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The aim of today 's lecture is to learn a setof tools for constructing new

topological spaces from old ones .

A useful organising principle in this

endeavour will be the idea ofa univenalpwpevty , which is a concept
from category theory .

We will begin with products of spaces, forwhich
it will be convenient to use the conceptof a basis

DeI Let ( X, J) be a topological space . A setPEJ of open sets

is called a bad for the topology J if for every pair (x, U ) where
U C- J and x c-U

,
there exists B c- 3) with xc-B.EU .

Exerciu Ii ) Prove that 3) C-J is a basis iff . every VET can be written as

the union set of a subset b c-§ ( i. e. as a union of sets

in 13, including infinite unions andthe
" empty union " which is § ) .

Iii ) If 13 is a basis for J and f-- Y→ ✗ is a function with

Y a topological space , then f- is continuous iff . f-
' (B) c-Ty

V-BEP.li
ii) If IX.d) is a metric space then { Beth Ix c-X, E > 0} is a
basis for the associated topology .

Lem Let✗ be a set and 13 a collection of subsetof ✗ satisfying

(Bl ) For each see ✗ there exists BED with x c-B.

(B2) Given Bi, Bz C- 13 and xc- Bin Bz there exists Bs E)3

with x c- B} C- Bin Ba - B
,
N B, is a union of set from § .

"

Ux c- B , n Bz
B)

Then there is aunique topology Jon ✗ for which 13 is a basis . We
call J the topologygÉ3 .



②

Root It is clearthat 13 can be a basis forutmost one topology , so we
need only prove that thenatural candidate

,
{ at Fcee with xec}

J = { V E X / Fb Ep ( V = VE ) )

is in factatopology . We verify each axiom in turn :

(Tt ) 8=4 gives of EJ and 8=13 gives X
= UP by ( Bl) so XEJ .

(T2) suppose Vi , VaEJ with Y = U bi ,VE V 82 .

We claim

Vin Vz ET .
Let EEP bethe setof all BED with BEV, h Vz

.

If KEV,Nz then there is B, Eli , Bz C- Es with a c- Bi EV i
,

X E B z EV, and by ( 132 ), there is 133 C- Bi n Bz with ICE 133 .

But then Bz E Bin B z E Vink ,
so Bs C- E . This proves

Vin Vz = U 8 ,
so V , AKE J.

(T3)
.

If { Vi) ieI are open, say Vi
= U bi

, then with E = Ui bi

we have Ui Vi = U b , so we are done . D

Remade Let { Xi Jie't be an indexed family of sets .
Recall thep is

II.ez Xi = { (ki) ie I l Xi E Xi for all i c- I } .

For example Tlne IN R is just the set of all real sequences Cao , ai , az, .
. .)

.

If we take Xi = Y
,
some fixed set, for all if I then tie I Y is just the

set of functions f : I→ Y
, just as a sequence of real numbers can be

viewed as a function IN→ IR
.



③

DEI Let { Xi } ,- c- I be an indexed family of topological spaces .
The

pwductspace tie I ✗ i is the usual productset with the topology

generated by the basis 13 consisting of sets

IT-

c-I Ui = { (xi )i c- I c- II. c- ± Xi I xi c- Ui forall i }

where each Ui C-Xi is open and the
set { i c- Il Ui =/ Xi } is finite .

More

precisely the basis is

13 = { Tie Ui I Ui c- Xi is open for all ic- I
and { i c-It Uitxi } is finite }

ExercinL Prove that the Ti Ui as defined abovesatisfy CBD , 1132), so

that the topology on TIKI Xi is well-defined .

Remade As usual we write ✗ ✗ Y for II. c- ± Xi where -1={1/2}, XFX, ✗2=4.

However the general product notation is useful because itavoids

questions like : is ✗ ✗4×2 = 11×(4×2) or (11×4)×2 ? which would

arise ifwe insisted only on defining binary products .

We say :

✗ ✗ Y ✗ 2 : = II. ← I ✗ i I = { 112,3} XFX, Xz=Y,
✗3=2

.

Remand In the case where I is finite { i c- I /Uit Xi } is always finite,
so the basis consists of all products of open sets IT. Ui .

For example if 51 denotes the topological space associated to (S3 da )
then U = 13¥ ((1,0) ) is open in S1 and so 0×(4,3-4) c- 51×10, it is open
(see overleaf) .
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DEI A continuous map f :X→ Y is a homeomorphism ( or isomorphism )
if there is a continuous map g.- Y

→ ✗ with fog = idy, go f-= idx .

