
Exercise L14-1

Throughout this question, we will be using the d∞ metric on Rn.
We’ll first show that the function f : Rn → Rn given by f(v) = v − Av + w (where w is a fixed vector

and A is as given in the question) is a contraction. To do this, we will be using the hypothesis given in the
problem statement, i.e. that there exists λ ∈ (0, 1) with

n∑
j=1

|δij −Aij | ≤ λ for each 1 ≤ i ≤ n (1)

We claim that f is a λ-contraction. Indeed, consider any two vectors x = (x1, x2, . . . , xn) ∈ Rn and y =
(y1, y2, . . . , yn) ∈ Rn. We have

d∞(x,y) = max{|xi − yi|}ni=1

and

d∞(f(x), f(y)) = d∞(x−Ax + w,y −Ay + w)

= max{|πi((x−Ax + w)− (y −Ay + w))|})ni=1

= max{|πi(x− y −Ax +Ay)|})ni=1

= max{|πi((In −A)(x− y))|})ni=1

where πi : Rn → R, 1 ≤ i ≤ n, denotes the projection and In is the n × n identity matrix. To calculate
πi((In −A)(x− y)) (for 1 ≤ i ≤ n) we need to take the dot product of the ith row of In −A with x− y, i.e.

πi((In −A)(x− y)) =

n∑
j=1

(δij −Aij)(xj − yj)

And now we have, for each 1 ≤ i ≤ n,

|πi((In −A)(x− y))| =

∣∣∣∣∣∣
n∑
j=1

(δij −Aij)(xj − yj)

∣∣∣∣∣∣
≤

n∑
j=1

|δij −Aij | · |xj − yj | (by the triangle inequality)

≤
n∑
j=1

|δij −Aij | · d∞(x,y) (since d∞(x,y) = max{|xj − yj |}nj=1)

= d∞(x,y)

n∑
j=1

|δij −Aij |

≤ λ d∞(x,y) (by (1))

and so we have that |πi((In −A)(x− y))| ≤ λ d∞(x,y) for every 1 ≤ i ≤ n. This implies

d∞(f(x), f(y)) = max{|πi((In −A)(x− y))|})ni=1 ≤ λ d∞(x,y)

so that d∞(f(x), f(y)) ≤ λ d∞(x,y) for all x,y ∈ R and hence f is a λ-contraction, as claimed.
From here, observe that since (Rn, d∞) is a complete metric space and f : Rn → Rn is a contraction, we

may use the Banach fixed point theorem to conclude that f has a unique fixed point. Thus there is a unique
value of v ∈ Rn such that f(v) = v, i.e. v − Av + w = v. This implies that Av = w has a unique solution
v, as required.
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Exercise L14-2

Let (X, d) be a compact metric space, and let λ ∈ (0, 1). To show that the map fix : Ctsλ(X,X) → X is
continuous, it suffices (by Lemma L6-4) to show that for all f ∈ Ctsλ(X,X), given any ε > 0 there exists
δ > 0 such that

d∞(f, g) < δ =⇒ d(fix(f),fix(g)) < ε ∀g ∈ Ctsλ(X,X).

Here d∞ is defined as usual, i.e.

d∞(f, g) = sup{d(f(x), g(x)) | x ∈ X}

(which is indeed a metric on Cts(X,X) by Theorem L13-2 since X is compact and metrisable, and then
Ctsλ(X,X) ⊆ Cts(X,X), given the subspace topology, also inherits this metric.)

So, fix some f ∈ Ctsλ(X,X). Note that f is a λ-contraction so for all x, y ∈ X we have

d(f(x), f(y)) ≤ λ d(x, y). (1)

Now, let ε > 0 be given. Let δ = ε(1 − λ), which is positive since ε > 0 and λ < 1. Suppose that some
g ∈ Ctsλ(X,X) satisfies d∞(f, g) < δ. We want to show that d(fix(f),fix(g)) < ε. To do this, first let
a = fix(f) and b = fix(g). Then, by definition of the fix function we have

f(a) = a and g(b) = b. (2)

And now we have

d(a, b) ≤ d(a, f(b)) + d(f(b), b) (by the triangle inequality)

= d(f(a), f(b)) + d(f(b), g(b)) (by (2))

≤ λ d(a, b) + d(f(b), g(b)) (by (1))

< λd(a, b) + δ (since d(f(b), g(b)) ≤ sup
x∈X
{d(f(x), g(x))} = d∞(f, g) < δ)

i.e. d(a, b) < λd(a, b) + δ. Rearranging, we get (1− λ)d(a, b) < δ, which gives (remembering that 1− λ > 0):

d(fix(f),fix(g)) = d(a, b) <
δ

1− λ
=
ε(1− λ)

1− λ
= ε.

