
MAST30026 Metric and Hilbert Spaces
Assignment 3 Solutions — 2018 Semester 2



Notation and conventions

The set N is the set of positive integers {1, 2, 3, . . . }.

The set N0 is the set of nonnegative integers {0, 1, 2, . . . }.
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Question 1

Exercise L11-8. Prove any metrisable space is normal.

Let (X, T ) be a metrisable topological space, and let d : X ×X R be a distance function inducing the
topology T . We wish to show that X is normal.

Let us first check that the singletons in X are closed: If x ∈ X then for every y ∈ {x}c we have Bd(x,y)(y) ⊆
{x}c (note d(x, y) > 0). This means that {x}c =

⋃
y∈{x}c Bd(x,y)(y) which is open as a union of open balls.

Hence {x} ⊆ X is closed.

Let C,D ⊆ X be arbitrary disjoint closed sets. Since C ∩D = ∅, every x ∈ C is outside D = D and hence,
by Exercise L13-4(i), x ∈ C has an open neighbourhood lying outside D. Similarly, every y ∈ D has an
open neighbourhood lying outside C. Since the topology T is induced by a metric, by Exercise L7-1(iii),
there is no loss of generality in assuming the existence of εx > 0 for every x ∈ C and ρy > 0 for every y ∈ D
such that

x ∈ Bεx(x) ⊆ Dc ∀x ∈ C,
y ∈ Bρy (y) ⊆ Cc ∀y ∈ D.

Let U :=
⋃
x∈C Bεx/2(x) and V :=

⋃
y∈D Bρy/2(y). Both U and V are unions of open balls, so they are both

open in X. Furthermore, C ⊆ U and D ⊆ V . We claim that U and V are disjoint: If z ∈ U ∩ V then there
exist x ∈ C and y ∈ D such that d(z, x) < εx/2 and d(z, y) < ρy/2. By the triangle inequality for d, we
have

d(x, y) 6 d(x, z) + d(z, y) < 1
2(εx + ρy) 6 max{εx, ρy}.

Thus it must be that d(x, y) < εx or d(x, y) < ρy. However, neither can be true, because (1) x ∈ C, while
Bρy (y) lies outside C and (2) y ∈ D, while Bεx(x) lies outside D. This means that U ∩ V = ∅.

Thus, given arbitrary disjoint closed sets C,D ⊆ X, we have produced disjoint open sets U, V ⊆ X such
that C ⊆ U and D ⊆ V . Furthermore, the singletons in X are closed. Therefore, X is normal.
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Question 2

Exercise L11-11.

(a) Prove X is Hausdorff if and only if the diagonal ∆ = {(x, x) ∈ X ×X | x ∈ X} is a closed subset of
X ×X.

(b) Let G be a topological group (see Tutorial 4). Prove that G is Hausdorff if and only if {e} is closed,
where e is the identity element.

(c) Let G be a topological group and H ⊆ G a normal subgroup. Prove that G/H is Hausdorff if and
only if H ⊆ G is closed.

2(a) (⇒) Suppose that X is Hausdorff. Take arbitrary x, y ∈ X such that (x, y) ∈ ∆c. Then x and y are distinct,
so, by the Hausdorff property, there exist disjoint open sets U, V ⊆ X such that x ∈ U and y ∈ V . We see
that U × V is an open neighbourhood of (x, y) ∈ X ×X. Since U ∩ V = ∅, the box U × V must lie outside
the diagonal ∆ (if z ∈ X is such that (z, z) ∈ ∆∩ (U × V ) then z ∈ U and z ∈ V , which is impossible since
U and V are disjoint), so (x, y) ∈ U ×V ⊆ ∆c. Since (x, y) ∈ ∆c was arbitrary, this shows that ∆ ⊆ X ×X
is closed.

(⇐) Suppose that ∆ ⊆ X ×X is closed. Take arbitrary distinct x, y ∈ X. Then (x, y) ∈ ∆c, and, since ∆c

is open, there exist open sets U, V ⊆ X such that (x, y) ∈ U × V ⊆ ∆c. As U × V lies outside the diagonal
∆, their intersection U ∩ V must be empty. This means that U, V ⊆ X are disjoint open sets with x ∈ U
and y ∈ V . We have shown the existence of separating open neighbourhoods for arbitrary distinct x, y ∈ X,
so X is Hausdorff.

(b) (⇒) Suppose that G is Hausdorff. Then each element in {e}c ⊆ G has an open neighbourhood which
does not contain e (i.e. the open neighbourhood lies inside {e}c), so, taking the union of all these open
neighbourhoods, we see that {e}c is open. Therefore {e} is closed.

(⇐) Suppose that {e} ⊆ G is closed. Consider the two maps:

G×G G×G G

(g, h) (g, h−1)

(g, h) gh

p r

Since G is a topological group, inversion is continuous, so, by Exercise L12-2, the p : G×G G is con-
tinuous. Also, r : G×G G is continuous by the definition of a topological group. This means that p ◦ r
is continuous. Note that (p ◦ r)(g, h) = gh−1 for all g, h ∈ G. Consider (p ◦ r)−1({e}). We have

(p ◦ r)−1({e}) = {(g, h) ∈ G×G | gh−1 = e} = {(g, h) ∈ G×G | g = h} = {(g, g) | g ∈ G},

which is the diagonal in G × G. Since {e} ⊆ G is closed and p ◦ r is continuous, (p ◦ r)−1({e}) must be
closed in G×G. This means that the diagonal in G×G is closed, so, by part (a), G is Hausdorff.