ExevciseL7-3_ Prove a continuous map f :X→ Y is a homeomorphism iff .

it is a bijection and flu ) C- Y is open whenever U c- ✗ is open .

Give a counterexample to show notall continuous bijections

are homeomorphisms .

Exercise Let ✗ be a set . Rove ( it that it F- i C- ✗ ✗✗ is an equivalence
relation then so is Mie I F- i.
Iii ) Given a subset Q e ✗ ✗ ✗ prove that

F- = A { Y c- ✗✗✗ I Y is an equiy.net " & YZQ }

is an equivalence relation .

This is the equivalence relation

genbyQ .

liii) Given Q, E as above , suppose f : ✗→ Y is a function with

f-(a) = f-(Xz) whenever GG,Xz) c- Q .
Prove f- (a)=f(✗2) for all (x , ,

✗a) C- F- .

ExerciieL ( it Rove Rt (with the metric topology ) is equate as a topological space
to the product of n copies of IR , in the above sense .

Iii) Is the space IRW
: = ITnew IR metisable ? Prove it, either way .

Exercise Prove that Ij://T.li→ Xj defined by Jlj ( ( sci ) i c-I ) = xj
is continuous

.

We call Ty- the jprojection .



④

LemmaL ( Universal property of the product ) Let { Xi }it be a family
of topological spaces and Y another topological space .

There

is a bijection

Io

Cts ( Y
,
Tice Xi )→ IT ieIcts ( Y, Xi )

Io(f ) = ( TL i o f ) i et .

That is
, given fi

: Y→ Xi continuous there is a unique
continuous map f : Y→ Th- Xi with IT

.

- of = fi for all ifI .

Root since the Xi are continuous and composites of continuous functions
are continuous

,
Io is at least well-defined . We define a candidate

inverse E
- '

by sending a family of continuous functions (fi ) i
to the function f defined by f- ( y ) = ( f ily ) ) ifI E II- et Xi .

Ifwe can show f is continuous we aredone
,
as clearly Io , Io

' '

are mutually inverse . By Ex LI- I Cii ) itsuffices to show f
- l sends

open set inthebasis to open sets in Y. Suppose Ui E Xi is open and

set Q = lie I l Uit Xi } which is finite .
Then

f-
' ( Thi ee Ui ) = f y EY I fly ) C- Ti Ui )

= { y E Y l fi ly ) E Vi for all i c-I}
.

= I y E Y l fi ly ) E Vi for i EQ }

= Nica fi ' ( Ui)

which as a finite intersection of open sets , is open - D



⑤

ExerciseL7-5 Given topological spaces {Xi} ,
-

c- I let IT
"t

ic-I ✗ i denote

the set Ties Xi with the altenatetopokogy which has
as a basis the sets lTie=Ui where Ui C- Xi is open for all ic-I

(i- e. we do not impose the condition that [ i c- Il Ui =/Xi}

is finite ) . Prove that this is a valid basis, but give a counterexample
to show 11T¥

'

Xi does not have the universal property of
Lemma LT-2 (obviously Imust be infinite) .

DEI Let { Xi } ic- I be an indexed family of topological spaces .
The

disjointunionorwpwductspa-H.ieI Xi is the disjoint union set

Hi c- I ✗i
= VieI { i} ✗ Xi

with the topology given by the subsets

Ii c-± Ui = { lip) 1 i c-I , x c-Ui } 15.1 )

where Ui C- Xi is open .

More precisely the topology J is

J = { Lie IV i / Ui c- Xi open for all ic-I } .

ExerciseL lil Rove (5. 1) is a topology and prove ij : Xj→ Hi c-I ✗ i
sending ✗ to lj , x) is continuous .

Iii ) (Universal properly ) Prove that for any space ✗ there is
a bijection

cts ( Hia Xi
,

Y ) tie I cts ( Xi, Y) .

Note taking Y = E (Sierpinski ) we see that the universal

property dictates the topology .



⑥

DEI Let ✗ be a topological space and ~ an equivalence relation on X .

The quotientspau ✗/ ~ is the set of equivalence classes with

the topology given by ( p
: ☒→ ✗1- denotes the quotient map)

J = { U C- ✗/~ I f-
'

( v ) is open in X ).

Clearly thenp is a continuous map .

ExerciseL Prove this is a topology on ✗1- and that for any space Y

and any continuous f :X
→ Y s . t . f- (sci ) = f- (xz )

whenever x ,
- xz

,
there is a unique continuous map F

making the diagram below commute :

✗ e- ✗/~
F

DEI Suppose givena pair of continuous maps f : ✗→ Y, g : ✗→ 2 .