So indeed, whenever some g ∈ Ctsλ(X,X) satisfies d∞(f, g) < δ, we have d(fix(f),fix(g)) < ε.
As we discussed earlier, this shows that the function fix sending a contraction mapping to its unique fixed

point is continuous, which is what we wanted.

Exercise L16-6

Let A be the set of polynomials in Poly(X,R) whose coefficients are all rational (or rather, the set of
polynomial functions in Poly(X,R) which are induced by polynomials with rational coefficients). We claim
that A is a countable dense subset of Cts(X,R). Our proof is in a couple of parts:

A is a countable set: Firstly, to distinguish between polynomials and polynomial functions we’ll denote
by A′ the set of polynomials with rational coefficients. Clearly if A′ is countable then A is countable, so we’ll
just show A′ is countable. For each polynomial p(x) ∈ A′, we can uniquely express p(x) in the form (writing
~N = (N1, N2, . . . , Nn))

p(x) =
∑
~N∈Y

a ~N
b ~N

π1(x)N1π2(x)N2 . . . πn(x)Nn
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where Y ⊂ Nn is finite, and for each ~N ∈ Y , a ~N , b ~N are nonzero integers such that b ~N > 0 and gcd(a ~N , b ~N ) = 1

for ~N ∈ Y , and an 6= 0. For p(x) as above, denote by N(p(x)) the quantity

N(p(x)) :=
∑
~N∈Y

|a ~N |+ |b ~N |+N1 +N2 + · · ·+Nn

Then, clearly the set

Ak := {p(x) ∈ A′ | N(p(x)) ≤ k}

is finite for each integer k ≥ 0, and clearly A′ =
⋃∞
k=0Ak. So we can list out all the polynomials in A by

listing out the polynomials in A0, then A1, then A2, and so on. This gives a bijection from N to A′, hence
A′ is countable. Hence A is also countable.

A ⊆ Cts(X,R) is dense, i.e. A = Cts(X,R): We’ll first show that Poly(X,R) ⊆ A. Let p ∈ Poly(X,R),
we’ll show that p can be uniformly approximated by elements of A. We can write p as

p(x) =
∑
~N∈Y

c ~Nπ1(x)N1π2(x)N2 . . . πn(x)Nn

where Y ⊂ Nn is finite, and c ~N ∈ R for ~N ∈ Y . Now, since X ⊆ R is compact, the image of X under

the map πN1
1 πN2

2 . . . πNn
n (which is continuous since it a product of projections) must be compact. Since

πN1
1 πN2

2 . . . πNn
n (X) ⊆ R and compact sets in R are bounded, it follows that πN1

1 πN2
2 . . . πNn

n (X) ⊆ R must be

bounded for each ~N ∈ Y . Since Y is finite, we then get that there must exist some K such that

|π1(x)N1π2(x)N2 . . . πn(x)Nn | < K ∀x ∈ X and ~N ∈ Y (1)

Now, since Q = R, for each ~N ∈ Y we can find some q ~N ∈ Q such that

|c ~N − q ~N | <
ε

2|Y |K
(2)

(here we are using Exercise L13-4, which tells us that since c ~N ∈ R = Q, every open neighbourhood of ci
contains an element of Q.) Now consider the polynomial q ∈ A given by

p(x) =
∑
~N∈Y

q ~Nπ1(x)N1π2(x)N2 . . . πn(x)Nn .