(c) Recall (from Question 3 on Tutorial 4) that G/H has the quotient topology. Let q : G G/H be the
quotient map, which is continuous by the definition of the quotient topology.

(⇒) SupposeG/H is Hausdorff. Then, by part (b), {H} ⊆ G/H is closed. Since q is continuous, q−1({H}) =
H ⊆ G is closed.

(⇐) Suppose H ⊆ G is closed. We will show that {H} ⊆ G/H is closed, so that, by part (b), G/H is
Hausdorff.
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2(c) By the definition of the quotient topology, a set U ⊆ G/H is open if and only if q−1(U) ⊆ G is open.
Taking complements, this means that a set C ⊆ G/H is closed if and only if q−1(C) ⊆ G is closed (taking
complements commutes with taking preimages). With C = {H} ⊆ G/H, we have q−1(C) = H, which, by
assumption, is a closed subset of G. This means C = {H} must be a closed subset of G/H. By part (b),
since the singleton {H} containing the identity element of G/H is closed, G/H is Hausdorff.
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MAST30026 Metric and Hilbert Spaces Assignment 3 Solutions

Question 3

Lemma L12-1. Let f : X Y be a function (not assumed continuous) between topological spaces X,
Y . The graph of f is

Γf := {(x, y) ∈ X × Y | y = f(x)}.

Prove that

(a) If Y is Hausdorff and f is continuous, Γf is closed in X × Y .

(b) Give a counterexample to show that if Y is not Hausdorff, it is not necessarily the case that the graph
of a continuous function f : X Y is closed.

(c) If Y is compact and Γf is closed, f is continuous. (First show X × Y X sends closed subsets to
closed subsets, using that Y is compact.)

3(a) Assume that Y is Hausdorff and that f is continuous. Suppose we are given (x, y) ∈ X × Y \ Γf . In
order to show that Γf is closed in X × Y , we must produce open subsets U ⊆ X and V ⊆ Y such that
(x, y) ∈ U × V ⊆ Γcf . Note that for general subsets A ⊆ X and B ⊆ Y , the box A × B lies outside Γf if
and only if f(A) ⊆ Bc, which is if and only if f−1(B) ⊆ Ac.

Consider the points f(x) and y in Y . Since (x, y) /∈ Γf , we have y 6= f(x), and, furthermore, because Y
is Hausdorff, there exist U ′, V ⊆ Y which are open and disjoint such that f(x) ∈ U ′ and y ∈ V . Take
U := f−1(V )c ⊆ X. We know f−1(V ) is closed as the preimage of a closed set under a continuous map, so
U is open in X.

We claim that (x, y) ∈ U × V and that U × V lies outside Γf . By construction, we know y ∈ V , so, in
order to show that (x, y) ∈ U × V , it remains to show that x ∈ U . Recall that U ′ and V were disjoint open
subsets of Y used to separate f(x) and y. This means that V ⊆ U ′c, where U ′c ⊆ Y is closed, and that
V ⊆ U ′c. In particular, we have f(x) /∈ V . We can now argue that

f(x) /∈ V ⇐⇒ x /∈ f−1(V ) ⇐⇒ x ∈ f−1(V )c = U,

which shows that (x, y) ∈ U×V . To see that U×V lies outside Γf , we use the fact that f−1(V ) ⊆ f−1(V ) =
U c.

We have successfully produced open sets U ⊆ X and V ⊆ Y such that (x, y) ∈ U × V ⊆ X × Y \ Γf . Since
(x, y) ∈ X × Y \ Γf was arbitrary, Γf is closed in X × Y .

(b) Take X = Y = {0, 1}. Let X have the discrete topology, and let Y have the indiscrete topology. Because
the singletons {0} and {1} are not closed in Y , we see that Y is not Hausdorff.

Take the function f : X Y given by f(0) = 0 and f(1) = 1. Since X has the discrete topology (or since
Y has the indiscrete topology), f is continuous. The graph of f is Γf = {(0, 0), (1, 1)} ⊆ X × Y , while the
product topology on X × Y is

{∅, {0} × Y, {1} × Y,X × Y }.

The graph Γf is not the complement of any open set in X × Y under the product topology, so we have
provided an example where Y is not Hausdorff and where the graph of a continuous f : X Y is not
closed.

(c) πX : X × Y X is closed

Assume that Y is compact. We first show that the projection map πX : X × Y X, where πX(x, y) = x,
is closed. Suppose we are given a closed E ⊆ X × Y and an x ∈ πX(E)c. We will show that there exists
an open U ⊆ X such that x ∈ U ⊆ πX(E)c. Since x ∈ πX(E)c, we must have that E ⊆ π−1

X ({x})c, so
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3(c) {x} × Y ⊆ Ec. For every y ∈ Y , we have (x, y) ∈ Ec, where Ec ⊆ X × Y is open since E is closed. This
means that, for every y ∈ Y , there exist open Uy ⊆ X and Vy ⊆ Y such that (x, y) ∈ Uy × Vy ⊆ Ec. The
family {Vy}y∈Y of open sets is a cover of Y , so, by compactness, there exists a finite set {yi}ni=1 ⊆ Y such
that Y =

⋃n
i=1 Vyi . Since Uyi 3 x for every i ∈ {1, 2, . . . , n}, we have that

⋂n
i=1 Uyi 3 x, so

(x, y) ∈
n⋂
i=1

Uyi × Vy ⊆ Ec ∀y ∈ Y =⇒ {x} × Y ⊆
n⋂
i=1

Uyi × Y︸︷︷︸
=
⋃

y∈Y
Vy

⊆ Ec.

