operatorname{Cts}(X,\mathbb{R}) = \overline{A}$, we know (by Exercise L16-1) that there exists some $g \in A$ such that

$$|f(x) - q(x)| < \frac{\epsilon_1}{3} \quad \forall x \in X \quad \text{i.e.} \quad d_{\infty}(f, q) < \frac{\epsilon_1}{3}$$
 (3)

Also, since $\frac{\epsilon_1}{2} \in \mathbb{R} = \overline{\mathbb{Q}}$, we know (by Exercise L13-4) that every open neighbourhood of $\frac{\epsilon_1}{2}$ must contain an element of \mathbb{Q} , and this implies that there exists some rational number ϵ_2 such that

$$\left|\epsilon_2 - \frac{\epsilon_1}{2}\right| < \frac{\epsilon_1}{6}$$
 i.e. $-\frac{\epsilon_1}{6} < \epsilon_2 - \frac{\epsilon_1}{2} < \frac{\epsilon_1}{6}$ i.e. $\frac{\epsilon_1}{3} < \epsilon_2 < \frac{2\epsilon_1}{3}$.

Now we claim that $f \in B_{\epsilon_2}(q) \subseteq U$. Indeed, by (3) we have

$$d_{\infty}(f,q) < \frac{\epsilon_1}{3} < \epsilon_2$$

which implies that $f \in B_{\epsilon_2}(q)$. And, for any $g \in B_{\epsilon_2}(q)$, we have $d_{\infty}(q,g) < \epsilon_2 < 2\epsilon_1/3$ which implies

$$\begin{split} d_{\infty}(f,g) &\leq d_{\infty}(f,q) + d_{\infty}(q,g) & \text{(triangle inequality)} \\ &< \frac{\epsilon_1}{3} + \frac{2\epsilon_1}{3} & \text{(by (3) and our earlier calculation for } d_{\infty}(q,g)) \\ &= \epsilon_1 \\ &\implies g \in B_{\epsilon_1}(f) \end{split}$$

and since this holds for all $g \in B_{\epsilon_2}(q)$, we have $B_{\epsilon_2}(q) \subseteq B_{\epsilon_1}(f)$, and recalling that $B_{\epsilon_1}(f) \subseteq U$, we get $B_{\epsilon_2}(q) \subseteq U$.

Since $\epsilon_2 \in \mathbb{Q}$ and $q \in A$, taking $B = B_{\epsilon_2}(q)$ we have $B = B_{\epsilon_2}(q) \in \mathcal{B}$ and this set satisfies $f \in B \subseteq U$. We can find such a $B \in \mathcal{B}$ for any open $U \subseteq \operatorname{Cts}(X, \mathbb{R})$ and $f \in U$, so this implies that \mathcal{B} is a basis for $\operatorname{Cts}(X, \mathbb{R})$.

Putting everything together, we have that \mathcal{B} is countable and is a basis for the topology on $\mathrm{Cts}(X,\mathbb{R})$, hence $\mathrm{Cts}(X,\mathbb{R})$ is second-countable.

Exercise L17-7

We want to prove that C (as defined in the question) is finite-dimensional if and only if X is a finite set of points with the discrete topology. To do this, consider the following cases:

Case 1: X is finite: In this case, let the elements of X be $X = \{x_1, x_2, \dots, x_n\}$. We'll first prove the following lemma:

Lemma 1. If $X = \{x_1, x_2, \dots, x_n\}$ is a finite Hausdorff topological space, then X has the discrete topology.

Proof. First, fix some i $(1 \le i \le n)$, we will show that $\{x_i\}$ is open. Since X is Hausdorff, for each j such that $j \ne i$ we know that there must exist open sets U_j and V_j such that

$$x_i \in U_j, \qquad x_j \in V_j, \qquad U_j \cap V_j = \emptyset.$$

Note that $x_j \in V_j$ and $U_j \cap V_j = \emptyset$ implies that $x_j \notin U_j$. Now consider the finite intersection

$$U = \bigcap_{j \neq i} U_j.$$

U must be open it is a finite intersection of open sets. Moreover, since $x_i \in U_j$ for all $j \neq i$, we must have $x_i \in U$. And, since $x_j \notin U_j$ for each $j \neq i$, we also have $x_j \notin U$. So U is a subset of X containing x_i but not containing x_j for $j \neq i$, hence $U = \{x_i\}$. Then, since U is open, we have that $\{x_i\}$ must also be open, and this is true for every 1 < i < n.

