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the diagram

tion to a family, instead of
We will prove one the

virtue of the uniqueness of 7,,.

Theorem 6.2. Let (6.1) be a pull-back diagram in a category € with zero
object. Then
@) if (J, p) is the kernel of B, (J, au) is the kernel of ¢;
(@ii) if (J, v) is the kernel of @, v may be factored as v=ou where (J, y)
is the kernel of f.

Note that (i) is superfluous if we know that every morphism in € has
a kernel. Weshow here, in particular, that § has a kernel if and only if ¢
has a kernel, and the kernel objects coincide.

Proof. (i) J = g (Gq is
- A
s
¥
Y—54 f \ X
1” [ g — X
B> X Y

Set v=opu. We first show that v is monomorphic; for p and {a, B} are
monomorphic, so {a, B} u={v,0}: J— A x B is monomorphic and hence,
plainly, v is monomorphic. Next we observe that pv=gpau=yppfu=0.
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Finally we take t: Z— A and show that if ¢ =0 then 7 =vz, for some
7o. Since 0 = 0, the pull-back property shows that there exists6: Z— Y
such that ao =1, fo=0. Since (J, p) is the kernel of B, 6 = ut,, so that
T=0UTy= VTp.

(ii) Since @v =0 we argue as in (i) that there exists u:J— Y with
ap=v, fu=0. Since v is a monomorphism, so is u and we show that
(J, p) is the kernel of f. Let f1=0, 7: Z— Y. Then gpar=ypr=0, so
aT=vio=0auty. But fr=pPut,=0, so that, {a, f} being a mono-
morphism, 7= ut,. [J

In Chapter VIII we will refer back to this theorem as a very special
case of a general result on commuting limits. We remark that the intro-
duction of 4 x B in the proof was for convenience only. The argument
is easxly reformulated without invoking 4 x B.

Exercises:

6.1. Prove Proposition 6.1.
6.2. Given the commutative diagram in €

A 4,254,
AN
B,—~B,—B,
show that if both squares are pull-backs, so is the composite square. Show

also that if the composite square is a pull-back and x, is monomorphic, then
the left-hand square is a pull-back. Dualize these statements.



II1. Extensions of Modules

In studying modules, as in studying any algebraic structures, the standard
procedure is to look at submodules and associated quotient modules.
The extension problem then appears quite naturally: given modules 4, B
(over a fixed ring A) what modules E may be constructed with submodule
B and associated quotient module A? The set of equivalence classes of
such modules E, written E(A, B), may then be given an abelian group
structure in a way first described by Baer [3]. It turns out that this group
E(A. B) is naturally isomorphic to a group Ext, (4. B) obtained from A
and B by the characteristic, indeed prototypical, methods of homological
algebra. To be precise. Ext,(A. B) is the value of the first right derived
functor of Hom,(—, B) on the module A, in the sense of Chapter IV.

In this chapter we study the homological and functorial properties of
Ext,(A4, B). We show, in particular, that Ext,(—, —) is balanced in the
sense that Ext (4, B) is also the value of the first right derived functor
of Hom,(A4, —) on the module B. Also, when A=Z, so that A, B are
abelian groups, we indicate how to compute the Ext groups; and prove a
theorem of Stein-Serre showing how, for abelian groups of countable
rank, the vanishing of Ext(4,Z) characterizes the free abelian groups A.

In view of the adjointness relation between the tensor product and
Hom (see Theorem 7.2), it is natural to expect a similar theory for the
tensor product and its first derived functors. This is given in the last
two sections of the chapter.

1. Extensions

Let A4, B be two A-modules. We want to consider all possible A-modules E
such that B is a submodule of E and E/B~A. We then have a short
exact sequence

B-%E->*»A

of A-modules; such a sequence is called an extension of A by B. We shall
say that the extension B>—E,—»A is equivalent to the extension
B—E,—»A if there is a homomorphism &: E;—E, such that the
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diagram B—E,—»A

| |

B—E,—»A

is commutative. This relation plainly is transitive and reflexive. Since &
is necessarily an isomorphism by Lemma I.1.1, it is symmetric, also.

The reader will notice that it would be possible to define an equiv-
alence relation other than the one defined above: for example two
extensions E;, E, may be called equivalent if the modules E,, E, are
isomorphic, or they may be called equivalent if there exists a homo-
morphism ¢ : E, — E, inducing automorphisms in both 4 and B. In our
definition of equivalence we insist that the homomorphism ¢: E,—E,
induces the identity in both A4 and B. We refer the reader to Exercise 1.1
which shows that the different definitions of equivalence are indeed
different notions. The reason we choose our definition will become clear
with Theorem 1.4 and Corollary 2.5.

