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1 Exercise L16-3.5 (Ā is a subalgebra)

Lemma 1.1. LetX be compact and (Y, dY ) ametric space. Given a subsetA ⊆ Cts (X,Y ),
the following conditions on f ∈ Cts (X,Y ) are equivalent:

1. f ∈ Ā;

2. there is a sequence (an)
∞
n=0 inA converging uniformly to f ;

3. f may be uniformly approximated by elements of A, that is, given ε > 0 there exists
a ∈ A such that |f(x)− a(x)| < ε for all x ∈ X .

Proof. From the notes (Exercise L16-1).

Proposition 1.1. LetX be compact Hausdorff and A ⊆ Cts (X,R) a subalgebra. Then
Ā ⊆ Cts (X,R) is also a subalgebra.

Proof. Since X is compact and R is a metric space, we can suitably define the d∞
metric on Cts (X,R).

Let f, g ∈ Ā. By Lemma 1.1, there exist sequences (fn)
∞
n=0 , (gn)

∞
n=0 in A con-

verging uniformly to f, g respectively. Equivalently, the sequences converge to f, g
with respect to the d∞ metric on Cts (X,R).

SinceA is a subalgebra ofCts (X,R), it is closed under the operations of addition,
multiplication, and scalar multiplication. Thus, given fn, gn ∈ A above and λ ∈ R,
the sequences

(fn + gn)
∞
n=0 , (fngn)

∞
n=0 , (λfn)

∞
n=0 (1.1)

are all sequences inA ⊆ Cts (X,R).
Note thatX being compact is a stronger conditions than local compactness. Thus

by Lemma L16-6 of the lecture notes, Cts (X,R) is a topological R-algebra: the op-
erations of addition, multiplication, and scalar multiplication are continuous. Thus,
these operations commute with limits, and we have

f + g = lim
n→∞

fn + lim
n→∞

gn

= lim
n→∞

(fn + gn) ∈ Ā, (1.2)

f · g =
(

lim
n→∞

fn

)
·
(

lim
n→∞

gn

)
= lim

n→∞
fngn ∈ Ā, (1.3)

λf = λ lim
n→∞

fn

= lim
n→∞

λf ∈ Ā, (1.4)

where we have concluded Equation 1.2, Equation 1.3, Equation 1.4 from combinbing
Equation 1.1 with Lemma 1.1. Thus Ā is closed under addition, multiplication, and
scalar multiplication.

Since A is a subalgebra, we have 1 ∈ A and so 1 ∈ Ā.1 Thus we ultimately have
that Ā is a subalgebra.

1Using Lemma 1.1, we can construct the constant sequence (1)∞n=0 to see this.
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2 Exercise L16-14 (Stone-Weierstrass for locally compact
spaces)

Lemma 2.1. LetX be locally compact Hausdorff. Let X̂ be the one-point compactification
ofX . Let

Ĉ :=
{
f ∈ Cts

(
X̂,R

) ∣∣ f(∞) = 0
}
. (2.1)

Then Ĉ is an (non-unital) algebra and is isometrically isomorphic toCts0 (X,R), the contin-
uous functions onX that vanish at infinity.

Proof. Clearly Ĉ is a (non-unital) subalgebara, since any sum, product, or scalar prod-
uct of functions in it are still zero at∞, so Ĉ is closed under the operations Define

ψ : Cts0 (X,R)→ Ĉ, ψ(f)|X = f, ψ(f)(∞) = 0. (2.2)

The map ψ is linear, and we see clearly that ‖f‖∞ = ‖ψ(f)‖∞. Clearly the kernel is
trivial, soψ is injective. Furthemore, givenh ∈ Ĉ , we simplyhaveh|X ∈ Cts0 (X,R),
so ψ is surjective.

Lemma 2.2. LetX be a compact Hausdorff space and A ⊆ Cts (X,R) a subalgebra that
separates points, and is such that ∀f ∈ A, f (ξ) = 0 for some ξ ∈ X . Then

Ā =
{
f ∈ Cts (X,R)

∣∣ f (ξ) = 0
}
. (2.3)

Proof. The inclusion Ā ⊆
{
f ∈ Cts (X,R)

∣∣ f (ξ) = 0
}
essentially follows from the

same arguments given in Proposition 1.1.
For the opposite inclusion, first define

A′ :=
{
f + a

∣∣ f ∈ A, a ∈ R a constant function
}
. (2.4)

SinceA′ inherits the algebraic structure ofA, it is clear to see thatA′ is a non-unital
subalgebra of Cts (X,R). Since we may take a = 0, we see that A ⊂ A′, and so A′

separates points. Furthermore, since we may take f = 0 ∈ A, we see that A′ con-
tains 1 and so it is in fact a (unital) subalgebra. Therefore, by the Stone-Weierstrass
Theorem, we have

Ā′ = Cts (X,R) . (2.5)

Now let f ∈ Cts (X,R) be such that f(ξ) = 0. By Lemma 1.1, there exists a sequence
(f ′n)

∞
n=0 in A

′ converging to f with respect to the d∞ metric. By definition we may
write

f ′n = fn + an, fn ∈ A, an ∈ R. (2.6)

Since f ′n(ξ)→ 0 asn→∞, and fn(ξ) = 0 by definition, wemust have an → 0 in the
limit. Thus f ′n− fn → 0, and so the two sequences are equivalent Cauchy sequences.
Thus fn → f , and so f ∈ Ā, as was to be shown.