We have, for each x ∈ X,

|p(x)− q(x)| =

∣∣∣∣∣∣
∑
~N∈Y

c ~Nπ1(x)N1π2(x)N2 . . . πn(x)Nn −
∑
~N∈Y

q ~Nπ1(x)N1π2(x)N2 . . . πn(x)Nn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
~N∈Y

(c ~N − q ~N )π1(x)N1π2(x)N2 . . . πn(x)Nn

∣∣∣∣∣∣
≤
∑
~N∈Y

∣∣(c ~N − q ~N )π1(x)N1π2(x)N2 . . . πn(x)Nn
∣∣ (triangle inequality)

=
∑
~N∈Y

∣∣(c ~N − q ~N )
∣∣ · ∣∣π1(x)N1π2(x)N2 . . . πn(x)Nn

∣∣
≤
∑
~N∈Y

ε

2|Y |K
·K (by (1) and (2))

=
ε

2
< ε.
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So we have shown that for any p ∈ Poly(X,R) and any ε > 0 there exists q ∈ A such that |p(x)− q(x)| < ε
for all x ∈ X. By Exercise L16-1 (which we can apply since X is compact, R is a metric space and
A ⊆ Poly(X,R) ⊆ Cts(X,R) we conclude that p ∈ A for every p ∈ Poly(X,R), that is,

Poly(X,R) ⊆ A

=⇒ Poly(X,R) ⊆ A

(using the definition of Poly(X,R) and the fact that A is closed). But also, Exercise L13-4 tells us that since
A ⊆ Poly(X,R) we also have

A ⊆ Poly(X,R)

so together we see that we must have A = Poly(X,R). It remains to note that from Corollary L16-4, which
we can use since X ⊆ Rn is compact, we also have Poly(X,R) = Cts(X,R), and this gives

A = Poly(X,R) = Cts(X,R)

and therefore A is a dense subset of Cts(X,R).

Conclusion (and second countability): We have shown A is a countable dense subset of Cts(X,R),
hence Cts(X,R) is separable. We’ll now show that Cts(X,R) is second-countable.

First note that Cts(X,R) is metrisable with the d∞ metric (by Theorem L13-2, noting that X is compact
and R is metrisable). Consider the set B = {Bε(p) | p ∈ A, ε ∈ Q>0}, we claim B is countable and is also a
basis for the topology on Cts(X,R).

Indeed, B is countable since we proved previously that A is countable and we also know that Q>0 is
countable, which implies that A × Q>0 is countable (since the Cartesian product of two countable sets is
countable- it is easy to see how the usual proof that Q is countable extends to this), and it follows that B is
also countable.

As for proving B is a basis for the topology on Cts(X,R), let U ⊆ Cts(X,R) be open and f ∈ U . We need
to show that there exists B ∈ B with f ∈ B ⊆ U . From the definition of the topology on a metric space,
since U is open and f ∈ U we know there exists ε1 > 0 such that Bε1(f) ⊆ U . Now, since f ∈ Cts(X,R) = A,
we know (by Exercise L16-1) that there exists some q ∈ A such that

|f(x)− q(x)| < ε1
3
∀x ∈ X i.e. d∞(f, q) <

ε1
3

(3)

Also, since ε1
2 ∈ R = Q, we know (by Exercise L13-4) that every open neighbourhood of ε1

2 must contain an
element of Q, and this implies that there exists some rational number ε2 such that∣∣∣ε2 − ε1

2

∣∣∣ < ε1
6

i.e. − ε1
6
< ε2 −

ε1
2
<
ε1
6

i.e.
ε1
3
< ε2 <

2ε1
3
.

Now we claim that f ∈ Bε2(q) ⊆ U . Indeed, by (3) we have

d∞(f, q) <
ε1
3
< ε2

which implies that f ∈ Bε2(q). And, for any g ∈ Bε2(q), we have d∞(q, g) < ε2 < 2ε1/3 which implies

d∞(f, g) ≤ d∞(f, q) + d∞(q, g) (triangle inequality)

<
ε1
3

+
2ε1
3

(by (3) and our earlier calculation for d∞(q, g))

= ε1

=⇒ g ∈ Bε1(f)

and since this holds for all g ∈ Bε2(q), we have Bε2(q) ⊆ Bε1(f), and recalling that Bε1(f) ⊆ U , we get
Bε2(q) ⊆ U .

