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Question 1 (10 marks) Let (X, d) be a metric space.

(a) State the definition of sequential compactness.

(b) Suppose that X is sequentially compact and nonempty. Given ε > 0 prove that there
exists a finite set x1, . . . , xn ∈ X such that

{
Bε(xi)

}n
i=1

covers X.

You must prove (b) directly from the definition of sequential compactness.

Question 2 (20 marks) Let X be a topological space, ∆ = {(x, x) ∈ X ×X |x ∈ X}. Prove

(a) X is Hausdorff if and only if ∆ is closed in X ×X.

(b) If X is Hausdorff, f, g : Y −→ X are continuous maps and A ⊆ Y is dense, then f = g if
and only if f(a) = g(a) for all a ∈ A.

Question 3 (20 marks) Let X be locally compact Hausdorff and Y,Z topological spaces. Let

πY : Y × Z −→ Y , πZ : Y × Z −→ Z

be the projection maps. Prove that the function

Cts(X,Y × Z) −→ Cts(X,Y )× Cts(X,Z)

f 7−→ (πY ◦ f, πZ ◦ f)

is a homeomorphism, with respect to the compact-open topology. You may assume the universal
property of the product, and the adjunction property for the compact-open topology (including
continuity of evaluation maps).

Question 4 (20 marks) Let (V, ‖−‖) be a normed space over a field of scalars F (which recall
denotes either R or C).

(a) Prove that ‖−‖ : V −→ F is uniformly continuous.

Prove that V is a topological vector space by proving

(b) The addition V × V −→ V is continuous.

(c) The scalar multiplication F× V −→ V is continuous.

You may prove continuity using either the product topology or the product metric.

Question 5 (20 marks) Let (V, ‖−‖) be a normed space over a field of scalars F and let V ∨

denote the space of continuous linear maps V −→ F with the operator norm. You may assume
that this is a normed space. Prove that this space is complete, as follows:

(a) Given a Cauchy sequence (Tn)∞n=0 in V ∨ with respect to the operator norm, construct a
candidate limit T as a function T : V −→ F.

(b) Prove that your candidate T is linear.

(c) Prove that your candidate T is bounded.

(d) Prove that Tn −→ T in the operator norm as n −→∞.
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Question 6 (20 marks) Let (H, 〈−,−〉) be a Hilbert space over C.

(a) State the Cauchy-Schwartz inequality.

(b) Prove that for any h ∈ H the function 〈−, h〉 : H −→ C is continuous.

(c) Prove that if {ui}i∈I is a set of vectors in H which span a vector subspace U ⊆ H with
the property that U is dense in H, then h = 0 if and only if 〈ui, h〉 = 0 for all i ∈ I.

(d) Given that {einθ}n∈Z span a dense subspace of H = L2(S1,C) prove that for every f ∈ H

f = lim
N−→∞

N∑
n=−N

1

2π
〈f, einθ〉einθ .

You may assume that the series on the right hand side converges.

End of Exam—Total Available Marks = 110
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