The pushout of the ( unordered) pair f, g is the space
1

YI ✗ 2 : = ( Y it 2) /~

where ~ is the smallest equivalence relation containing the pairs
( flx) , glx ) ) forall ✗ C- ✗

.

Exera-8 Prove that the maps ly
: Y→ YI ✗ 2

,
Lz : 2→ YH ✗ 2

defined resp . by ↳ ( Y ) = [y] and Lz ( z) = ( Z ) are continuous
.
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LemmaL7-3_ ( Universal property of the pushout) Let f, g as above
be given .

Given continuous maps u
: Y→ W and v : 2→ W

such that the diagram

f
X- Y

s l l "
X X

Z- W
X

commutes lie . uof = to9) there is a unique continuous

map t : Y Ix 2→ W such that the two marked triangles
in the following diagram commute

f
X- Y

of "¥
.

" (z ''

z- YIxZ

④
'

it
,

w

Root First let us prove uniqueness . If to Lz
= t 'ok and toLy = t

'
o ly

then we calculate

tf Cy] ) = tf ly (y) ) = t ' (Cx ly)) -- t
'

(GI )
tf Cz ) ) = t ( Cz ( z ) ) = t

'
(Ca (H1 = t

'
Cz ])

and since every elementof YI x 2 is either [ y] forsome y EY
or ( El for some ze 2 , this proves t=t

! So it suffices to prove existence .



⑧

By Exercise L2 -7 to define t : Y Ix 2→ W continuous it is enough to

define t
'

: Y I 2 → W continuous s . t . t
' (fCx )) = t

' ( g Ix) ) forallx .

But by

Exercise L7- G the functions u, v determine a continuous Y H Z→ W

with this properly ,
since by hypothesis u of - V o g . This shows

t '

- Y H x 2→ W

tf ly ) ) = u ly )

t ( (H ) = v (Z)

is a well -defined continuousmap , and clearly to Ly = U, to Lz
= is

so we are done - D

Examptel (the circle) Let ~ be the equivalence relation on [o , B

generated by O ~ 1 . There is a bijection

Cts ( co, D l n , X ) = { f : 0,17→ X cfs I fo ) --HH }
.

Give a homeomorphism StE fol B / n .

Exerciser Let us write { * o, * z) : = { * ) If *) and f : I *o, *z} → lo , D

for the inclusion of the endpoints f- (*o ) = O, f (* i ) =L .

We

may form the pushout

{ *3 I 1*7- H
t
.

t
.

[o , D- P '

- = lol D Is*
,
*

, y
l* 3

Prove that p e s ?



⑨

ExampleL ( the torus ) Let C
-

= Six [o , D be the cylinder,
and let f : 5-→ C be the " bottom " and g :S

C

the "

top
"

,
i - e .

f- ( x) = ( x, o) Voces
'

g (x )
= ( x, I ) Hxes

'

we define IT '

- = Ctr where ~ is the equivalence
relation generated by the pain ffx)- gcx ) forall KES ?
This is the torus .

€

iii.÷÷÷÷÷. -
ExampleL7-3_ ( Mobius strip ) Let M be [0,17×10,1] fr where

-

~ is the equivalence relation generated by

µ µ ( 1,7 ) n (o, I -X) OEXEI
.

of
,

This is called the Mobius strip .

€t.
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We have now developed a good set of tools for constructing new spaces
and reasoning about them . Butwe lack any understanding of howto

compare the resulting objects . For example

Question How can we prove M # s
'

x [on] (where = means homeomorphic)
or IT# S

Z

IR # s
'

or -for that matter 1122¥ 1123 !

Quick answers ° S
'
x lo , D is orientable but M is not
-

( but we have to show "orientability
"

is purely topological )

• IT contains " nontrivial " loops, S2 does not

(this leads us to think about the fundamental group)

• 5- is compactbut IR is not

• IR
"

# Rm when n Fm but this is not trivial, e. g .

Peary -

- there is a surjective continuous map 1017→ lolD2
( I told you not to trustyour intuition about top - spaces ! )

the problem ofdistinguishing topological spaces is a deep one , and we will only
discuss the most elementary aspects in this course . Analogous problems for

spaces with additional structure are central
to e.g - algebraic geometry ,

differential geometry , algebraic topology, - . . see the final page of these
notes for a briefintro .
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Exerciser In the above fashion, explain how to glue two copies of
the disk D= { Guy ) EIR

'

lol't y
'
E I } along their boundary

circles to obtain a space homeomorphic to S2 e 1123

Exercise (il Prove ( a , b) is homeomorphic to IR for any as b .