Since ε2 ∈ Q and q ∈ A, taking B = Bε2(q) we have B = Bε2(q) ∈ B and this set satisfies f ∈ B ⊆ U . We
can find such a B ∈ B for any open U ⊆ Cts(X,R) and f ∈ U , so this implies that B is a basis for Cts(X,R).

Putting everything together, we have that B is countable and is a basis for the topology on Cts(X,R),
hence Cts(X,R) is second-countable.
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Exercise L17-7

We want to prove that C (as defined in the question) is finite-dimensional if and only if X is a finite set of
points with the discrete topology. To do this, consider the following cases:

Case 1: X is finite: In this case, let the elements of X be X = {x1, x2, . . . , xn}. We’ll first prove the
following lemma:

Lemma 1. If X = {x1, x2, . . . , xn} is a finite Hausdorff topological space, then X has the discrete topology.

Proof. First, fix some i (1 ≤ i ≤ n), we will show that {xi} is open. Since X is Hausdorff, for each j such
that j 6= i we know that there must exist open sets Uj and Vj such that

xi ∈ Uj , xj ∈ Vj , Uj ∩ Vj = ∅.

Note that xj ∈ Vj and Uj ∩ Vj = ∅ implies that xj 6∈ Uj . Now consider the finite intersection

U =
⋂
j 6=i

Uj .

U must be open it is a finite intersection of open sets. Moreover, since xi ∈ Uj for all j 6= i, we must have
xi ∈ U . And, since xj 6∈ Uj for each j 6= i, we also have xj 6∈ U . So U is a subset of X containing xi but not
containing xj for j 6= i, hence U = {xi}. Then, since U is open, we have that {xi} must also be open, and
this is true for every 1 ≤ i ≤ n.

Now, any other subset S ⊆ X can be written in the form

S =
⋃
i∈I
{xi}

where I ⊆ {1, 2, . . . , n}, and then since a union of open sets is open, it follows that S must be open. Hence
all subsets of X are open and X must have the discrete topology.

Applying the lemma to this case (which we can do since X is finite and Hausdorff), we get that X has
the discrete topology. This implies that every function g : X → R is continuous, hence Cts(X,R) is just the
set of all functions from X to R.

Now, for 1 ≤ i ≤ n define fi : X → R as follows:

fi(xj) =

{
1 if i = j

0 otherwise

We claim that {f1, f2, . . . , fn} span C. Indeed, for any g ∈ C, we have

g(xj) =

n∑
i=0

g(xi)fi(xj) ∀ j ∈ {1, 2, . . . , n}

=⇒ g =

n∑
i=0

g(xi)fi

(where g(xi)fi is the function fi multiplied by the scalar g(xi)). So any g ∈ C can be expressed as a linear
combination of fis, hence C is spanned by {f1, f2, . . . , fn} as claimed.

Since C is spanned by a finite set, C must be finite-dimensional. This proves that if X is a finite set of
points with the discrete topology, then C is finite-dimensional.
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Case 2: X is infinite: We will show that if X is infinite, then C must be infinite-dimensional. Suppose
otherwise, for the sake of contradiction, that C is finite-dimensional. Let n = dimC. Since X is infinite, we
can find n+ 1 distinct points in X, say, x1, x2, . . . , xn+1 ∈ X. Now, we will prove two lemmas about X:

Lemma 2. There exist pairwise disjoint open sets Ui, 1 ≤ i ≤ n+ 1, such that xi ∈ Ui for 1 ≤ i ≤ n+ 1.

Proof. Since X is Hausdorff, for any 1 ≤ i < j ≤ n there exist open sets Vi,j ,Wi,j ⊆ X such that

xi ∈ Vi,j , xj ∈Wi,j , Vi,j ∩Wi,j = ∅.

Now, for each 1 ≤ i ≤ n+ 1, define Ui as follows:

Ui =

⋂
j<i

Wj,i

 ∩
⋂
j>i

Vi,j

 .