Now, any other subset $S \subseteq X$ can be written in the form

$$S = \bigcup_{i \in I} \{x_i\}$$

where $I \subseteq \{1, 2, ..., n\}$, and then since a union of open sets is open, it follows that S must be open. Hence all subsets of X are open and X must have the discrete topology.

Applying the lemma to this case (which we can do since X is finite and Hausdorff), we get that X has the discrete topology. This implies that every function $g \colon X \to \mathbb{R}$ is continuous, hence $\mathrm{Cts}(X,\mathbb{R})$ is just the set of all functions from X to \mathbb{R} .

Now, for $1 \le i \le n$ define $f_i : X \to \mathbb{R}$ as follows:

$$f_i(x_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

We claim that $\{f_1, f_2, \dots, f_n\}$ span C. Indeed, for any $g \in C$, we have

$$g(x_j) = \sum_{i=0}^n g(x_i) f_i(x_j) \qquad \forall j \in \{1, 2, \dots, n\}$$
$$\implies g = \sum_{i=0}^n g(x_i) f_i$$

(where $g(x_i)f_i$ is the function f_i multiplied by the scalar $g(x_i)$). So any $g \in C$ can be expressed as a linear combination of f_i s, hence C is spanned by $\{f_1, f_2, \ldots, f_n\}$ as claimed.

Since C is spanned by a finite set, C must be finite-dimensional. This proves that if X is a finite set of points with the discrete topology, then C is finite-dimensional.

Case 2: X is infinite: We will show that if X is infinite, then C must be infinite-dimensional. Suppose otherwise, for the sake of contradiction, that C is finite-dimensional. Let $n = \dim C$. Since X is infinite, we can find n+1 distinct points in X, say, $x_1, x_2, \ldots, x_{n+1} \in X$. Now, we will prove two lemmas about X:

Lemma 2. There exist pairwise disjoint open sets U_i , $1 \le i \le n+1$, such that $x_i \in U_i$ for $1 \le i \le n+1$.

Proof. Since X is Hausdorff, for any $1 \le i < j \le n$ there exist open sets $V_{i,j}, W_{i,j} \subseteq X$ such that

$$x_i \in V_{i,j}, \qquad x_j \in W_{i,j}, \qquad V_{i,j} \cap W_{i,j} = \emptyset.$$

Now, for each $1 \le i \le n+1$, define U_i as follows:

$$U_i = \left(\bigcap_{j < i} W_{j,i}\right) \cap \left(\bigcap_{j > i} V_{i,j}\right).$$

For all j < i we have $x_i \in W_{j,i}$, and for all j > i we have $x_i \in V_{i,j}$, therefore $x_i \in U_i$. And, for i < j we have

$$U_{i} \cap U_{j} = \left(\bigcap_{k < i} W_{k,i}\right) \cap \left(\bigcap_{k > i} V_{i,k}\right) \cap \left(\bigcap_{k < j} W_{k,j}\right) \cap \left(\bigcap_{k > j} V_{j,k}\right)$$

$$\subseteq V_{i,j} \cap W_{i,j} = \emptyset$$

and this implies that $U_i \cap U_j = U_j \cap U_i = \emptyset$. So indeed, the U_i 's are pairwise disjoint and satisfy $x_i \in U_i$ for $1 \le i \le n+1$.

Lemma 3. For each $x \in X$, the set $\{x\}$ is closed.