( ii ) Prove IT E S
'
-

X S? ( IT defined as in Example L2-2)

Exerciser characterise the open subsets of the tone containing a point
[ (x, D] on the "glued edge

"
. (Hint : use the Sierpinski space ) .

Exercise Pwue that any linear transformation IRM→ IR
"

is

continuous ( you can try using themetric, but is much

easierusing products and Ex LT - 4 )
.

Exercises Let V be a finite -dimensionalvectorspace . Given a

basis § = { ki, . - y
kn ) we may use the associated

isomorphism VE IR
"

to put a topology Jp on V.

Prove this topology is independent . Thus any
finite - dimensional real-vector space has a canonical topology .
Prove that if V

,
W are f.d. vectorspaces with the canonical

topologies, any linear map V→ W is continuous .

Exerciser Let X, Y be topological spaces and A EX a subspace .
Prove

thata function f : Y→ A is continuous iff . i o f : Y→ X

is continuous where i : A → X is the inclusion .

f-

Exerciser Given spaces { Xi} ice and Y, prove a function Y→ It
- Xi

with components fi -

- Y→ Xi is continuous iff . fi is continuous for all c
'

.
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DEI For n> 0 the n-sphere-andn-di.sk are the subspaces

5 = { EE IR
" '

l Hell = 1) E Mnt
'

D= ( E E IR " I HEH E I} E IR
"

with so =L - I , l ) and D
'
-

= ft , DEIR while Do= (x) .

We denote by L : S
" - '
→ D

"

the inclusion for n31 , e. g .

L L

S
°

- D
'

s
'

- D2

• - -
- - -

- - -
-

i
•- - - -

- - - -

•
-
-
- -

- - -

ExampkL ( Graphs as spaces ) Let G be a finite oriented graph, with
vertex setV (assumed nonempty) and edgesetE .

We define

a topological space X (a) as follows .

' let Xo be V with the

discrete topology and let E
= Ley . -

-

, en )
.

Given an edge e= (Vi, Va)

let fe : so→ Xo be - I t Y
,
l l→ Vz ( in fact the space we

construct is independent of the orientation) .

Let XCa) bethe pushout

I sof- Xo
e E E

"" etch- xctas-xoe.es#eD '

where f restricted to the copy of so indexed by e is Fe .

The space XCa) is a finite setof intervalsglued according to G .



④

Ded wecall a commutative diagram of continuous maps

f
X- Y

s l l "
x

T
e,

Z- W
Y

apushoutsquave ( sometimes indicated with t) ifthe unique map
t : Y 1×2→W of lemma 4-3 is a homeomorphism .

DEI we say a topological space Y is obtained from X by altachingn-ce.lk (for n> l )
ifthere is a family of continuous maps Ifa :S

" - '
→ X taek anda

pushout square of the form
c-

as before, this restricts

¥+5
' £-7 X to fa on the x - labelled

Kal f
,

I copy of gn
- I

.

T x

LID"- y
LE A-

That is Y is obtained from X by gluingin the n -cells D
"

along the

altachingmapsfa .

The set A- may be empty .

÷÷÷÷÷÷i÷ -
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DEI A topological space X is a finilecweompex if there is a sequence
Xo
,

. - -

,
X n - I ,

Xn=X of topological spaces where Xo is a finite setwith

the discrete topology and for l E is n the space Xi is obtained from

Xi - I by attaching a finite numberof c
'

- cells ( re - the A- above is finite )
.

A presentation of X is such a sequence togetherwith the attaching maps
( fa : Si - '→ Xi- DaeAi used at each stage , i.e .

Ai indexes i - cellsattached
.

Exampte The space X(a) associated to agraph G is a finite CW-complex
with IV / O -cells ( t - e . I Xo 1=141 ) and IEl l -cells lie . I# I =/El)

.

Exerciser Present the tones as a finite CW- complex with one o-cell Cte . Hot⇒ b
tho I -cells ( t - e . IAil = 2) and one 2 -cell ( I - e . 1121=1 )

.

Exercise write DMs" - '

for the quotient space D
" )- where ~ is the

smallest equivalence relation with x - y for all a ,yES
"
- '
E D

"

.

( i ) Rove DTs ' = S2

( i i )* Prove Dn Isn - l E S
"

for n > 2 .

