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1 Exercise L16-3.5 (A is a subalgebra)

Lemma1.1. Let X be compactand (Y, dy ) ametric space. Givenasubset A C Cts (X,Y),
the following conditions on f € Cts (X,Y") are equivalent:

1 fe A;
2. there is a sequence (a,, ), in A converging uniformly to f;

3. f may be uniformly approximated by elements of A, that is, given ¢ > 0 there exists
a € Asuchthat|f(z) —a(x)| < eforalx € X.

Proof. From the notes (Exercise L16-1). O

Proposition 1.1. Let X be compact Hausdorff and A C Cts (X, R) a subalgebra. Then
A C Cts (X, R) is also a subalgebra.

Proof. Since X is compact and R is a metric space, we can suitably define the d,
metric on Cts (X, R).

Let f,g € A. By Lemma 1.1, there exist sequences (fy)o— , (gn)rey in A con-
verging uniformly to f, g respectively. Equivalently, the sequences converge to f, g
with respect to the d, metric on Cts (X, R).

Since A is a subalgebra of Cts (X, R), it is closed under the operations of addition,
multiplication, and scalar multiplication. Thus, given f,,, g, € A above and A € R,
the sequences

(fn + gn)ZO:O ? (fngn)zoz() ’ ()\fn)noo:O (1-1)
are all sequences in A C Cts (X, R).

Note that X being compact is a stronger conditions than local compactness. Thus
by Lemma L16-6 of the lecture notes, Cts (X, R) is a topological R-algebra: the op-
erations of addition, multiplication, and scalar multiplication are continuous. Thus,
these operations commute with limits, and we have

f+g=lim f,+ lim g,
n—oo n—oo
Jim (fn +9n) € A, (1.2)

f-g:(lim fn)-(lim gn)

n—oo n—oo
= lim f,g, € A, (1.3)
n—oo
M=\ lim f,
n—oo
= lim \f € A, (1.4)

n—roo

where we have concluded Equation 1.2, Equation 1.3, Equation 1.4 from combinbing
Equation 1.1 with Lemma 1.1. Thus A is closed under addition, multiplication, and
scalar multiplication.

Since A is a subalgebra, we have 1 € Aandso 1 € A.' Thus we ultimately have
that A is a subalgebra. O

1Using Lemma 1.1, we can construct the constant sequence (1)$2_ to see this.
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2 Exercise L16-14 (Stone-Weierstrass for locally compact
spaces)

Lemma 2.1. Let X be locally compact Hausdorff. Let X be the one-point compactification
of X. Let

C = {fECts(X,R) |f(oo):0}. (2.1)

Then C'is an (non-unital) algebra and is isometrically isomorphic to Ctsg (X, R), the contin-
uous functions on X that vanish at infinity.

Proof. Clearly C'is a (non-unital) subalgebara, since any sum, product, or scalar prod-
uct of functions in it are still zero at oo, so C' is closed under the operations Define

¥ Ctso (X,R) = C, ¥(f)lx =Ff ¥(f)(c0)=0. (2.2)

The map ¢ is linear, and we see clearly that || f|| ., = || (f)| . Clearly the kernel is
trivial, so ) is injective. Furthemore, given h € C, we simply have k| x € Ctso (X, R),
so 1) is surjective. O

Lemma 2.2. Let X be a compact Hausdorff space and A C Cts (X, R) a subalgebra that
separates points, and is such that Vf € A, f (§) = 0 for some £ € X. Then

A={feCts(X,R)|f(&=0}. (2.3)

Proof. The inclusion A C {f € Cts (X,R) | f (£) = 0} essentially follows from the
same arguments given in Proposition 1.1.
For the opposite inclusion, first define

A":={f+al|fe A acRaconstant function} . (2.4)

Since A’ inherits the algebraic structure of A, it is clear to see that A’ is a non-unital
subalgebra of Cts (X, R). Since we may take a = 0, we see that A C A’, and so A’
separates points. Furthermore, since we may take f = 0 € A, we see that A’ con-
tains 1 and so it is in fact a (unital) subalgebra. Therefore, by the Stone-Weierstrass
Theorem, we have

A’ = Cts (X, R). (2.5)

Now let f € Cts (X, R) be such that f(£) = 0. By Lemma 1.1, there exists a sequence
(f1)oe, in A’ converging to f with respect to the do metric. By definition we may
write

fh="fot+an f.€Aa,cR. (2.6)