For all j < i we have xi ∈Wj,i, and for all j > i we have xi ∈ Vi,j , therefore xi ∈ Ui. And, for i < j we have

Ui ∩ Uj =

(⋂
k<i

Wk,i

)
∩

(⋂
k>i

Vi,k

)
∩

⋂
k<j

Wk,j

 ∩
⋂
k>j

Vj,k


⊆ Vi,j ∩Wi,j = ∅

and this implies that Ui ∩ Uj = Uj ∩ Ui = ∅. So indeed, the Ui’s are pairwise disjoint and satisfy xi ∈ Ui for
1 ≤ i ≤ n+ 1.

Lemma 3. For each x ∈ X, the set {x} is closed.

Proof. Fix any x ∈ X. Since X is Hausdorff, for any y ∈ X\{x} there exist open sets Uy, Vy ⊆ X such that

x ∈ Uy, y ∈ Vy, Uy ∩ Vy = ∅.

Note that since x ∈ Uy and Uy ∩ Vy = ∅, we must have x 6∈ Vy. So now, consider

V =
⋃

y∈X\{x}

Vy.

V is open since it is a union of open sets (each Vy was open). Also, since x 6∈ Vy for all y ∈ X\{x}, we have
x 6∈ V . And, since y ∈ Vy for all y ∈ X\{x}, we have y ∈ V for all y ∈ X\{x}. Since x 6∈ V and y ∈ V for
all y ∈ X\{x}, we must have V = X\{x}, then since V is open X\{x} must also be open. This implies {x}
is closed, as we wanted to show.

From the above two lemmas, we know that {xi} is closed for each 1 ≤ i ≤ n+ 1, and we also know that
there exist pairwise disjoint open sets Ui, 1 ≤ i ≤ n+ 1 such that xi ∈ Ui for 1 ≤ i ≤ n+ 1.

Now, for each 1 ≤ i ≤ n+1 we will define a function fi : X → R as follows. Let Ai = {xi} and Bi = X\Ui.
As mentioned before, Ai = {xi} is closed, and Bi is also closed since Ui is open. Moreover, since xi ∈ Ui, we
have xi 6∈ X\Ui = Bi so that Ai and Bi are disjoint. Also, since X is compact Hausdorff, it is normal (by
Exercise L11-9). So, we may use the Urysohn lemma to get that there exists a continuous function fi : X → R
such that

fi(a) = 1 ∀ a ∈ Ai and fi(b) = 0 ∀ b ∈ Bi

Since Ai = {xi}, this implies that fi(xi) = 1. Also, since Ui ∩Uj = ∅ and xj ∈ Uj for j 6= i, we have xj 6∈ Ui,
which implies xj ∈ X\Ui = Bi, for j 6= i. So, for each 1 ≤ i ≤ n+ 1 we have

fi(xi) = 1 and fi(xj) = 0 if j 6= i (1)
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Now we’ll show that these fis are linearly independent. Indeed, suppose that there exist α1, α2, . . . , αn+1

such that

n+1∑
i=1

αifi = 0

=⇒
n+1∑
i=1

αifi(xj) = 0 ∀ j ∈ {1, 2, . . . , n+ 1}

=⇒ αj = 0 ∀ j ∈ {1, 2, . . . , n+ 1} (by (1))

This shows that the set {f1, f2, . . . , fn+1} is linearly independent. But now we have a contradiction, as
C, which is of dimension n, cannot contain a set of n + 1 linearly independent vectors. Hence our initial
supposition was wrong, and C must be infinite dimensional.

Conclusion: From our cases we see that the only situation where C is finite-dimensional is when X is
finite with the discrete topology, hence C is finite-dimensional if and only if X is a finite set of points with
the discrete topology.

Exercise L18-7

Let a, b ∈ R with a < b (short comment about a = b case is at end of this solution). Consider the sequence
of functions fn : [a, b]→ R given for n ≥ 1 by

fn(x) =


0 if x ∈ [a, cn − dn] ∪ [cn + dn, b]
1
dn

(x− cn + dn) if x ∈ (cn − dn, cn)