Proof. Fix any $x \in X$. Since X is Hausdorff, for any $y \in X \setminus \{x\}$ there exist open sets $U_y, V_y \subseteq X$ such that

$$x \in U_y, \quad y \in V_y, \quad U_y \cap V_y = \emptyset.$$

Note that since $x \in U_y$ and $U_y \cap V_y = \emptyset$, we must have $x \notin V_y$. So now, consider

$$V = \bigcup_{y \in X \setminus \{x\}} V_y.$$

V is open since it is a union of open sets (each V_y was open). Also, since $x \notin V_y$ for all $y \in X \setminus \{x\}$, we have $x \notin V$. And, since $y \in V_y$ for all $y \in X \setminus \{x\}$, we have $y \in V$ for all $y \in X \setminus \{x\}$. Since $x \notin V$ and $y \in V$ for all $y \in X \setminus \{x\}$, we must have $V = X \setminus \{x\}$, then since V is open $X \setminus \{x\}$ must also be open. This implies $\{x\}$ is closed, as we wanted to show.

From the above two lemmas, we know that $\{x_i\}$ is closed for each $1 \le i \le n+1$, and we also know that there exist pairwise disjoint open sets U_i , $1 \le i \le n+1$ such that $x_i \in U_i$ for $1 \le i \le n+1$.

Now, for each $1 \le i \le n+1$ we will define a function $f_i \colon X \to \mathbb{R}$ as follows. Let $A_i = \{x_i\}$ and $B_i = X \setminus U_i$. As mentioned before, $A_i = \{x_i\}$ is closed, and B_i is also closed since U_i is open. Moreover, since $x_i \in U_i$, we have $x_i \notin X \setminus U_i = B_i$ so that A_i and B_i are disjoint. Also, since X is compact Hausdorff, it is normal (by Exercise L11-9). So, we may use the Urysohn lemma to get that there exists a continuous function $f_i \colon X \to \mathbb{R}$ such that

$$f_i(a) = 1 \quad \forall a \in A_i \quad \text{and} \quad f_i(b) = 0 \quad \forall b \in B_i$$

Since $A_i = \{x_i\}$, this implies that $f_i(x_i) = 1$. Also, since $U_i \cap U_j = \emptyset$ and $x_j \in U_j$ for $j \neq i$, we have $x_j \notin U_i$, which implies $x_j \in X \setminus U_i = B_i$, for $j \neq i$. So, for each $1 \leq i \leq n+1$ we have

$$f_i(x_i) = 1$$
 and $f_i(x_j) = 0$ if $j \neq i$ (1)

Now we'll show that these f_i s are linearly independent. Indeed, suppose that there exist $\alpha_1, \alpha_2, \ldots, \alpha_{n+1}$ such that

$$\sum_{i=1}^{n+1} \alpha_i f_i = 0$$

$$\implies \sum_{i=1}^{n+1} \alpha_i f_i(x_j) = 0 \quad \forall j \in \{1, 2, \dots, n+1\}$$

$$\implies \alpha_j = 0 \quad \forall j \in \{1, 2, \dots, n+1\}$$
 (by (1))

This shows that the set $\{f_1, f_2, \ldots, f_{n+1}\}$ is linearly independent. But now we have a contradiction, as C, which is of dimension n, cannot contain a set of n+1 linearly independent vectors. Hence our initial supposition was wrong, and C must be infinite dimensional.

Conclusion: From our cases we see that the only situation where C is finite-dimensional is when X is finite with the discrete topology, hence C is finite-dimensional if and only if X is a finite set of points with the discrete topology.