Take U :=
⋂n
i=1 Uyi . As a finite intersection of open subsets, U itself is an open subset of X. Since

U × Y = π−1
X (U) ⊆ Ec, we have πX(E) ⊆ U c. Thus, we have produced an open U ⊆ X such that

x ∈ U ⊆ πX(E)c. Since x ∈ πX(E)c was arbitrary, we have shown that πX(E) is closed. Because E ⊆ X×Y
was an arbitrary closed set, πX is a closed map.

f : X Y is continuous

Now suppose further that Γf is closed in X × Y for the given map f : X Y . Suppose we are given a
closed D ⊆ Y . In order to show that f is continuous, we will show that f−1(D) ⊆ X is closed.

Since the projection πY : X × Y Y is continuous (Exercise L7-5) and D ⊆ Y is closed, the set X ×D =
π−1
Y (D) is closed in X × Y . Now observe that

f−1(D) = {x ∈ X | f(x) ∈ D}
= πX({(x, f(x)) ∈ X × Y | f(x) ∈ D})
= πX(Γf ∩ (X ×D)).

Since Γf is closed by assumption and X×D = π−1
Y (D) is closed, their intersection Γf ∩ (X×D) is closed in

X × Y . Since πX is a closed map, we see that f−1(D) is the image under a closed map of a closed set, and,
therefore, f−1(D) is closed in X. As D ⊆ Y was an arbitrary closed set, we have shown that f : X Y is
continuous.
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Question 4

Exercise L12-6. Let (S1,+, 0) be the circle as a topological group (see Tutorial 4). Prove that the map
S1 × LY LY sending (θ, f) to the function θ′ f(θ + θ′) is continuous. This map “rotates the loops”
in Y .

We attempt a kind of reversed construction of the specified map using the adjunction property of the
compact–open topology. Consider the following maps:

S1 × LY × S1 (θ, f, θ′)

LY × S1 × S1 (f, θ, θ′)

LY × S1 (f, θ + θ′) (f, ω)

Y f(ω).

∼=

idLY ×(+)

evS1,Y

The map S1 × LY × S1 LY × S1 × S1 is a homeomorphism since it only swaps coordinates. The map
LY × S1 × S1 LY × S1 is continuous by Exercise L12-2, where we have used the fact that +: S1 × S1 S1

is continuous by virtue of S1 being a topological group. Finally, evS1,Y : LY × S1 Y is continuous, be-
cause S1 is (locally) compact and Hausdorff. Thus, the composition of the above maps, which is

R0 : S1 × LY × S1 Y

(θ, f, θ′) f(θ + θ′),

is continuous. That is, R0 ∈ Cts(S1 × LY × S1, Y ). By the adjunction property of the compact–open
topology, there exists an R ∈ Cts(S1 × LY,LY ) such that R(θ, f)(θ′) = R0(θ, f, θ′) = f(θ + θ′) for every
θ′ ∈ S1. Therefore, this R is precisely the map initially specified in the question: The map R is the
map S1 × LY LY sending (θ, f) to the function θ′ f(θ + θ′). By our construction, which used the
adjunction property of the compact–open topology, R is continuous.
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Question 5

Exercise L12-10. Two continuous maps f, g : X Y are homotopic if there exists F : [0, 1]×X Y
continuous with F (0,−) = f and F (1,−) = g. Prove that if X is locally compact Hausdorff there is a
bijection between such homotopies F and paths in Cts(X,Y ) from f to g.

By the adjunction property of the compact–open topology, because X is locally compact and Hausdorff, we
know there is a bijection

Ψ[0,1],X,Y : Cts([0, 1]×X,Y ) Cts([0, 1],Cts(X,Y )).

Suppose we are given f, g ∈ Cts(X,Y ). Let H ⊆ Cts([0, 1] ×X,Y ) be the space of homotopies between f
and g. Let P ⊆ Cts([0, 1],Cts(X,Y )) be the space of paths in Cts(X,Y ) from f to g. That is, for every
r ∈ Cts([0, 1],Cts(X,Y )), we have that r ∈ P if and only if r(0) = f and r(1) = g.

We claim that the restriction of Ψ[0,1],X,Y to H gives the desired bijection between H and P . Since Ψ[0,1],X,Y
is a bijection, it is sufficient to show that Ψ[0,1],X,Y (H) = P . We will show that Ψ[0,1],X,Y (H) ⊆ P and that
P ⊆ Ψ[0,1],X,Y (H).

Ψ[0,1],X,Y (H) ⊆ P

Suppose F ∈ H. We wish to show that Ψ[0,1],X,Y (F ) ∈ P . That is, we wish to show that

Ψ[0,1],X,Y (F )(0)(−) = f and Ψ[0,1],X,Y (F )(1)(−) = g.

This follows immediately from the definition given in class for Ψ[0,1],X,Y , where

Ψ[0,1],X,Y (F )(t) = F (t,−) ∀t ∈ [0, 1],

and the fact that F (0,−) = f and F (1,−) = g (from F ∈ H, i.e. from F being a homotopy between f and
g). Thus, Ψ[0,1],X,Y (F ) ∈ P , and, as F ∈ H was arbitrary, we have shown that Ψ[0,1],X,Y (H) ⊆ P .

