

Student Number

Semester 2 Assessment, 2018

School of Mathematics and Statistics

MAST30026 Metric and Hilbert Spaces

Writing time: 3 hours

Reading time: 15 minutes

This is NOT an open book exam

This paper consists of 3 pages (including this page)

Authorised Materials

- Mobile phones, smart watches and internet or communication devices are forbidden.
- Calculators, tablet devices or computers must not be used.
- No handwritten or print materials may be brought into the exam venue.

Instructions to Students

- You must NOT remove this question paper at the conclusion of the examination.
- You should attempt all questions. Marks for individual questions are shown.
- There are 6 questions with marks as shown. The total number of marks available is 110.

Instructions to Invigilators

• Students must NOT remove this question paper at the conclusion of the examination.

MAST30026 Semester 2, 2018

Question 1 (10 marks) Let (X, d) be a metric space.

- (a) State the definition of sequential compactness.
- (b) Suppose that X is sequentially compact and nonempty. Given $\varepsilon > 0$ prove that there exists a finite set $x_1, \ldots, x_n \in X$ such that $\{B_{\varepsilon}(x_i)\}_{i=1}^n$ covers X.

You must prove (b) directly from the definition of sequential compactness.

Question 2 (20 marks) Let X be a topological space, $\Delta = \{(x, x) \in X \times X \mid x \in X\}$. Prove

- (a) X is Hausdorff if and only if Δ is closed in $X \times X$.
- (b) If X is Hausdorff, $f, g: Y \longrightarrow X$ are continuous maps and $A \subseteq Y$ is dense, then f = g if and only if f(a) = g(a) for all $a \in A$.

Question 3 (20 marks) Let X be locally compact Hausdorff and Y, Z topological spaces. Let

$$\pi_Y: Y \times Z \longrightarrow Y, \qquad \pi_Z: Y \times Z \longrightarrow Z$$

be the projection maps. Prove that the function

$$\operatorname{Cts}(X, Y \times Z) \longrightarrow \operatorname{Cts}(X, Y) \times \operatorname{Cts}(X, Z)$$

 $f \longmapsto (\pi_Y \circ f, \pi_Z \circ f)$

is a homeomorphism, with respect to the compact-open topology. You may assume the universal property of the product, and the adjunction property for the compact-open topology (including continuity of evaluation maps).

Question 4 (20 marks) Let (V, ||-||) be a normed space over a field of scalars \mathbb{F} (which recall denotes either \mathbb{R} or \mathbb{C}).

(a) Prove that $\|-\|: V \longrightarrow \mathbb{F}$ is uniformly continuous.

Prove that V is a topological vector space by proving

- (b) The addition $V \times V \longrightarrow V$ is continuous.
- (c) The scalar multiplication $\mathbb{F} \times V \longrightarrow V$ is continuous.

You may prove continuity using either the product topology or the product metric.

Question 5 (20 marks) Let $(V, \|-\|)$ be a normed space over a field of scalars \mathbb{F} and let V^{\vee} denote the space of continuous linear maps $V \longrightarrow \mathbb{F}$ with the operator norm. You may assume that this is a normed space. Prove that this space is *complete*, as follows:

- (a) Given a Cauchy sequence $(T_n)_{n=0}^{\infty}$ in V^{\vee} with respect to the operator norm, construct a candidate limit T as a function $T:V\longrightarrow \mathbb{F}$.
- (b) Prove that your candidate T is linear.
- (c) Prove that your candidate T is bounded.
- (d) Prove that $T_n \longrightarrow T$ in the operator norm as $n \longrightarrow \infty$.

MAST30026 Semester 2, 2018

Question 6 (20 marks) Let $(H, \langle -, - \rangle)$ be a Hilbert space over \mathbb{C} .

- (a) State the Cauchy-Schwartz inequality.
- (b) Prove that for any $h \in H$ the function $\langle -, h \rangle : H \longrightarrow \mathbb{C}$ is continuous.
- (c) Prove that if $\{u_i\}_{i\in I}$ is a set of vectors in H which span a vector subspace $U\subseteq H$ with the property that U is dense in H, then h=0 if and only if $\langle u_i,h\rangle=0$ for all $i\in I$.
- (d) Given that $\{e^{in\theta}\}_{n\in\mathbb{Z}}$ span a dense subspace of $H=L^2(S^1,\mathbb{C})$ prove that for every $f\in H$

$$f = \lim_{N \to \infty} \sum_{n=-N}^{N} \frac{1}{2\pi} \langle f, e^{in\theta} \rangle e^{in\theta}.$$

You may assume that the series on the right hand side converges.

End of Exam—Total Available Marks = 110