University of Melbourne MAST30026 Metric & Hilbert Spaces

ASSIGNMENT 3

30th October, 2020

Brae Vaughan-Hankinson, 910214

TUTOR - Will Troiani TUTORIAL - Tuesday 11:00

Contents

1	Exercise L16-3.5 ($ar{A}$ is a subalgebra)	1
2	Exercise L16-14 (Stone-Weierstrass for locally compact spaces)	2
3	Exercise L17-2 ($\exp \cos \theta$)	4
4	Exercise L19-4 (Bounded dual)	5

1 Exercise L16-3.5 (\bar{A} is a subalgebra)

Lemma 1.1. Let X be compact and (Y, d_Y) a metric space. Given a subset $A \subseteq \text{Cts}(X, Y)$, the following conditions on $f \in \text{Cts}(X, Y)$ are equivalent:

- 1. $f \in \bar{A}$;
- 2. there is a sequence $(a_n)_{n=0}^{\infty}$ in A converging uniformly to f;
- 3. f may be uniformly approximated by elements of A, that is, given $\varepsilon > 0$ there exists $a \in A$ such that $|f(x) a(x)| < \varepsilon$ for all $x \in X$.

Proof. From the notes (Exercise L16-1).

Proposition 1.1. Let X be compact Hausdorff and $A \subseteq \operatorname{Cts}(X,\mathbb{R})$ a subalgebra. Then $\bar{A} \subseteq \operatorname{Cts}(X,\mathbb{R})$ is also a subalgebra.

Proof. Since X is compact and $\mathbb R$ is a metric space, we can suitably define the d_∞ metric on $\mathrm{Cts}\,(X,\mathbb R)$.

Let $f,g\in \bar{A}$. By Lemma 1.1, there exist sequences $(f_n)_{n=0}^{\infty}$, $(g_n)_{n=0}^{\infty}$ in A converging uniformly to f,g respectively. Equivalently, the sequences converge to f,g with respect to the d_{∞} metric on $\mathrm{Cts}\,(X,\mathbb{R})$.

Since A is a subalgebra of $\mathrm{Cts}\,(X,\mathbb{R})$, it is closed under the operations of addition, multiplication, and scalar multiplication. Thus, given $f_n,g_n\in A$ above and $\lambda\in\mathbb{R}$, the sequences

$$(f_n + g_n)_{n=0}^{\infty}, \quad (f_n g_n)_{n=0}^{\infty}, \quad (\lambda f_n)_{n=0}^{\infty}$$
 (1.1)

are all sequences in $A \subseteq \mathrm{Cts}\,(X,\mathbb{R})$.

Note that X being compact is a stronger conditions than local compactness. Thus by $Lemma\ L16$ -6 of the lecture notes, $\mathrm{Cts}\ (X,\mathbb{R})$ is a topological \mathbb{R} -algebra: the operations of addition, multiplication, and scalar multiplication are continuous. Thus, these operations commute with limits, and we have

$$f + g = \lim_{n \to \infty} f_n + \lim_{n \to \infty} g_n$$

=
$$\lim_{n \to \infty} (f_n + g_n) \in \bar{A},$$
 (1.2)

$$f \cdot g = \left(\lim_{n \to \infty} f_n\right) \cdot \left(\lim_{n \to \infty} g_n\right)$$
$$= \lim_{n \to \infty} f_n g_n \in \bar{A}, \tag{1.3}$$

$$\lambda f = \lambda \lim_{n \to \infty} f_n$$

$$= \lim_{n \to \infty} \lambda f \in \bar{A},$$
(1.4)

where we have concluded Equation 1.2, Equation 1.3, Equation 1.4 from combinbing Equation 1.1 with Lemma 1.1. Thus \bar{A} is closed under addition, multiplication, and scalar multiplication.

Since A is a subalgebra, we have $1 \in A$ and so $1 \in \overline{A}$. Thus we ultimately have that \overline{A} is a subalgebra.

¹Using Lemma 1.1, we can construct the constant sequence $(1)_{n=0}^{\infty}$ to see this.

2 Exercise L16-14 (Stone-Weierstrass for locally compact spaces)

Lemma 2.1. Let X be locally compact Hausdorff. Let \hat{X} be the one-point compactification of X. Let

$$\hat{C} := \left\{ f \in \mathrm{Cts}\left(\hat{X}, \mathbb{R}\right) \mid f(\infty) = 0 \right\}. \tag{2.1}$$

Then \hat{C} is an (non-unital) algebra and is isometrically isomorphic to $\mathrm{Cts}_0(X,\mathbb{R})$, the continuous functions on X that vanish at infinity.