Proposition 2.1. Let X be locally compact Hausdorff and A a non-unital subalgebra of
Cts0 (X,R) that separates points and is such that ∀x ∈ X there exists some f ∈ A such
that f(x) 6= 0. Then Ā = Cts0 (X,R).
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Proof. By Lemma 2.1, we may view A as a subalgebra A ∼= Â in Cts
(
X̂,R

)
which

separates points in X̂ and is zero at∞. Then by Lemma 2.2, we have ¯̂
A = Ĉ . Thus by

going back through the isometric isomorphism we have that Ā = Cts0 (X,R).

3
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3 Exercise L17-2 (exp cos θ)

Proposition 3.1. The function exp (cos θ) isnot in the linear span of the set{cos (nθ), sin (nθ)}n≥1∪
{1}.

Proof. By definition, the span of a set consists of all the finite linear combinations of
elements of the set. By definition of the exponential, we may write

exp (cos θ) =

∞∑
n=0

cosn θ

n!

=
∑
n even

1

2n

(
n

n/2

)
+

2

2n

n/2−1∑
k=0

(
n

k

)
cos ((n− 2k)θ) +

∑
n odd

2

2n

n−1
2∑

k=0

(
n

k

)
cos ((n− 2k)θ),

(3.1)

where we have used the power reduction laws. Crucially, we see that the terms in the
series are non-zero for arbitrary n. In particular, by inspecting the terms above for
k = 0 we have a contribution of at least2

∞∑
n=0

2

2n
cos (nθ). (3.2)

So there is no finite R-linear combination

S = a0 +

r∑
n=1

an cos (nθ) + bn sin (nθ (3.3)

such that exp (cos θ)−S = 0, since there are always non-zero coefficients at least of
the form

2

2n
, (3.4)

with index n > r, given any r ∈ N.

2Note that all the coefficients are positive.
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4 Exercise L19-4 (Bounded dual)

Proposition 4.1. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed spaces and T : V → W a
bounded linear operator. Then

T∨ : W∨ → V ∨

T∨ (g) = g ◦ T (4.1)

is a bounded linear operator with ‖T∨‖ ≤ ‖T‖. Moreover, (·)∨ is a functor, that is,

(idV )
∨

= idV ∨ , (4.2)

and, given a bounded linear operator S : W → U

(S ◦ T )
∨

= T∨ ◦ S∨. (4.3)

Proof. We first show that T∨ is linear. Given f, g ∈W∨, we have, for all v ∈ V

T∨ (f + g) (v) = (f + g) ◦ T (v)

= f(T (v)) + g(T (v)) (by definition of addition of maps)
= f ◦ T (v) + g ◦ T (v)

= T∨(f)(v) + T∨(g)(v)

=⇒ T∨(f + g) = T∨(f) + T∨(g). (4.4)

Similarly, for λ ∈ F, we have for all v ∈ V

T∨(λg)(v) = (λg) ◦ T (v)

= λ · f(T (v)) (by definition of scalar multiplication of maps)
= λT∨(g)(v)

=⇒ T∨(λg) = λT∨(g). (4.5)

We now seek to show T∨ is bounded, i.e. we wish to find an M ≥ 0 such that
‖T∨(g)‖V ∨ ≤ M ‖g‖W∨ . Since g ∈ W∨ is a continuous linear functional, it is
bounded and permits an operator norm ‖g‖W∨ = ‖g‖. We thus have, for allw ∈W .

‖g(w)‖F ≤ ‖g‖ ‖w‖W . (4.6)

In particular we have, for all v ∈ V

‖(g ◦ T )(v)‖F = ‖g(Tv)‖F
≤ ‖g‖ ‖Tv‖W
≤ ‖g‖ ‖T‖ ‖v‖V . (4.7)

So for ‖v‖V 6= 0 we have

‖(g ◦ T )(v)‖F
‖v‖V

≤ ‖g‖ ‖T‖ . (4.8)
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This gives us an upper bound for the left-hand side. The operator norm is defined
as the supremum of the left-hand side over all suitable v. Since the supremum is the
least upper bound, we therefore have

‖T∨(g)‖V ∨ = ‖g ◦ T‖V ∨ ≤ ‖T‖ ‖g‖W∨ . (4.9)

We have thus shown that T∨ is bounded, withM = ‖T‖. We now have

sup

{
‖T∨(g)‖V ∨
‖g‖W∨

∣∣ g 6= 0

}
≤ sup

{
‖T‖

∣∣ g 6= 0
}

= ‖T‖ , (4.10)

since ‖T‖ is independent of g. We have thus shown that

‖T∨‖ ≤ ‖T‖ , (4.11)

as required.
We now show that (·)∨ is a functor. Observe

(idV )
∨

: V −→ V,

g 7−→ g ◦ idV = g, (4.12)

since for all v ∈ V we have (g ◦ idV ) (v) = g (idV v) = gv. Now suppose we have
S : W → U a bounded linear operator (hence also continuous). Then we have

(S ◦ T )
∨

: U∨ →W∨

g 7→ g ◦ S ◦ T = (g ◦ S) ◦ T
= S∨(g) ◦ T
= T∨ (S∨(g))

= (T∨ ◦ S∨) (g). (4.13)

Thus (S ◦ T )
∨

= T∨ ◦ S∨ as required.

6


	Exercise L16-3.5 ( is a subalgebra)
	Exercise L16-14 (Stone-Weierstrass for locally compact spaces)
	Exercise L17-2 (expcos)
	Exercise L19-4 (Bounded dual)