P ⊆ Ψ[0,1],X,Y (H)

Suppose r ∈ P . Consider the map

[0, 1]×X Cts(X,Y )×X Y .
r×idX evX,Y

By Exercise L12-2, the first map is continuous, and, because X is locally compact and Hausdorff, the second
map is continuous. Define F to be the composition

F : [0, 1]×X Y

(t, x) r(t)(x),

which is continuous as a composition of continuous functions. Then F (0,−) = r(0) = f and F (1,−) =
r(1) = g, so F ∈ H. Finally, using the definition given in class for Ψ[0,1],X,Y , we have Ψ[0,1],X,Y (F ) = r, so
r ∈ Ψ[0,1],X,Y (H). As r ∈ P was arbitrary, we conclude that P ⊆ Ψ[0,1],X,Y (H).
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Question 6

Exercise L12-13. Prove that if X, Z are locally compact Hausdorff and Y is arbitrary that the bijection
of Theorem L12-4

Cts(Z ×X,Y ) Cts(Z,Cts(X,Y ))
ΨZ,X,Y

is a homeomorphism where both sides are given the compact–open topology.

We will show that ΨZ,X,Y is (a) continuous and (b) open. Since ΨZ,X,Y is a bijection, taking images or
preimages under ΨZ,X,Y commutes with taking arbitrary unions and arbitrary intersections. This means
that, in order to show continuity and openness of ΨZ,X,Y , it suffices to consider the preimage or image of
elements of a subbasis for the separate topologies.

For general topological spaces A and B, we define

SA,B(K,U) := {f ∈ Cts(A,B) | f(K) ⊆ U}, K ⊆ A compact, U ⊆ B open,

which is as per the notation in class, except that we now make a distinction as to what the underlying
topological spaces are.

We will use some auxiliary results throughout. Some of their proofs will be included as part (c) at the end.

6(a) Our aim is to show that
ΨZ,X,Y ∈ Cts(Cts(Z ×X,Y ),Cts(Z,Cts(X,Y ))).

Consider the following two maps (both from Theorem L12-4):

Cts(Cts(Z ×X,Y )× Z ×X,Y )

Cts(Cts(Z ×X,Y )× Z,Cts(X,Y ))

Cts(Cts(Z ×X,Y ),Cts(Z,Cts(X,Y ))).

ΨCts(Z×X,Y )×Z,X,Y

ΨCts(Z×X,Y ),Z,Cts(X,Y )

Since X and Z are both locally compact Hausdorff, both maps are bijections. Consider the evaluation map

evZ×X,Y : Cts(Z ×X,Y )× Z ×X Y

(F, z, x) F (z, x).

We claim that evZ×X,Y is continuous and that, under the two maps above, we have

(ΨCts(Z×X,Y ),Z,Cts(X,Y ) ◦ΨCts(Z×X,Y )×Z,X,Y )(evZ×X,Y ) = ΨZ,X,Y ,

which will show that ΨZ,X,Y is a continuous map from Cts(Z ×X,Y ) to Cts(Z,Cts(X,Y )).

evZ×X,Y is continuous

From class, we know that evA,B is continuous as soon as A is locally compact Hausdorff, so we will show
that Z ×X is locally compact Hausdorff. Note that Z ×X is Hausdorff as a product of Hausdorff spaces
(Lemma L11-3), so it remains to show that Z ×X is locally compact. To this end, we have the following
result. The proof will be provided in part (c).
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6(a) Lemma 6.1

The product of two locally compact spaces is locally compact.

Applying Lemma 6.1 to Z and X, we find that Z × X is locally compact (in addition to already being
Hausdorff). This shows that evZ×X,Y is continuous.

ΨZ,X,Y is continuous

Let us consider what happens to evZ×X,Y after the application of ΨCts(Z×X,Y )×Z,X,Y . Call the output
Θ1. We know that Θ1 is a continuous function from Cts(Z ×X,Y ) × Z to Cts(X,Y ). Moreover, given a
continuous F : Z ×X Y and a z ∈ Z, we have, by the definition of ΨCts(Z×X,Y )×Z,X,Y , that Θ1(F, z) is
the continuous function from X to Y where

Θ1(F, z)(x) = evZ×X,Y (F, z, x)︸ ︷︷ ︸
Think of as evZ×X,Y ((F,z),x)

(6.1)

= F (z, x) ∈ Y ∀x ∈ X.

Next, let us consider what happens to Θ1 after the application of ΨCts(Z×X,Y ),Z,Cts(X,Y ). Call the output
Θ2. Then Θ2 is a continuous function from Cts(Z × X,Y ) to Cts(Z,Cts(X,Y )). Given a continuous
F : Z ×X Y , we have, by the definition of ΨCts(Z×X,Y ),Z,Cts(X,Y ), that Θ2(F ) is the continuous function
from Z to Cts(X,Y ) where

Θ2(F )(z) = Θ1(F, z) ∈ Cts(X,Y ) ∀z ∈ Z.

This means that, given a z ∈ Z, the symbol Θ2(F )(z) denotes the continuous function from X to Y where

Θ2(F )(z)(x) = Θ1(F, z)(x)
= evZ×X,Y (F, z, x) by (6.1)
= F (z, x) ∈ Y ∀x ∈ X.

Letting z vary over Z, we have that Θ2(F )(z)(x) = F (z, x) for every (z, x) ∈ Z ×X. However, this means
that Θ2(F ) = ΨZ,X,Y (F ) as elements of Cts(Z,Cts(X,Y ))! As F ∈ Cts(Z ×X,Y ) was arbitrary, we have
that

Θ2 = ΨZ,X,Y

as (set) maps from Cts(Z ×X,Y ) to Cts(Z,Cts(X,Y )). Since Θ2 is continuous by construction, it must be
that ΨZ,X,Y is continuous also!