Proof. Clearly \hat{C} is a (non-unital) subalgebara, since any sum, product, or scalar product of functions in it are still zero at ∞ , so \hat{C} is closed under the operations Define

$$\psi: \mathrm{Cts}_0(X,\mathbb{R}) \to \hat{C}, \quad \psi(f)|_X = f, \quad \psi(f)(\infty) = 0.$$
 (2.2)

The map ψ is linear, and we see clearly that $\|f\|_{\infty} = \|\psi(f)\|_{\infty}$. Clearly the kernel is trivial, so ψ is injective. Furthemore, given $h \in \hat{C}$, we simply have $h|_X \in \mathrm{Cts}_0(X,\mathbb{R})$, so ψ is surjective. \Box

Lemma 2.2. Let X be a compact Hausdorff space and $A \subseteq \mathrm{Cts}\,(X,\mathbb{R})$ a subalgebra that separates points, and is such that $\forall f \in A$, $f(\xi) = 0$ for some $\xi \in X$. Then

$$\bar{A} = \left\{ f \in \mathrm{Cts}(X, \mathbb{R}) \mid f(\xi) = 0 \right\}. \tag{2.3}$$

Proof. The inclusion $\bar{A}\subseteq \big\{f\in \mathrm{Cts}\,(X,\mathbb{R})\;\big|\; f(\xi)=0\big\}$ essentially follows from the same arguments given in Proposition 1.1.

For the opposite inclusion, first define

$$A' := \{ f + a \mid f \in A, a \in \mathbb{R} \text{ a constant function} \}. \tag{2.4}$$

Since A' inherits the algebraic structure of A, it is clear to see that A' is a non-unital subalgebra of $\mathrm{Cts}\,(X,\mathbb{R})$. Since we may take a=0, we see that $A\subset A'$, and so A' separates points. Furthermore, since we may take $f=0\in A$, we see that A' contains 1 and so it is in fact a (unital) subalgebra. Therefore, by the **Stone-Weierstrass Theorem**, we have

$$\bar{A}' = \mathrm{Cts}(X, \mathbb{R}). \tag{2.5}$$

Now let $f \in \mathrm{Cts}\,(X,\mathbb{R})$ be such that $f(\xi)=0$. By Lemma 1.1, there exists a sequence $(f'_n)_{n=0}^\infty$ in A' converging to f with respect to the d_∞ metric. By definition we may write

$$f'_n = f_n + a_n, \quad f_n \in A, a_n \in \mathbb{R}. \tag{2.6}$$

Since $f_n'(\xi) \to 0$ as $n \to \infty$, and $f_n(\xi) = 0$ by definition, we must have $a_n \to 0$ in the limit. Thus $f_n' - f_n \to 0$, and so the two sequences are equivalent Cauchy sequences. Thus $f_n \to f$, and so $f \in \bar{A}$, as was to be shown.

Proposition 2.1. Let X be locally compact Hausdorff and A a non-unital subalgebra of $\mathrm{Cts}_0(X,\mathbb{R})$ that separates points and is such that $\forall x \in X$ there exists some $f \in A$ such that $f(x) \neq 0$. Then $\bar{A} = \mathrm{Cts}_0(X,\mathbb{R})$.

Proof. By Lemma 2.1, we may view A as a subalgebra $A\cong \hat{A}$ in $\mathrm{Cts}\left(\hat{X},\mathbb{R}\right)$ which separates points in \hat{X} and is zero at ∞ . Then by Lemma 2.2, we have $\bar{A}=\hat{C}$. Thus by going back through the isometric isomorphism we have that $\bar{A}=\mathrm{Cts}_0\left(X,\mathbb{R}\right)$. \square

3 Exercise L17-2 ($\exp \cos \theta$)

Proposition 3.1. The function $\exp(\cos \theta)$ is **not** in the linear span of the set $\{\cos(n\theta), \sin(n\theta)\}_{n\geq 1} \cup \{1\}$.

Proof. By definition, the span of a set consists of all the **finite** linear combinations of elements of the set. By definition of the exponential, we may write

$$\exp(\cos \theta) = \sum_{n=0}^{\infty} \frac{\cos^n \theta}{n!}$$

$$= \sum_{n \text{ even}} \frac{1}{2^n} \binom{n}{n/2} + \frac{2}{2^n} \sum_{k=0}^{n/2-1} \binom{n}{k} \cos((n-2k)\theta) + \sum_{n \text{ odd}} \frac{2}{2^n} \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{k} \cos((n-2k)\theta),$$
(3.1)

where we have used the power reduction laws. Crucially, we see that the terms in the series are non-zero for arbitrary n. In particular, by inspecting the terms above for k=0 we have a contribution of at least²

$$\sum_{n=0}^{\infty} \frac{2}{2^n} \cos(n\theta). \tag{3.2}$$

So there is **no** finite \mathbb{R} -linear combination

$$S = a_0 + \sum_{n=1}^{r} a_n \cos(n\theta) + b_n \sin(n\theta)$$
(3.3)

such that $\exp{(\cos{\theta})} - S = 0$, since there are always non-zero coefficients at least of the form

$$\frac{2}{2^n},\tag{3.4}$$

with index n > r, given any $r \in \mathbb{N}$.

