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In a series of lectures we now develop the notion of compactness , first
for metric spaces and then move generally for topological spaces . This
is an important finiteness condition for spaces, where the closed interval
[a , b) counts as "finite" but IR does not . Recall from calculus that

the closed interval has various special properties with respect to continuous
functions defined on it, for example :

Extnemellaluetherem : iff :[a , b)→ IR is continuous then f
is bounded and attains its minimum and maximum

,
1- e. there exist

c
, de la , b] such that

f- (c) 3 flx ) 7 f-/d) the [a ,
b]

.

Uniformcontinuity if f :[a , b)→ IR is continuous then it is

uniformly continuous, ie . from

f- continuous : tx HE >078>0 try ( Ix - y 1<8⇒ If✗ - fyke )

we may deduce

f- uniformly cts : HE > OF 8 > OHx , y ( Ix - y l as⇒ If ✗- fylc E)
.

The property of compactness is " responsible
" for these and other good

properties of the interval, in the sense that these results generative to any
compact subsetofa metric space ( and in a suitable form, to any
compact subspace of a topological space 1 .

We study compactness for
metric spaces first, but the deep theorems will use only the topology .
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Recall the following definitions from real analysis :

Deff A subsetX E IR is bounded if X E C- M , M] forsome M > O .

DEI Let X E IR and x EIR .
We call x an adherent point of X if either

of the following two equivalent conditions are met :

( i ) there is a sequence ( an ) Eo, with an E X for all n,
converging to x .

Cii ) V-E > OF y E X ( Ix -y I a E )
.

Theset X is closed if it contains all its adherent points . the same

is true in any metric space, see
Exercise L8-7

.

Lemma L 8 - I X is closed in this sense i ft . it is closed in the metric topology on IR .

Pioof Suppose X is closed in the metric topology , and that x EIR is an
adherent point of X .

We havetoshow x E X . Suppose not . Since

IRI X is open , there is a ball KE B e C x) E IRLX .
But by Cii ) above

,

there exists ye X with Ix
- y

Is
E and thus y c- Be I

x)
.
But this

is a contradiction .

If X is closed in the above sense and x¢ X then x is not an

adherent point , so F E 20 Hy eX ( Ix
-y I 7 E )

,
which says

FE > o Be Cx ) ETRIX , which shows IR IX is open
-D

Example (a , b) ER is closed and bounded .
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I assume you have all seen the following proof , but itis worth recalling :

theorem ( Bolzano - Weierstrass ) A subset K E IR is closed and
a

bounded it and only if every sequence (an )n=o in K contains

a subsequence which converges to a point in K .

Root suppose K is closed and bounded
, say K

E I = C- Mi MT - Oneof

k n C- M , 07 , K n [
o
,
M]

must contain an for infinitely many n ( maybe both do ) . Let Ii denote
a half of I s . t . KAI , has this property .

Bisect It and choose a half

Iz s -
t . Kh Iz contains an for infinitely many n . In this way we construct

intervals { Ij}j>, i s . t
.

• Ijti C- Ij Hj> I

• length of Ij = 2
-J t ' M ( length of I, is M )

choose n , with an , C- I , AK .
Since { n I an C- Izn k } is infinite we

may choose nz> n , with anz E Iz n k , and continuing we

produce a sequence ( ay-Jj , with ay. EI - n k forj> l
. If ig-712

then Ani
, ay . E Ik and so

I Ani - anj Is length of Ik = 2¥ M

'

Hence ( anj )jI , is Cauchy and converges to aE IR .

But a is then

an adherent point of K , and since K is closed, we must have a E K .
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For the convene
, suppose every sequence in K has a subsequence converging to

a point in K . We show

• Kisbounded otherwise for each n > I let an E K \ [- n , n] .

Thismust have a subsequence Xni which converges , say to ✗ c- K
.

Let m be an integer s.t.sc c- (- m, m ) .
Let e > 0 be small enough

so Be (x) c- C-m , m )
.

Since xni → x there exists N > 0 such that

for all i>N , ✗ni C- BE IN c- C-mim ) . Tori sufficiently large ni >m
so xni ¢ [- ni , ni] .

Since C-mm) C- [- ni , ni] this is a contradiction .

• Kisclosed suppose x¢ K but that x is an adherent point,
with say an

→ x
. But an has a subsequence Ani

converging to y c- K
,
and Ani → x , so x=y c- K a

contradiction .

This completes the proof☐ .

We will adopt the property of [a , b) given by the theorem as ourdefinition
of compactness in an arbitrarymetric space .

But first we mustdefine

convergence in this generality .

DEI Let ( X , d) be a metric space and Gen )n% a sequence in ✗ .

Then (Xn )F- o conveyed to see X , written an→ x or limxn =x, if
n→ oo

He >OF N > OHNEIN ( n > N ⇒ dlxn , >c) < E)
.

( i - e . He > 07N > of { an } nzn C- Be (x ) ) )
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Lemma L8 -3 If (xn)F=o has a limit, it is unique .

Roof Suppose xn→ x and Xn→ y and set E=d(xiy ) . If E 7 0 then

42 > 0 and wemay find N with d(an ,x) < 42 , d (xn, g)
< EK

for all n>/N . But then
• X

d(x. y) € d (x,xn)td(xn, y ) *

< EK t 42 = E .

y }
a contradiction

. This proves e=
0
,
and thus x=y . D

Lemma L8 -4 A function f : ( X , d)→ ( Y , d ) is continuous if and only if

whenever an→ x in X we have fcxn )→ flx ) in Y .