(b) Properties of SA,B(−,−)

In this response, we will use some properties of SA,B(−,−). The properties are more set-theoretic than
topological.

Lemma 6.2

Let A and B be arbitrary topological spaces. Then SA,B(−,−) has the following properties:

(a) Anti-distributive over finite unions in the first argument: If {Ki}ni=1 is a finite collection of
compact subsets of A and U ⊆ B is open then SA,B(

⋃n
i=1Ki, U) =

⋂n
i=1 SA,B(Ki, U).

(b) Distributive over finite intersections in the second argument: If K ⊆ A is compact and {Ui}ni=1
is a finite collection of open subsets of B then SA,B(K,

⋂n
i=1 Ui) =

⋂n
i=1 SA,B(K,Ui).

(c) Inclusion-reversing in the first argument: If K ⊆ K ′ are two compact subsets of A and U ⊆ B is
open then SA,B(K,U) ⊇ SA,B(K ′, U).

(d) Inclusion-preserving in the first argument: If K ⊆ A is compact and U ⊆ U ′ are two open subsets
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6(b) of B then SA,B(K,U) ⊆ SA,B(K,U ′).

Note that the last two properties are consequences of the first two. The requirement of the collections
{Ki}ni=1 and {Ui}ni=1 to be finite is so that the union and intersection, respectively, remain compact and
open, respectively.

ΨZ,X,Y is open

Suppose we are given a compact G ⊆ Z ×X and an open V ⊆ Y . We wish to show that

ΨZ,X,Y (SZ×X,Y (G,V ))

is open in Cts(Z,Cts(X,Y )). Let R ∈ ΨZ,X,Y (SZ×X,Y (G,V )) be given. Then, equivalently, we wish to
produce an open neighbourhood of R contained in ΨZ,X,Y (SZ×X,Y (G,V )).

The idea will be to cover G with finitely many boxes L×H, where L ⊆ Z and H ⊆ X are compact. This is
motivated by the fact that the image of SZ×X,Y (L×H,V ) under ΨZ,X,Y is simply SZ,Cts(X,Y )(L, SX,Y (H,V ))
as well as the fact that SA,B(−,−) is anti-distributive over finite unions and inclusion-reversing in the first
argument. We have to be careful, however, that L andH are small enough so that SZ,Cts(X,Y )(L, SX,Y (H,V ))
is large enough to still contain R.

Fix an arbitrary (z, x) ∈ G. Let R0 ∈ SZ×X,Y (G,V ) be the unique function such that R = ΨZ,X,Y (R0).
Since R0 : Z ×X Y is continuous, T := R−1

0 (V ) ⊆ Z ×X is open. Note that (z, x) ∈ G ⊆ T .

Since Z and X are both locally compact Hausdorff, the product Z ×X is also locally compact Hausdorff
(Lemma L11-3 and Lemma 6.1). Therefore, Z ×X is regular (Lemma L12-0(ii)), and since (z, x) is outside
the closed set T c, there exist disjoint open sets T (1)

z,x , T
(2)
z,x ⊆ Z ×X such that (z, x) ∈ T (1)

z,x and T c ⊆ T (2)
z,x , so

we can write
(z, x) ∈ T (1)

z,x ⊆ T (2)
z,x

c ⊆ T .

We will see later that T (2)
z,x

c
is a device to ensure our boxes L×H are small enough.

Since Z and X are both locally compact, there exist an open W
(1)
z ⊆ Z, an open U

(1)
x ⊆ X, a compact

Lz ⊆ Z, and a compact Hx ⊆ X such that

z ∈W (1)
z ⊆ Lz and x ∈ U (1)

x ⊆ Hx.

Since T (1)
z,x is open and contains (z, x), there exist an open W (2)

z,x ⊆ Z and an open U (2)
z,x ⊆ X such that

(z, x) ∈W (2)
z,x × U (2)

z,x ⊆ T (1)
z,x .

Let Wz,x := W
(1)
z ∩W (2)

z,x and Uz,x := U
(1)
x ∩ U (2)

z,x . Both Wz,x ⊆ Z and Uz,x ⊆ X are open. Our candidates
for L and H are going to be (some finite number of the) W z,x and U z,x. Let us proceed to show that they
are appropriate candidates.

In the next part of the argument, we will use the following result. It is proved in part (c).

Lemma 6.3

Let A and B be topological spaces, and let C ⊆ A and D ⊆ B be arbitrary subsets. Then, in the
product space A×B, we have C ×D = C ×D.

By the definition of the open sets Wz,x and Uz,x, we have

(z, x) ∈Wz,x × Uz,x ⊆ T (2)
z,x

c ∩ (Lz ×Hx) ⊆ T .

First, observe that T (2)
z,x

c
∩ (Lz × Hx) is closed in Z × X: (1) T (2)

z,x
c
is closed due to T (2)

z,x being open and
(2) by Lemma L10-2, Lz ×Hx is compact as a product of the compact spaces Lz and Hx, so Lz ×Hx is a
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6(b) compact subspace of the Hausdorff space Z ×X and hence closed (Lemma L11-5). Thus, if we consider the
closure of Wz,x × Uz,x and use Lemma 6.3 then we have

(z, x) ∈Wz,x × Uz,x ⊆Wz,x × Uz,x = W z,x × U z,x ⊆ T (2)
z,x

c ∩ (Lz ×Hx) ⊆ T .