− 1
dn

(x− cn − dn) if x ∈ [cn, cn + dn)

where

cn =

{
a+ b−a

4 if n odd

a+ 3(b−a)
4 if n even

and dn =
b− a
2n+1

To illustrate, here are some sketches of the first few functions in this sequence:
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We’ll now show that fn → f , where f is given by f(x) = 0 for all x ∈ [a, b]. Indeed, for n ≥ 1 note that fn
and f are Riemann integrable since it is continuous so we have

dp(fn, f) = ‖fn − f‖p =

{∫
[a,b]

|fn − f |p
}1/p

=

{∫ b

a

|fn(x)|p dx

}1/p

=

{∫ cn−dn

a

|fn(x)|p dx+

∫ cn+dn

cn−dn
|fn(x)|p dx+

∫ b

cn+dn

|fn(x)|p dx

}1/p

=

{
0 +

∫ cn+dn

cn−dn
|fn(x)|p dx+ 0

}1/p

≤

{∫ cn+dn

cn−dn
|1|p dx

}1/p

=

{∫ cn+dn

cn−dn
1 dx

}1/p

= (2dn)
1/p

=

(
b− a

2n

)1/p

which goes to zero as n→∞, prove that fn → f as n→∞. (Or, if I need to give an ε-N argument: for any

ε > 0 take N > log2( b−aεp ), then for n ≥ N the above shows that dp(fn, f) ≤
(
b−a
2n

)1/p ≤ ( b−a
2N

)1/p
< ε).

So we have proved that fn converges in (Cts([a, b],R), dp). However, fn does not converge pointwise, since
if we consider the point z = a+ b−a

4 , we have fn(z) = 1 if n is odd and fn(z) = 0 if n is even, so the sequence
(fn(z))∞n=0 does not converge.

Thus convergence fn → f in (Cts([a, b],R), dp) for 1 ≤ p <∞ does not imply pointwise convergence.
(A comment about the a = b case if it’s needed: This case is trivial to deal with since every sequence of

functions in (Cts([a, a],R), dp) will converge to the zero function (the associated integral is always zero), but
for example the sequence of functions fn : [a, b]→ R given by fn(a) = n for n ≥ 1 is not pointwise convergent.
So convergence still doesn’t imply pointwise convergence.)

Exercise L18-12

Denote by Ψ: ̂(X × Y )→ X̂ × Ŷ the function sending

((xn, yn))∞n=0 7→ ((xn)∞n=0, (yn)∞n=0).

We want to prove that Ψ is a well-defined distance preserving bijection. Denote by d̂ the metric on ̂(X × Y ),

by d̂X the metric on X̂, by d̂Y the metric on Ŷ , by d the metric on X × Y , and by d′ the metric on X̂ × Ŷ .

Ψ is well-defined: Let ((xn, yn))∞n=0 ∈ ̂(X × Y ). We’ll first show that ((xn)∞n=0, (yn)∞n=0) ∈ X̂ × Ŷ , i.e.
that (xn)∞n=0 and (yn)∞n=0 are Cauchy sequences. Let ε > 0 be given. Since ((xn, yn))∞n=0 is Cauchy, there
exists N such that for all n,m ≥ N we have

d((xn, yn), (xm, ym)) < ε

=⇒ dX(xn, xm) + dY (yn, ym) < ε (by definition of product metric of X × Y
=⇒ dX(xn, xm) < ε and dY (yn, ym) < ε (since dX(xn, xm), dY (yn, ym) ≥ 0)

and it follows that (xn)∞n=0 and (yn)∞n=0 are Cauchy sequences.

The other thing we have to check is that if ((xn, yn))∞n=0, (an, bn))∞n=0 ∈ ̂(X × Y ) such that ((xn, yn))∞n=0 ∼
((an, bn))∞n=0, then ((xn)∞n=0, (yn)∞n=0) = ((an)∞n=0, (bn)∞n=0), i.e. (xn)∞n=0 ∼ (an)∞n=0 and (yn)∞n=0 ∼ (bn)∞n=0.
We have

((xn, yn))∞n=0 ∼ ((an, bn))∞n=0

=⇒ lim
n→∞

d((xn, yn), (an, bn)) = 0 (by definition of ∼)

=⇒ lim
n→∞

dX(xn, an) + dY (yn, bn) = 0 (by definition of product metric of X × Y )
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Now, since 0 ≤ dX(xn, an) ≤ dX(xn, an) + dY (yn, bn) and 0 ≤ dY (yn, bn) ≤ dX(xn, an) + dY (yn, bn) for each
n ≥ 1, the above (together with Sandwich Theorem) implies

lim
n→∞

dX(xn, an) = 0 and lim
n→∞

dY (yn, bn) = 0

=⇒ (xn)∞n=0 ∼ (an)∞n=0 and (yn)∞n=0 ∼ (bn)∞n=0

=⇒ ((xn)∞n=0, (yn)∞n=0) = ((an)∞n=0, (bn)∞n=0)

hence Ψ is well-defined.