Exercise L18-7

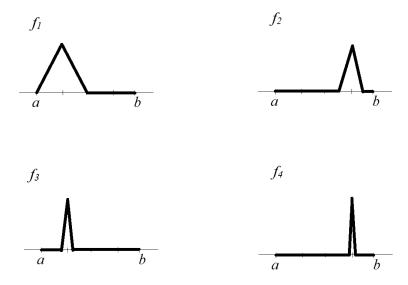
Let $a, b \in \mathbb{R}$ with a < b (short comment about a = b case is at end of this solution). Consider the sequence of functions $f_n \colon [a, b] \to \mathbb{R}$ given for $n \ge 1$ by

$$f_n(x) = \begin{cases} 0 & \text{if } x \in [a, c_n - d_n] \cup [c_n + d_n, b] \\ \frac{1}{d_n} (x - c_n + d_n) & \text{if } x \in (c_n - d_n, c_n) \\ -\frac{1}{d_n} (x - c_n - d_n) & \text{if } x \in [c_n, c_n + d_n) \end{cases}$$

where

$$c_n = \begin{cases} a + \frac{b-a}{4} & \text{if } n \text{ odd} \\ a + \frac{3(b-a)}{4} & \text{if } n \text{ even} \end{cases} \quad \text{and} \quad d_n = \frac{b-a}{2^{n+1}}$$

To illustrate, here are some sketches of the first few functions in this sequence:



We'll now show that $f_n \to f$, where f is given by f(x) = 0 for all $x \in [a, b]$. Indeed, for $n \ge 1$ note that f_n and f are Riemann integrable since it is continuous so we have

$$d_{p}(f_{n}, f) = \|f_{n} - f\|_{p} = \left\{ \int_{[a,b]} |f_{n} - f|^{p} \right\}^{1/p} = \left\{ \int_{a}^{b} |f_{n}(x)|^{p} dx \right\}^{1/p}$$

$$= \left\{ \int_{a}^{c_{n} - d_{n}} |f_{n}(x)|^{p} dx + \int_{c_{n} - d_{n}}^{c_{n} + d_{n}} |f_{n}(x)|^{p} dx + \int_{c_{n} + d_{n}}^{b} |f_{n}(x)|^{p} dx \right\}^{1/p} = \left\{ 0 + \int_{c_{n} - d_{n}}^{c_{n} + d_{n}} |f_{n}(x)|^{p} dx + 0 \right\}^{1/p}$$

$$\leq \left\{ \int_{c_{n} - d_{n}}^{c_{n} + d_{n}} |1|^{p} dx \right\}^{1/p} = \left\{ \int_{c_{n} - d_{n}}^{c_{n} + d_{n}} 1 dx \right\}^{1/p} = \left(2d_{n} \right)^{1/p} = \left(\frac{b - a}{2^{n}} \right)^{1/p}$$

which goes to zero as $n \to \infty$, prove that $f_n \to f$ as $n \to \infty$. (Or, if I need to give an ϵ -N argument: for any $\epsilon > 0$ take $N > \log_2(\frac{b-a}{\epsilon^p})$, then for $n \ge N$ the above shows that $d_p(f_n, f) \le \left(\frac{b-a}{2^n}\right)^{1/p} \le \left(\frac{b-a}{2^N}\right)^{1/p} < \epsilon$). So we have proved that f_n converges in $(\mathrm{Cts}([a, b], \mathbb{R}), d_p)$. However, f_n does not converge pointwise, since

So we have proved that f_n converges in $(\mathrm{Cts}([a,b],\mathbb{R}),d_p)$. However, f_n does not converge pointwise, since if we consider the point $z=a+\frac{b-a}{4}$, we have $f_n(z)=1$ if n is odd and $f_n(z)=0$ if n is even, so the sequence $(f_n(z))_{n=0}^{\infty}$ does not converge.

Thus convergence $f_n \to f$ in $(\mathrm{Cts}([a,b],\mathbb{R}),d_p)$ for $1 \le p < \infty$ does not imply pointwise convergence.

(A comment about the a=b case if it's needed: This case is trivial to deal with since every sequence of functions in $(\mathrm{Cts}([a,a],\mathbb{R}),d_p)$ will converge to the zero function (the associated integral is always zero), but for example the sequence of functions $f_n \colon [a,b] \to \mathbb{R}$ given by $f_n(a) = n$ for $n \ge 1$ is not pointwise convergent. So convergence still doesn't imply pointwise convergence.)