Since f},(§) — 0asn — oo, and f,,(§) = 0by definition, we must have a,, — 0 in the
limit. Thus f;, — f, — 0, and so the two sequences are equivalent Cauchy sequences.
Thus f,, — f,and so f € A, as was to be shown. O

Proposition 2.1. Let X be locally compact Hausdorff and A a non-unital subalgebra of
Ctsg (X, R) that separates points and is such that Vo € X there exists some f € A such
that f(x) # 0. Then A = Ctsg (X, R).
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Proof. By Lemma 2.1, we may view A as a subalgebra A = A in Cts (X ) R) which

separates points in X and is zero at co. Then by Lemma 2.2, we have A= C. Thus by
going back through the isometric isomorphism we have that A = Ctsy (X, R). O
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3 Exercise L17-2 (exp cos 0)

Proposition 3.1. The function exp (cos 0) isnotin the linear span of the set {cos (nf), sin (nf) }, -, U

{1

Proof. By definition, the span of a set consists of all the finite linear combinations of
elements of the set. By definition of the exponential, we may write

exp (cos ) = Z COZ' o
n=0 '
S +2WZ_1 ™Y cos (( —2k)9)+22§ ™\ cos ((n — 2Kk)0)
_neven 27 \n /2 o 2\ cos ((n 2 50 2\, cos ((n ;
(3.1)

where we have used the power reduction laws. Crucially, we see that the terms in the
series are non-zero for arbitrary n. In particular, by inspecting the terms above for
k = 0 we have a contribution of at least’

o0

Z 2% cos (nfh). (3.2)

n=0

So there is no finite R-linear combination

S =ag+ Z ap, cos (nh) + b, sin (nd (3.3)

n=1
such that exp (cos §) — S = 0, since there are always non-zero coefficients at least of
the form

with index n > r, given any r € N. a

Note that all the coefficients are positive.
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4 Exercise L19-4 (Bounded dual)

Proposition 4.1. Let (V, ||-||\,) and (W, ||-||y;/) be normed spacesand T' : V. — W a
bounded linear operator. Then

VWY 5 vY
TV (g)=goT (4.1)

is a bounded linear operator with || TV || < ||T||. Moreover, (-)"" is a functor, that is,
(idy)" = idyv, (4.2)
and, given a bounded linear operator S : W — U
(SoT) =TV 0 SV. (4.3)
Proof. We first show that T is linear. Given f,g € WV, we have, forallv € V

T (f+9) () = (f +9) e T(v)
J(T(v)) + g(T(v)) (by definition of addition of maps)

ffoT(v) goT(v)
—Tv(f)(v)+TV( )(v)
= TY(f+9)=T"(f)+T"(g). (4.4)

Similarly, for A € F, we have forallv € V

T"(Ag)(v) = (Ag) o T(v)
=X f(T(v)) (by definition of scalar multiplication of maps)
=AT"(g)(v
— TV(\g) = AT" (g). (4.5)

v\‘/

We now seek to show TV is bounded, i.e. we wish to find an M > 0 such that
1TV (Pl < Mgllyv. Since g € WY is a continuous linear functional, it is
bounded and permits an operator norm ||g||y;,v = ||g||. We thus have, for all w € W.

lg(w)lle < llgl lwlly - (4.6)
In particular we have, forallv € V
(g o T)(W)llg = llg(Tv)l[x

< gl 1Tl
< gl {lvlly - (4.7)

So for ||v;, # 0 we have

W < gl Tl

(4.8)
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This gives us an upper bound for the left-hand side. The operator norm is defined
as the supremum of the left-hand side over all suitable v. Since the supremum is the
least upper bound, we therefore have

17Dl =llg o Tllyv < 1T gl - (4.9)

We have thus shown that T is bounded, with M = ||T||. We now have

sup{'T(Q)”VV|g7é0} Ssup{HTH ’g;éo} =7, (4.10)
N9l

since ||T|| is independent of g. We have thus shown that
11 < 117l (4.11)

as required.
We now show that (-)" is a functor. Observe

(idy)’ :V —V,
gr— goidy =g, (4.12)

since for all v € V we have (g oidy) (v) = g (idy v) = gv. Now suppose we have
S : W — U abounded linear operator (hence also continuous). Then we have

(SoT)" :UY - WV
grgoSoT =(goS)oT

=8Y(g)oT

=T"(8"(g))

=(TV o 5Y)(g). (4.13)
Thus (S o T)" =TV o SV as required. O
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