Ψ is distance-preserving: For ((xn, yn))∞n=0, ((an, bn))∞n=0 ∈ ̂(X × Y ), we have

d′(Ψ(((xn, yn))∞n=0),Ψ(((an, bn))∞n=0))

= d′(((xn)∞n=0, (yn)∞n=0), ((an)∞n=0, (bn)∞n=0))

= d̂X((xn)∞n=0, (an)∞n=0) + d̂Y ((yn)∞n=0, (bn)∞n=0) (by definition of product metric of X̂ × Ŷ )

= lim
n→∞

dX(xn, an) + lim
n→∞

dY (yn, bn) (by definition of completion of X,Y )

= lim
n→∞

dX(xn, an) + dY (yn, bn)

= lim
n→∞

d((xn, yn), (an, bn)) (by definition of product metric of X × Y )

= d̂(((xn, yn))∞n=0, ((an, bn))∞n=0) (by definition of completion of X × Y

hence Ψ is distance preserving.

Ψ is injective: Suppose ((xn, yn))∞n=0, ((an, bn))∞n=0 ∈ ̂(X × Y ) such that Ψ(((xn, yn))∞n=0) = Ψ(((an, bn))∞n=0).
Then

Ψ(((xn, yn))∞n=0) = Ψ(((an, bn))∞n=0)

=⇒ ((xn)∞n=0, (yn)∞n=0) = ((an)∞n=0, (bn)∞n=0)

=⇒ (xn)∞n=0 ∼ (an)∞n=0 and (yn)∞n=0 ∼ (bn)∞n=0

=⇒ lim
n→∞

dX(xn, an) = 0 and lim
n→∞

dY (yn, bn) = 0

=⇒ lim
n→∞

dX(xn, an) + dY (yn, bn) = 0

=⇒ lim
n→∞

d((xn, yn), (an, bn)) = 0 (by definition of product metric of X × Y )

=⇒ ((xn, yn))∞n=0 ∼ ((an, bn))∞n=0

which implies that ((xn, yn))∞n=0, ((an, bn))∞n=0 are equal as elements (equivalence classes) in ̂(X × Y ). Hence
Ψ is injective.

Ψ is surjective: Every element in X̂× Ŷ can be written in the form ((xn)∞n=0, (yn)∞n=0) where (xn)∞n=0 ∈ X̂
and (yn)∞n=0 ∈ Ŷ . We just have to show ((xn, yn))∞n=0 ∈ ̂(X × Y ), as we would then have Ψ(((xn, yn))∞n=0) =
((xn)∞n=0, (yn)∞n=0). Indeed, since (xn)∞n=0 ∈ X̂ and (yn)∞n=0 ∈ Ŷ , we have that (xn)∞n=0 and (yn)∞n=0 are
Cauchy sequences, and this implies that for any ε > 0 there exist N1 and N2 such that dX(xn, xm) < ε/2
when n,m ≥ N1 and dY (yn, ym) < ε/2 when n,m ≥ N2. Taking N = max(N1, N2), for all n,m ≥ N we have

dX(xn, xm) < ε/2 and dY (yn, ym) < ε/2

=⇒ dX(xn, xm) + dY (yn, ym) < ε

=⇒ d((xn, yn), (xm, ym)) < ε (by definition of product metric of X × Y

Hence ((xn, yn))∞n=0 is a Cauchy sequence, so ((xn, yn))∞n=0 ∈ ̂(X × Y ). As discussed, this implies that Ψ is
surjective.

Conclusion: We have shown Ψ is well-defined, distance-preserving, injective and surjective, hence Ψ is a
distance preserving bijection.
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