Exercise L18-12

Denote by $\Psi \colon \widehat{(X \times Y)} \to \hat{X} \times \hat{Y}$ the function sending

$$((x_n, y_n))_{n=0}^{\infty} \mapsto ((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}).$$

We want to prove that Ψ is a well-defined distance preserving bijection. Denote by \hat{d} the metric on $(\widehat{X} \times Y)$, by \hat{d}_X the metric on \hat{X} , by \hat{d}_Y the metric on \hat{Y} , by \hat{d} the metric on $\hat{X} \times \hat{Y}$.

 Ψ is well-defined: Let $((x_n, y_n))_{n=0}^{\infty} \in (\widehat{X} \times \widehat{Y})$. We'll first show that $((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}) \in \widehat{X} \times \widehat{Y}$, i.e. that $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ are Cauchy sequences. Let $\epsilon > 0$ be given. Since $((x_n, y_n))_{n=0}^{\infty}$ is Cauchy, there exists N such that for all $n, m \geq N$ we have

$$d((x_n, y_n), (x_m, y_m)) < \epsilon$$

$$\implies d_X(x_n, x_m) + d_Y(y_n, y_m) < \epsilon \qquad \text{(by definition of product metric of } X \times Y$$

$$\implies d_X(x_n, x_m) < \epsilon \text{ and } d_Y(y_n, y_m) < \epsilon \qquad \text{(since } d_X(x_n, x_m), d_Y(y_n, y_m) \ge 0)$$

and it follows that $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ are Cauchy sequences.

The other thing we have to check is that if $((x_n, y_n))_{n=0}^{\infty}$, $(a_n, b_n))_{n=0}^{\infty} \in (\widehat{X} \times \widehat{Y})$ such that $((x_n, y_n))_{n=0}^{\infty} \sim ((a_n, b_n))_{n=0}^{\infty}$, then $((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}) = ((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty})$, i.e. $(x_n)_{n=0}^{\infty} \sim (a_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty} \sim (b_n)_{n=0}^{\infty}$. We have

$$((x_n, y_n))_{n=0}^{\infty} \sim ((a_n, b_n))_{n=0}^{\infty}$$

$$\implies \lim_{n \to \infty} d((x_n, y_n), (a_n, b_n)) = 0$$
 (by definition of \sim)
$$\implies \lim_{n \to \infty} d_X(x_n, a_n) + d_Y(y_n, b_n) = 0$$
 (by definition of product metric of $X \times Y$)

Now, since $0 \le d_X(x_n, a_n) \le d_X(x_n, a_n) + d_Y(y_n, b_n)$ and $0 \le d_Y(y_n, b_n) \le d_X(x_n, a_n) + d_Y(y_n, b_n)$ for each $n \ge 1$, the above (together with Sandwich Theorem) implies

$$\lim_{n \to \infty} d_X(x_n, a_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d_Y(y_n, b_n) = 0$$

$$\implies (x_n)_{n=0}^{\infty} \sim (a_n)_{n=0}^{\infty} \quad \text{and} \quad (y_n)_{n=0}^{\infty} \sim (b_n)_{n=0}^{\infty}$$

$$\implies ((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}) = ((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty})$$

hence Ψ is well-defined.

 Ψ is distance-preserving: For $((x_n, y_n))_{n=0}^{\infty}, ((a_n, b_n))_{n=0}^{\infty} \in (\widehat{X \times Y})$, we have

$$d'(\Psi(((x_n, y_n))_{n=0}^{\infty}), \Psi(((a_n, b_n))_{n=0}^{\infty}))$$

$$= d'((((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}), ((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty}))$$

$$= \hat{d}_X((x_n)_{n=0}^{\infty}, (a_n)_{n=0}^{\infty}) + \hat{d}_Y((y_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty})$$
(by definition of product metric of $\hat{X} \times \hat{Y}$)
$$= \lim_{n \to \infty} d_X(x_n, a_n) + \lim_{n \to \infty} d_Y(y_n, b_n)$$
(by definition of completion of X, Y)
$$= \lim_{n \to \infty} d_X(x_n, a_n) + d_Y(y_n, b_n)$$

$$= \lim_{n \to \infty} d((x_n, y_n), (a_n, b_n))$$
(by definition of product metric of $X \times Y$)
$$= \hat{d}(((x_n, y_n))_{n=0}^{\infty}, ((a_n, b_n))_{n=0}^{\infty})$$
(by definition of completion of $X \times Y$)

hence Ψ is distance preserving.