( iii ) Prove S
"

is a finite CW-complex by attaching a single n -cell to a

single O - cell Ci . e. all intermediate stages have A empty ) .

Note For this exercise only , youmay use that a continuous bijection from
a compact space to a Hausdorff space is a homeomorphism ( see lectures) .

Deff For n> I define realpwjectinespace as the quotient space
1121pm .

-
= ( pit ' ) (e) ) / n where Cao, . . . , an ) - ( bo, - - -ibn )

ifthere exist XEIRYO } with X ai = bi for all O si en .

*

Exerciser Rove IRP
"

is a finite CW-complex ( there are multiple
ways to do this ) .



⑤

Finite CW -complexes will be an excellent sourceof compactttausdorffspaces
later in the course . They alsoplay a central hole in algebraic topology .

Further
,

any compact smooth manifold is homotopy equivalent (a weaker form of

equivalence than homeomorphism, but strong enough so invariant like Cw )

homology agree ) to a CW- complex having one K -cell for each critical point
of index Kofa fixed Mone function (we discussed theindex of a critical

point in Tutorial #2) . This fact is, needless to say, outsidethe scope of this

course
,
but it is one of many deep and beautiful connections between

topology and analysis ( where the theory of Mone functions belongs ) .

Exampleltb Consider the indexed family of spaces { Xu }mo
where X n = [0, o) for na O, and let

fn : (o , a)→ X n f( x) = n x .

This family determines a function F : (o, o )→ Xu

F-(x ) = ( fn (x ) ) n>, o = ( n x ) n > o

which is continuous with respect to the product topology but not
the "naive

"

product topology in which we declare arbitrary products
Tln Un E TIN Xu to be open if Un E Xn is open (t - e . we drop the

finiteness condition ) . To see this , observe that

F
- ' ( Tin> o lo, i ) ) = { x > o l fn Cx) s l forall n }

= { x > o l x c th for all n } = { o }

is not open in [0, D .



④

Exerciser Given P > 0 let- be the equivalence relation on IR

generated by x - x t P for all see IR .

Prove that Rtr = Sit

and hence that there is a bijection for any space Y

Cts ( S
'

,
Y ) = { f : R→ Y l f is continuous

,

and f- (x ) = f-Get P ) forall x )

the circle is the space that represents

pen-odicwnh.nu#hons.Coda:whylopologica?

Topological spaces ang admittedly, quite abstract . So why do we need
them at all ? why notstickwith metric spaces ? One reason is thatnot

all interesting topological spaces aremethsable .
But let us even grant that

all the spaces ( X,J) we care about aremeth'sable, i - e - T -- Jd for some d .

Still there are reasons to work with ( X, T) rather than CX , d ) .

Here are some :

① There may be many metrics inducing the same topology , e -g .

( R2
,
Tda ) = ( IRS Td , ) = ( R2, Tda ) . Working with the

topological space is like working with metric spaces modulo this
" topological equivalence

"

② Constructions likequotient are awkward formetric spaces, but
it is very convenient to build spaces this way .

f
Exainpe '

- compactness
results

.

③ Many important theorems are more "naturally
"

proven using topology .

④ Einstein says you should get overglobal rulers, already .
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Asideoninvan.am#paes

This lecture we learned the basic constructions in the theory of topological
spaces ( products , disjoint unions, quotients and pushout) and raised
the fundamental question of how to tell if two topological spaces X, Y
are

" the same
"
te . homeomorphic .

There are several areas of mathematics

that have arisen out of the quest to answer such questions, including
homotopy and algebpobgy .

These subjects are organised
around invariants which are quantities (typically numbers, groups or

finite-dimensional vector spaces ) associated to spaces X 1-7 I (x )

such that X⇒⇒ I (x) = ICY ) .

In particular

ICX) # ICY ) ⇒ X # Y
.

So one accumulates invariants { Ii, Iz, . . . } and given a pair X, Y tries

them all until either In (x) t In ( Y ) ( they are not homeomorphic )

or one runs out of invariants ( so then onemight try proving X EY somehow ) .

Example the fundamental group
TL

, (X, x ) and singular homology Hn (X,
- 2) .

thewholepoint of this game is that X is complicated and I(X ) is simple
(e.g , it is a number) so comparing Itx) to ICY) is feasible even if comparing
X
,
Y directly is not . So bydefinition mostof the information in X has

been "thrown away
"

(in principle ) informing I (X ) (and thisexplains
whywe need many different invariants).

Further reading : Hatcher 's
"

Algebraic topology
"
.