We denote the set of equivalence classes of extensions of 4 by B by
E(A, B). Obviously E(A, B) contains at least one element: The A-module
A® B, together with the maps 15, 74, yields an extension

BB A®B™ A, (1.1)

The map 1,: A— A@® B satisfies the equation n, 1, =1, and the map
ng: A® B— B the equation g1z =15. Because of the existence of such
maps we call any extension equivalent to (1.1) a split extension of A by B.

Our aim is now to make E(—, —) into a functor; we therefore have
to define induced maps. The main part of the work is achieved by the
following lemmas.

Lemma 1.1. The square @ Y—2—A
J [} l ° (1.2)
B—¥>X
is a pull-back diagram if and only if the sequence
0— Yyl 4@ BL2=vd, x

is exact.

Proof. We have to show that the universal property of the pull-back
of (¢,y)is the same as the universal property of the kernel of (¢, — ).
But it is plain that two maps y: Z— A4 and ¢ : Z— B make the square

Z—25A

Lo
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commutative if and only if they induce a map {y,8}:Z—A®B such
that (¢, —y) < {y, 6} =0. The universal property of the kernel asserts the
existence of a unique map {: Z— Y with {a, f} - { = {y. 6}. The universa]
property of the pull-back asserts the existence of a unique map {: Z— y
witha:{=y and B-{=06. []

Lemma 1.2. If the square (1.2) is a pull-back diagram, then
& (i) B induces kera=kery;
W\\Q‘ﬁ (ii) if y is an epimorphism, then so is a.

\ Proof. Part (i) has been proved in complete generality in Theorem
I1.6.4. For part (i) we consider the sequence 0— Y {28, 4@ B<2=w,
which is exact by Lemma 1.1. Suppose a € A. Since v is epimorphic there
exists be B with pa=yb, whence it follows that (a, b) e ker (¢, —p>
= im{a, B} by exactness. Thus there exists y € Y with a=ay (and b= By).
Hence a is epimorphic. []

We now prove a partial converse of Lemma 1.2 (i).
Lemma 1.3. Let

B—5FE—Y» 4’

| kot

B—>E —»4

be a commutative diagram with exact rows. Then the right-hand square is

a pull-back diagram.
Proof. Let
P—=-4
Pl
E—»A4

be a pull-back diagram. By Lemma 1.2 ¢ is epimorphic and ¢ induces
an isomorphism kere =~ B. Hence we obtain an extension

B-5P-5» A’

By the universal property of P there exists a map { : E'— P, such that
ol =¢, e{=V. Since { induces the identity in both 4’ and B, { is an
isomorphism by Lemma 1.1.1. []

We leave it to the reader to prove the duals of Lemmas 1.1, 1.2,1.3.
In the sequel we shall feel free to refer to these lemmas when we require
either their statements or the dual statements.
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Let a: A’— A be a homomorphism and let B>% E-*» A be a repre-
sentative of an element in E(A, B). Consider the diagram

E*. YA

{ Ja

B—~ESE —»A4

where (E*; V', &) is the pull-back of («, v). By Lemma 1.2 we obtain an
extension B~ E*¥» A’. Thus we can define our induced map

o*: E(A, B—E(A', B)

by assigning to the class of B~ E—» A the class of B~— E*—» A’. Plainly
this definition is independent of the chosen representative B~ E—» A.

We claim that this definition of E(a, B)=o* makes E(—, B) into a
contravariant functor. Indeed it is plain that fora =1, : A— A4 the induced
map is the identity in E(4, B). Let o' : A"— A’ and a: A’—A. In order
to show that E(a« ‘o', B)= E(«', B): E(a, B), we have to prove that in the
diagram

(B e A"

a

v

Ea DT )A'

E— 5A

where each square is a pull-back, the composite square is the pull-back
of (v, - a’). But this follows readily from the universal property of the
pull-back.

Now let f: B— B’ be a homomorphism, and let B~ E-*» 4 again
be a representative of an element in E(A. B). We consider the diagram

where (E;: ', £) is the push-out of (. k). The dual of Lemma 1.2 shows
that we obtain an extension B'— Ez;—» A. We then can define

B« :E(A, B)—E(4, B)
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by assigning to the class of B—E—»4 the class of B'’>>E;—» A. As
above one easily proves that this definition of E(B, ) = 8, makes EA, -)
into a covariant functor. Indeed, we even assert:

Theorem 1.4. E(—, —) is a bifunctor from the category of A-modules
to the category of sets. It is contravariant in the first and covariant in the
second variable.