One consequence is that the closed set W z,x is inside the compact space Lz, so, by Exercise L9-5, W z,x is
compact. Similarly, U z,x is compact. Importantly, W z,x × U z,x ⊆ T = R−1

0 (V ), so that

R0(W z,x × U z,x) ⊆ V ⇐⇒ R ∈ SZ,Cts(X,Y )(W z,x, SX,Y (U z,x, V )). (6.2)

This is what we were referring to in mentioning above that the boxes L×H needed to be small enough.

We now let (z, x) vary over G. This means that {Wz,x×Uz,x}(z,x)∈G is an open cover of the compact space G,
so, by compactness, we reduce to a finite subcover {Wzi,xi ×Uzi,xi}ni=1 for some finite set {(zi, xi)}ni=1 ⊆ G.
The closures of the open boxes in this finite subcover are precisely our choices of L×H.

We now have
G ⊆

n⋃
i=1

(Wzi,xi × Uzi,xi) ⊆
n⋃
i=1

(
W zi,xi × U zi,xi

)
.

Note that the last set is compact as a finite union of compact sets (Exercise L10-4). Applying SZ×X,Y (−, V )
to the compact sets, and noting that SA,B(−,−) reverses inclusion in the first argument, we have that

SZ×X,Y

(
n⋃
i=1

(
W zi,xi × U zi,xi

)
, V

)
⊆ SZ×X,Y (G,V ).

Now, SA,B(−,−) is anti-distributive over finite unions in the first argument, so we have

n⋂
i=1

SZ×X,Y (W zi,xi × U zi,xi , V ) ⊆ SZ×X,Y (G,V ),

and, applying ΨZ,X,Y to both sides, we have

n⋂
i=1

SZ,Cts(X,Y )(W zi,xi , SX,Y (U zi,xi , V )) ⊆ ΨZ,X,Y (SZ×X,Y (G,V ))

Note that the set on the left-hand side is a finite intersection of subbasis elements, so it is open in
Cts(Z,Cts(X,Y )). Using (6.2), we altogether have that

R ∈
n⋂
i=1

SZ,Cts(X,Y )(W zi,xi , SX,Y (U zi,xi , V ))︸ ︷︷ ︸
open in Cts(Z,Cts(X,Y ))

⊆ ΨZ,X,Y (SZ×X,Y (G,V )).

Since R ∈ ΨZ,X,Y (SZ×X,Y (G,V )) was arbitrary, we have shown that ΨZ,X,Y (SZ×X,Y (G,V )) is open in
Cts(Z,Cts(X,Y )). Since G ⊆ Z ×X (compact) and V ⊆ Y (open) were arbitrary, we have shown that the
bijection ΨZ,X,Y sends every set in a subbasis for the compact–open topology on Cts(Z ×X,Y ) to an open
set in Cts(Z,Cts(X,Y )). Thus, ΨZ,X,Y is an open map. Note that the injectivity of ΨZ,X,Y is important in
ensuring that taking the image commutes with finite intersections.

(c) We provide proofs to some of the auxiliary results we have used.
Lemma 6.1

The product of two locally compact spaces is locally compact.
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6(c) Proof

Suppose we are given two locally compact topological spaces A and B and an arbitrary (a, b) ∈ A×B.
We will show that there exists an open neighbourhood of (a, b) which is itself contained in a compact
subset of A × B. By local compactness of A and B, there exist an open U ⊆ A, an open V ⊆ B, a
compact H ⊆ X, and a compact K ⊆ Y such that

a ∈ U ⊆ H and b ∈ V ⊆ K.

Immediately, we see that U ×V is an open neighbourhood of (a, b) in A×B and that U ×V ⊆ H ×K.
Furthermore, H ×K is compact as a product of two compact space (Lemma L10-2). Thus, we have
shown that there exists an open neighbourhood of (a, b) contained in a compact subset of A × B. As
(a, b) ∈ A×B was arbitrary, this means that A×B is locally compact. �

Lemma 6.3

Let A and B be topological spaces, and let C ⊆ A and D ⊆ B be arbitrary subsets. Then, in the
product space A×B, we have C ×D = C ×D.

Proof

First, let us verify that C ×D is closed in A×B. Denoting by πA : A×B A and πB : A×B B
the projection maps, we note that

C ×D = (C ×B) ∩ (A×D) = π−1
A (C) ∩ π−1

B (D).

Since πA and πB are continuous (Exercise L7-5) and C ⊆ A and D ⊆ B are closed, both π−1
A (C) and

π−1
B (D) are closed sets in A×B, so their intersection π−1

A (C)∩π−1
B (D) = C×D is also closed in A×B.

Now, since the set C ×D is closed and contains C ×D, we must have that C ×D ⊆ C ×D.

Next, we show that if a point (a, b) is outside C ×D then (a, b) is also outside C ×D. Because C ×D
is closed, there must exist open U ⊆ A and V ⊆ B such that

(a, b) ∈ U × V ⊆ C ×Dc
.

We claim that U ⊆ Cc or V ⊆ Dc, so that (a, b) ∈ U ×V ⊆ (C×D)c. Suppose for a contradiction that
U ∩C 6= ∅ and V ∩D 6= ∅. Then U is an open neighbourhood of a point in C, so, by Exercise L13-4(i),
we have U ∩ C 6= ∅. Similarly, we have V ∩D 6= ∅. However, this means that U × V is not completely
outside C ×D, because there is a point in C ×D that is also in U × V . We have therefore arrived at
a contradiction. Thus, given a point (a, b) outside C ×D, it must be that (a, b) is also outside C ×D.
This shows that C ×D ⊇ C ×D.