 $^{^{2}\}mbox{Note that all the coefficients are positive.}$

4 Exercise L19-4 (Bounded dual)

Proposition 4.1. Let $(V,\|\cdot\|_V)$ and $(W,\|\cdot\|_W)$ be normed spaces and $T:V\to W$ a bounded linear operator. Then

$$T^{\vee}:W^{\vee}\to V^{\vee}$$

$$T^{\vee}\left(g\right)=g\circ T\tag{4.1}$$

is a bounded linear operator with $\|T^{\vee}\| \leq \|T\|$. Moreover, $(\cdot)^{\vee}$ is a functor, that is,

$$\left(\mathrm{id}_{V}\right)^{\vee} = \mathrm{id}_{V^{\vee}},\tag{4.2}$$

and, given a bounded linear operator $S:W \to U$

$$(S \circ T)^{\vee} = T^{\vee} \circ S^{\vee}. \tag{4.3}$$

Proof. We first show that T^{\vee} is linear. Given $f,g\in W^{\vee}$, we have, for all $v\in V$

$$\begin{split} T^{\vee}\left(f+g\right)(v) &= (f+g)\circ T(v) \\ &= f(T(v)) + g(T(v)) \qquad \text{(by definition of addition of maps)} \\ &= f\circ T(v) + g\circ T(v) \\ &= T^{\vee}(f)(v) + T^{\vee}(g)(v) \\ \Longrightarrow T^{\vee}(f+g) &= T^{\vee}(f) + T^{\vee}(g). \end{split} \tag{4.4}$$

Similarly, for $\lambda \in \mathbb{F}$, we have for all $v \in V$

$$T^{\vee}(\lambda g)(v) = (\lambda g) \circ T(v)$$

$$= \lambda \cdot f(T(v)) \qquad \text{(by definition of scalar multiplication of maps)}$$

$$= \lambda T^{\vee}(g)(v)$$

$$\implies T^{\vee}(\lambda g) = \lambda T^{\vee}(g). \qquad (4.5)$$

We now seek to show T^\vee is bounded, i.e. we wish to find an $M \geq 0$ such that $\|T^\vee(g)\|_{V^\vee} \leq M \|g\|_{W^\vee}$. Since $g \in W^\vee$ is a continuous linear functional, it is bounded and permits an operator norm $\|g\|_{W^\vee} = \|g\|$. We thus have, for all $w \in W$.

$$||g(w)||_{\mathbb{F}} \le ||g|| \, ||w||_{W} \,.$$
 (4.6)

In particular we have, for all $v \in V$

$$\begin{aligned} \|(g \circ T)(v)\|_{\mathbb{F}} &= \|g(Tv)\|_{\mathbb{F}} \\ &\leq \|g\| \|Tv\|_{W} \\ &\leq \|g\| \|T\| \|v\|_{V}. \end{aligned} \tag{4.7}$$

So for $\|v\|_V \neq 0$ we have

$$\frac{\|(g \circ T)(v)\|_{\mathbb{F}}}{\|v\|_{V}} \le \|g\| \|T\|. \tag{4.8}$$

This gives us an upper bound for the left-hand side. The operator norm is defined as the supremum of the left-hand side over all suitable v. Since the supremum is the **least** upper bound, we therefore have

$$||T^{\vee}(g)||_{V^{\vee}} = ||g \circ T||_{V^{\vee}} \le ||T|| \, ||g||_{W^{\vee}}. \tag{4.9}$$

We have thus shown that T^{\vee} is bounded, with M = ||T||. We now have

$$\sup \left\{ \frac{\|T^{\vee}(g)\|_{V^{\vee}}}{\|g\|_{W^{\vee}}} \, \middle| \, g \neq 0 \right\} \leq \sup \left\{ \|T\| \, \middle| \, g \neq 0 \right\} = \|T\|, \tag{4.10}$$

since ||T|| is independent of g. We have thus shown that

$$||T^{\vee}|| \le ||T||, \tag{4.11}$$

as required.

We now show that $(\cdot)^{\vee}$ is a functor. Observe

$$\begin{aligned} \left(\mathrm{id}_{V}\right)^{\vee} : V &\longrightarrow V, \\ g &\longmapsto g \circ \mathrm{id}_{V} = g, \end{aligned} \tag{4.12}$$

since for all $v \in V$ we have $(g \circ \mathrm{id}_V)(v) = g(\mathrm{id}_V v) = gv$. Now suppose we have $S: W \to U$ a bounded linear operator (hence also continuous). Then we have

$$(S \circ T)^{\vee} : U^{\vee} \to W^{\vee}$$

$$g \mapsto g \circ S \circ T = (g \circ S) \circ T$$

$$= S^{\vee}(g) \circ T$$

$$= T^{\vee} (S^{\vee}(g))$$

$$= (T^{\vee} \circ S^{\vee}) (g). \tag{4.13}$$

Thus $(S \circ T)^{\vee} = T^{\vee} \circ S^{\vee}$ as required.