 Ψ is injective: Suppose $((x_n, y_n))_{n=0}^{\infty}$, $((a_n, b_n))_{n=0}^{\infty} \in (\widehat{X \times Y})$ such that $\Psi(((x_n, y_n))_{n=0}^{\infty}) = \Psi(((a_n, b_n))_{n=0}^{\infty})$. Then

$$\Psi(((x_n, y_n))_{n=0}^{\infty}) = \Psi(((a_n, b_n))_{n=0}^{\infty})$$

$$\Rightarrow ((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}) = ((a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty})$$

$$\Rightarrow (x_n)_{n=0}^{\infty} \sim (a_n)_{n=0}^{\infty} \quad \text{and} \quad (y_n)_{n=0}^{\infty} \sim (b_n)_{n=0}^{\infty}$$

$$\Rightarrow \lim_{n \to \infty} d_X(x_n, a_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d_Y(y_n, b_n) = 0$$

$$\Rightarrow \lim_{n \to \infty} d_X(x_n, a_n) + d_Y(y_n, b_n) = 0$$

$$\Rightarrow \lim_{n \to \infty} d((x_n, y_n), (a_n, b_n)) = 0 \quad \text{(by definition of product metric of } X \times Y)$$

$$\Rightarrow ((x_n, y_n))_{n=0}^{\infty} \sim ((a_n, b_n))_{n=0}^{\infty}$$

which implies that $((x_n, y_n))_{n=0}^{\infty}$, $((a_n, b_n))_{n=0}^{\infty}$ are equal as elements (equivalence classes) in $(\widehat{X} \times \widehat{Y})$. Hence Ψ is injective.

Ψ is surjective: Every element in $\hat{X} \times \hat{Y}$ can be written in the form $((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty})$ where $(x_n)_{n=0}^{\infty} \in \hat{X}$ and $(y_n)_{n=0}^{\infty} \in \hat{Y}$. We just have to show $((x_n, y_n))_{n=0}^{\infty} \in (\widehat{X} \times \widehat{Y})$, as we would then have $\Psi(((x_n, y_n))_{n=0}^{\infty}) = ((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty})$. Indeed, since $(x_n)_{n=0}^{\infty} \in \hat{X}$ and $(y_n)_{n=0}^{\infty} \in \hat{Y}$, we have that $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ are Cauchy sequences, and this implies that for any $\epsilon > 0$ there exist N_1 and N_2 such that $d_X(x_n, x_m) < \epsilon/2$ when $n, m \ge N_1$ and $d_Y(y_n, y_m) < \epsilon/2$ when $n, m \ge N_2$. Taking $N = \max(N_1, N_2)$, for all $n, m \ge N$ we have

$$\begin{aligned} d_X(x_n, x_m) &< \epsilon/2 \text{ and } d_Y(y_n, y_m) < \epsilon/2 \\ &\Longrightarrow d_X(x_n, x_m) + d_Y(y_n, y_m) < \epsilon \\ &\Longrightarrow d((x_n, y_n), (x_m, y_m)) < \epsilon \end{aligned} \qquad \text{(by definition of product metric of } X \times Y$$

Hence $((x_n, y_n))_{n=0}^{\infty}$ is a Cauchy sequence, so $((x_n, y_n))_{n=0}^{\infty} \in (\widehat{X} \times \widehat{Y})$. As discussed, this implies that Ψ is surjective.

Conclusion: We have shown Ψ is well-defined, distance-preserving, injective and surjective, hence Ψ is a distance preserving bijection.