Altogether, we have shown that C ×D = C ×D. �
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Question 7

Exercise L13-3. If (Y, dY ) is a metric space prove that the metric dY : Y × Y R is continuous when
Y × Y is given the product topology.

Note that an alternate proof can be given using the result of Question 8(b).

Suppose we are given reals a < b. Since the topology on R has the collection of bounded open intervals as
a basis, it suffices to show that (dY )−1((a, b)) ⊆ Y × Y is open.

If b 6 0 then, since dY is nonnegative, we have (dY )−1((a, b)) = ∅, which is open in Y × Y .

If a < 0 < b then, since dY is nonnegative, we have

(dY )−1((a, b)) = (dY )−1([0, b)) = {(y, z) ∈ Y × Y | dY (y, z) < b}

Suppose y, z ∈ Y are such that dY (y, z) < b. Let ε := b− dY (y, z) > 0. We claim that

(y, z) ∈ Bε/2(y)×Bε/2(z) ⊆ (dY )−1([0, b)).

Take an arbitrary (r, s) ∈ Bε/2(y)×Bε/2(z). By the triangle inequality for dY , we have

dY (r, s) 6 dY (r, y) + dY (y, z) + dY (z, s) < ε

2 + dY (y, z) + ε

2 = b,

which shows that Bε/2(y) × Bε/2(z) ⊆ (dY )−1([0, b)) as claimed. As Bε/2(y) × Bε/2(z) is open under the
product topology on Y × Y , we have shown that (dY )−1((a, b)) ⊆ Y × Y is open if a < 0 < b.

If a > 0 then take arbitrary y, z ∈ Y where a < dY (y, z) < b. Let ρ := min{b− dY (y, z), dY (y, z)− a} > 0.
We claim that

(y, z) ∈ Bρ/2(y)×Bρ/2(z) ⊆ (dY )−1((a, b)).

Take an arbitrary (r, s) ∈ Bρ/2(y)×Bρ/2(z). By the triangle inequality for dY , we have

dY (y, z) 6 dY (y, r) + dY (r, s) + dY (s, z) < ρ

2 + dY (r, s) + ρ

2 ,

so that
dY (r, s) > dY (y, z)− ρ > dY (y, z)− (dY (y, z)− a) = a.

By the triangle inequality again, we also have

dY (r, s) 6 dY (r, y) + dY (y, z) + dY (z, s)

<
ρ

2 + dY (y, z) + ρ

2
= dY (y, z) + ρ

6 dY (y, z) + b− dY (y, z) = b.

We have shown that, for arbitrary (r, s) ∈ Bρ/2(y) × Bρ/2(z), we have a < dY (r, s) < b. This shows
that Bρ/2(y) × Bρ/2(z) ⊆ (dY )−1((a, b)) as claimed. Since Bρ/2(y) × Bρ/2(z) is open, we have shown that
(dY )−1((a, b)) ⊆ Y × Y is open if a > 0.

In all three cases of b 6 0, a < 0 < b, as well as a > 0, we have shown that (dY )−1((a, b)) ⊆ Y × Y is open.
This means that dY is continuous.
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Question 8

Exercise L13-8. Let (A1, d1), . . . , (An, dn) be metric spaces and with A =
∏n
i=1Ai define d : A×A R

by d((ai)ni=1, (bi)ni=1) =
∑
i di(ai, bi). Prove that

(a) (A, d) is a metric space.

(b) The topology on A induced by d is the product topology on
∏n
i=1Ai (giving each Ai its metric

topology).

(c) If each (Ai, di) is complete so is (A, d).

8(a) Nonnegativity and symmetry of d are inherited from the nonnegativity (a sum of nonnegative numbers is
nonnegative) and symmetry of each di. Next, we show that d separates distinct elements: Suppose a, b ∈ A
are such that d(a, b) = 0. Then

∑
i di(ai, bi) = 0, and, since each di(ai, bi) is nonnegative, we must have

di(ai, bi) = 0 for every i ∈ {1, 2, . . . , n}. Since each di separates distinct elements in Ai, we have that ai = bi
for every i ∈ {1, 2, . . . , n}, so that a = b. This shows that d separates distinct elements of A.

It remains to show that d satisfies the triangle inequality. Take arbitrary a, b, c ∈ A. Using the triangle
inequality for each di, we have that di(ai, bi) + di(bi, ci) > di(ai, ci). Summing in i over {1, 2, . . . , n}, we
have

n∑
i=1

[di(ai, bi) + di(bi, ci)]︸ ︷︷ ︸
=d(a,b)+d(b,c)

>
n∑
i=1

di(ai, ci) = d(a, c),

so that d satisfies the triangle inequality. Since d is nonnegative, is symmetric, separates distinct elements
of A, and satisfies the triangle inequality, (A, d) is a metric space.

(b) Let Td denote the topology on A induced by d, and let T denote the product topology on A. To show
that Td = T , we only have to show that the sets comprising a basis for Td is contained in T (which shows
Td ⊆ T ) and that the sets comprising a basis for T is contained in Td (which shows T ⊆ Td).

Write Bε(a) to denote the open ball centred at a ∈ A of radius ε > 0, and, for each i ∈ {1, 2, . . . , n}, write
B

(i)
ε (ai) to denote the open ball centred at ai ∈ Ai of radius ε > 0.