Proof. It remains to check that g a*=o,p*: E(A. B)—E(A'. B).
We can construct the following (3-dimensional) commutative diagram,
using pull-backs and push-outs.

E
,,\B ™. ||\
|ﬂ 1 7 ”
B’ E,

L/\/’\ (Ea)a\‘\»A,

\ ;Eﬂ)a /

We have to show the existence of (E*);— (Ej)” such that the diagram
remains commutative. We first construct E*—(Ey)" satisfying the
necessary commutativity relations. Since E*—E—E;— A coincides
with E*— A'— A, we do indeed find E*—(Eg)* such that E*—(E)*— E,
coincides with E*—E— E; and E*—(Eg)*— A’ coincides with E*—A'.
It remains to check that B— E*—(E)” coincides with B— B'—(Ep)".
By the uniqueness of the map into the pull-back it suffices to check that
B—E*—(Eg)*—E; coincides with B—B'—(Ey)*—E; and B—E"
—(Eg)*— A’ coincides with B—B'—(Ez)*— A’, and these facts follow
from the known commutativity relations. Since B— E*— (Ej)* coincides
with B—B'—(Ey)”* we find (E®);—(E)* such that B'—(E®);—(Ep)*
coincides with B'—(Ep)* and E*— (E*);—(Ey)* coincides with E*—(Ep)".
It only remains to show that (E*);— (E)*— A’ coincides with (E*),— A".
Again, uniqueness considerations allow us merely to prove that B'—(E®),
—(Eg)*— A’ coincides with B'—(E*);—A’, and E*—(E®);—(Ez)—A’
coincides with E*—(E®);— A'. Since these facts, too, follow from the
known commutativity relations, the theorem is proved. []

/

Exercises:

1.1. Show that the following two extensions are non-equivalent
LT T, ZEST—>17,

where p =y’ is multiplication by 3, ¢(1) = 1 (mod 3) and &’'(1) = 2(mod 3).
1.2. Compute E(Z,, Z), p prime.
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1.3. Prove the duals of Lemmas 1.1, 1.2, 1.3.

1.4. Show that the class of the split extension in E(4, B) is preserved under the
induced maps.

1.5. Prove: If P is projective, E(P, B) contains only one element.

1.6. Prove: If I is injective, E(A, I) contains only one element.

1.7. Show that E(A.B,®B,)=~ E(A.B,)x E(A.B,). Is there a corresponding
formula with respect to the first variable?

1.8. Prove Theorem 1.4 using explicit constructions of pull-back and push-out.

- )

In the pxevious section we have defined a bifunctor E(—, —) from the
dtegory ok/A-modules to the categories of sets. In this section we Ahall
define anothex bifunctor Ext,(—, —) to the category of abelian groups,
and eventually xompare the two.
A short exactsgquence R-£ P-£» 4 of A-modules with B/ projective
is dalled a projective\gresentation of A. By Theorem 1.2.2 sugh a presenta-
tiop induces for a A-ipodule B an exact sequence

Hom, (A4, B)>&~ Hom (P, B)—»Hom,(K, B). 2.1)
To the modules 4 and B, an{ to the chosen projecti¥e presentation of A
we therefore can associate th abelian group

Ext% (4, B) = coker (u* N\Hom 4 (P, B)»>Hom (R, B)).

The|superscript ¢ is to remind the\readet that the group is defined
via g particular projective presentatiohf 4. An element in Exté (A4, B)
may|be represented by a homomorpHisiy ¢ : R— B. The element rep-
reserjted by ¢:R—B will be dénoted \by [¢] € Ext5(A4, B). Then
[¢.1l=[e,] if and only if ¢, —@extends to .

Clearly a homomorphism f: B— B’ will mag the sequence (2.1) into
the corresponding sequence’ for B'. We thus get an induced map
B, : Hxt5(A4, B)—Ext% (4, &), which is easily seen q make Exté(4, —)
into 4 functor.

I\Ext we will show/that for two different projective presentations of A

we obtain the “sarhe” functor. Let R'>£P'<» 4’ and R4 P-£»A be
projective presepfations of A’, A respectively. Let o : A'— A\be a homo-
morli hism. Sip€e P’ is projective, there is a homomorphismg: P'— P,
induging ¢ ;R'— R such that the following diagram is commubdative:

RI u Pt &' AI

V/ R—£,P_t,4
e sometimes say that 7 lifis a. )