Roof Suppose f is continuous and that xn→ x . Let E > 0 begiven .

The set f-
' Be ( fx ) is open, so Bs (x) c- f

- '
Be ( fx) forsome d .

Let N best . {xn }n , N c- Bs (x ) .

Then

{ Hxn ) }n ,n E f( Bs (x ) ) E Be ( fx )

which proves Hxn ) → FK ) .

Now suppose f has the stated property .

To pwuef is continuous itsallies by Lemma Lb -4 to prove

FXEX 'Ve > OFS > 0 ( ye Bs (x) ⇒ fly)EB{ (HD) )

suppose otherwise . Then there exists xex, e > 0 sit .HS Bs (x) 4- f-
'

Belfx
)
.

Choose foreach n> 1 an element

xn E Bz . n (x)\ f-
'

Be ( fx) ( note xntx)
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Then xn→ x and hence by hypothesis Hxn )→ fIx), which

means in particular there exists N with d ( ffxn ), Hx ) ) < E whenever
n >, N . But then Hxn ) e Be ( fx ) which is a contradiction . D

It is useful to employ this result syntactically as follows :

f( ftp.xn ) = ftp.flxn ) ,

i. e. continuous functions commutewith limits .

DEI A metric space ( Xi d) is sequentially compact if every sequence in X
has a convergent subsequence .

A subset KE X is called sequentially
compact it themetric space ( k ,dlkxk ) is sequentially compact .

( the emptyset is allowed , and it is sequentially compact)

Example L8 - 2 By Theorem L8 -2 a subset of IR is closed and bounded

IH .
itissequentially compact (e.g. [aib ]) .

Next we make good on the claim that compactness is what is
4responsible "

for the extreme value theorem .

Pwposition L8- S If f : ( X, d)→ (Y , d ) is continuous and KEX

is sequentially compact then f ( k) c- Y is sequentially compact .

Pwot Suppose K is compact , and let ( Yn )F=o be a sequence in f ( k ) .
Choose

for each n> 0 an element xn E K with yn
= fkn )

.
Then xn has

a convergentsubsequence Xni with liMiao Xni E K . Then

Yni = f (Xni ) is a subsequence with



�7�

ftp.Yni = fire flxni )

= f ( ftp.xni ) e f ( k ) ,

which completes the proof . D

In particular if X is a sequentially compact metric space and f : X→ IR

is continuous then HX) E R is sequentially compact, hence closed and

bounded
.
Moreoverf attains its minimum and maximum :

Corollary L 8-6 Let f be a continuous real - valued function on a nonempty
sequentially compact metric space (X, d ) .

Then there existGDEX sit .

f-(c) > f (x ) > fld ) ttxe X
.

Root Since f(X )
.

is bounded there is a least upper bound X. this is an

adherent point of f(X ) : if not, there would exist E > 0 with

Bea) n HX ) empty, and 7 - EK would bean upperbound

for HX) , which is a contradiction .

Butthen since HX ) is closed

we must have XEFCX) , say X =fK) . Then f-(c) 7 ffx ) for

all XEX as claimed
.

The otherclaim is similar . D

DEI A subset YEX of a metric space (X , d) is bounded if there exisb

XEX and e> 0 with YE Be (x ) .

Exercise L8- l C i) Rove Y is bounded ifand only if the set { d (xi) lx , y EY } ER

is bounded above
.

Cii ) Prove YEIR is bounded in this sense if it is bounded in
the sense of p . @ .
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Exercise L8 -2 Pwve that if KEX is sequentially compact then it is closed

and bounded in X ( Hint : recycle theproof of Theorem L8 - 2) .

Exercise L8 - 3 Ii ) Pwve that if (× , dx ) and ( Y, dy ) are isometric then

( Xidx ) is
sequentially

compact iff . ( Y,dx ) is so .

( your proofshould notbe via C ii ) below
,
i. e. write it in

terms of sequences and convergence)

lii ) Pwve that if ( X , dx ) , (Y ,
dy ) are metric spaces and

the associated topological spaces ( X, Jdx ) , N, Jdx )
are homeonorphic then (X , dx ) is sequentially
compact iff .

( Y
,
dy ) is so .

(This is a hint that the pwpev level of analysis for

compactness is thetopology rather than the metric .

You should pwve this directly , i. e. without using the

notion of compactness fortopological spaces in Lecture 9 ).

Exercise L8-4 Rove any bounded subset of IR
"

is contained in [a ,
b]
"

for some a, be R .

Exercise L8-5 Pwve that if XER is not sequentially compact , there
exists a continuous function f :X→ R which is not bounded

( i.e. f (X ) c- R is not bounded ) .

Exercise L8 -6 If ( X , d ) is sequentially compact and Y E X is closed

then Y is sequentially compact .
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Exercise L8-7 Let ( X
,
d) be a metric space and YE X a subset .

C it Prove that the following are equivalent for a pointxEX

(a) there is a sequence ( yn)F=o in Y converging to x .

(b) V-E >OF y E Y ( d Cac,y) s E ) .

We call such a pointx an adherentpoint of Y.

Iii) Pure that Y is closed in X ift it contains all of its adherentpoint .