Recall (Exercise L7-1(iii)) that a basis for Td is

Bd := {Bε(a) | a ∈ A, ε > 0},

while a basis for T , which is the product topology for a finite product of spaces A =
∏n
i=1Ai, is

B :=
{

n∏
i=1

Ui

∣∣∣∣∣ Ui ⊆ Ai open
}
.

Bd ⊆ T

Suppose we are given an a ∈ A and an ε > 0. We will show that Bε(a) ∈ T .

Let b ∈ Bε(a) be arbitrary, i.e. b ∈ A and d(a, b) < ε. Let δ := ε − d(a, b) > 0. Note that if c ∈ A and
d(b, c) < δ then, by the triangle inequality, we have

d(a, c) 6 d(a, b) + d(b, c) < d(a, b) + δ = ε =⇒ c ∈ Bε(a).
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8(b) That is, Bδ(b) ⊆ Bε(a). Take
∏n
i=1B

(i)
δ/n(bi) ∈ B. We will show that

b ∈
n∏
i=1

B
(i)
δ/n(bi) ⊆ Bε(a).

That b ∈
∏n
i=1B

(i)
δ/n(bi) can be seen from the fact that each bi is an element of B(i)

δ/n(bi). For the other part,
we will show that

∏n
i=1B

(i)
δ/n(bi) ⊆ Bδ(b) and then use the fact that Bδ(b) ⊆ Bε(a).

Let c ∈
∏n
i=1B

(i)
δ/n(bi) be arbitrary. Observe:

c ∈
n∏
i=1

B
(i)
δ/n(bi)

⇐⇒ di(bi, ci) < δ/n ∀i ∈ {1, 2, . . . , n}

=⇒
n∑
i=1

di(bi, ci)︸ ︷︷ ︸
=d(b,c)

< δ

⇐⇒ c ∈ Bδ(b).

Letting c vary over
∏n
i=1B

(i)
δ/n(bi), we have that

b ∈
n∏
i=1

B
(i)
δ/n(bi)︸ ︷︷ ︸
∈B

⊆ Bδ(b) ⊆ Bε(a).

Since b ∈ Bε(a) was arbitrary, this shows that Bε(a) ∈ T . As a ∈ A and ε > 0 were arbitrary, we have
shown that Bd ⊆ T .

B ⊆ Td

For each i ∈ {1, 2, . . . , n}, take arbitrary open sets Ui ⊆ Ai. We will show that
∏
i Ui ∈ Td.

Let a ∈
∏
i Ui be arbitrary. For every i ∈ {1, 2, . . . , n}, because Ui ⊆ Ai is open and the topology on Ai is

induced by di, there exists εi > 0 such that B(i)
εi (ai) ⊆ Ui. Let ε :=

∧n
i=1 εi > 0 (the smallest of the εi). We

claim that Bε(a) ⊆
∏n
i=1B

(i)
εi (ai). Take an arbitrary b ∈ Bε(a). Observe:

b ∈ Bε(a)

⇐⇒
n∑
i=1

di(ai, bi) < ε

=⇒ di(ai, bi) < ε 6 εi ∀i ∈ {1, 2, . . . , n}
=⇒ bi ∈ B(i)

εi
(ai) ∀i ∈ {1, 2, . . . , n}

⇐⇒ b ∈
n∏
i=1

B(i)
εi

(ai).

Letting b vary over ∈ Bε(a), we conclude that

a ∈ Bε(a)︸ ︷︷ ︸
∈Td

⊆
n∏
i=1

B(i)
εi

(ai) ⊆
n∏
i=1

Ui.

Since a ∈
∏
i Ui was arbitrary, this shows that

∏
i Ui ∈ Td. As the Ui ⊆ Ai were arbitrary open sets, we

have shown that B ⊆ Td.
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8(b) Conclusion

Since Bd ⊆ T and B ⊆ Td and B and Bd are bases for T and Td, respectively, we have that T = Td.

(c) Assume that each (Ai, di) is a complete metric space. Let (am)m∈N be an arbitrary Cauchy sequence in
(A, d). We will show that (am)m∈N converges in (A, d). We will write am = (am,1, am,2, . . . , am,n).

The idea will be to show that, for every i ∈ {1, 2, . . . , n}, the sequence (am,i)m∈N is a Cauchy sequence in
(Ai, di). We then use completeness of (Ai, di) to obtain a candidate for the ith coordinate of (what we will
show is) the limit of (am)m∈N.

Note that, for every b, c ∈ A and every i ∈ {1, 2, . . . , n}, we have di(bi, ci) 6 d(b, c). Apply this result
with terms of the sequence (am)m∈N in A in place of b and c: Since (am)m∈N is d-Cauchy, we see that the
sequence (am,i)m∈N in Ai is di-Cauchy. By the completeness of (Ai, di), this means that there exists ãi ∈ Ai
such that am,i → ãi in (Ai, di) as m→∞.

With ã := (ã1, ã2, . . . , ãn) ∈ A, we claim that am → ã in (A, d) as m→∞.

d(am, ã) =
n∑
i=1

di(am,i, ãi)

lim
m→∞

d(am, ã) = lim
m→∞

n∑
i=1

di(am,i, ãi)

=
n∑
i=1

lim
m→∞

di(am,i, ãi) = 0,

where the last equality is because am,i → ãi in (Ai, di) as m → ∞ for every i ∈ {1, 2, . . . , n}. This shows
that am → ã in (A, d) as m → ∞. Since (am)m∈N was an arbitrary Cauchy sequence in (A, d), we have
shown that (A, d) is a complete metric space.
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