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MAST 90068 - Lecture 16

In this lecture we define the functor Ext 477 which is functional in two

variables
,

and before doing so we have a brief digression on how to make

sense of function with more than one variable
.

DI Let 8.
,

Czbe categories .

The product 8
, x6z is the category

whose object class is ob 1 9 ) xobl 8D
,

whose Morphis ms are

Home,×es( ( a
,

az )
,

( b , .bz ) )
: - Home

,
( ai

,

b
, ) × Homes ( az.bz )

and Whose composition rule is
,

for fi : ai - bi
, gi

: bi  → ci

( g ,
, g- ) ° ( f

,
,

fs ) = ( 9 , of ,
,

gzofz )
.

Lemme Qxk is a category with idea
, b)

= ( ida
,

idb )
,

and the obvious

projections define function ti : € , ×k - 8
.

- for ie { 1,2 }
.

EI Prove the Lemma
,

and check that if 81
,

Es are small then

( 9×9,71 ,
Tk ) is a product ( in the limit sense ) in Cat

.

EI what is the w product of G
,

Q in Cat ?

Def A bifund= F from a pair ( Ei
,

%) to a category 8 is the data of

(1) for each Aeob ( Q ) a functor F ( A
,

- ) : Tz→8

(2) for each Beob ( 8D afunctor Ff , B) : 8
,

- → 8
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satisfying

(3) for every pair Aeobl G)
,

Beob ( 8D
,

FCA
,

- ) (B) = Ff , B) ( A )

and we write FIA , B) for this common object ,

14 ) for every pair of Morphis ms f : A  → A
'

in G and

g
:B ' 13

'

in 82
,

the diagram

F ( f ,
B )

FCA , B) - FIA '

, B)

FIA , 9) | |
,

FIA '

, g)

⇒TB
'

) - F ( At
,

B
'

)
F ( f

,
B

' )

commutes
.

F

LIMA There is a bijection between function 9×9-8

and bifunctors from ( Gier ) to 8
,

which associates to

F the data { FIA ,

- ) : er ' 8 }aeob( e , )
,

{ FHB ) :C
,

→ 8 } Beobled
.

EI Rove the Lemma
.

Henceforth we freely use whichever definition of bifunctor is

convenient .
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Bed A contrarian functor F :C → 8 is a functor 89
'

- 8
.

Example Let 8 be a category .

There is a bifunctor

H : 89
'

xp - Let

defined by

Hla , B) = Homola , B)

and for f. A  → A
'

, g
:B → B

'

in 8 by

HLA , g) : Homola , B) → Home 1A, B
'

) x -7 gox

H ( f
, B) : Home IA '

, B) → Home ( A , B) xi→ xof
.

We often say Hornet ,
- ) is contrivance in the first variable

( since the restrictions Home 1-
,

B) are contra variant function

89
'

→ Let ) and covariant in the second variable
.

Ex4_ For a ring R
,

check that the tensor product is a bifanctor

-

0,5
: Mod Rx R Mod -> AI
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the diagram

commutative, 2a = K. Now let J = spa = tpf be the diagonal of the square
(6.2). Then the reader may easily prove

Proposition 6.1. (A; a, f3) is the product of (p and ip in C/X. 0

This means that a, fi play the roles of Pt, P2 in the definition of
a product, when interpreted as morphisms a: A-*qp, f3: A--+W in CIX.

From this proposition we may readily deduce, from the propositions
of Section 5, propositions about the pull-back and its evident generaliza-
tion to a family, instead of a pair, of morphisms in (F with codomains X.
We will prove one theorem about pull-backs in categories with zero
objects which applies to the categories of interest in homological algebra.
We recall first (Exercise 3.4) how we define the kernel of a morphism
Q : K-i-L in a category with zero objects by means of a universal property.
We say that p : J-±K is a kernel of a if (i) ay = 0 and (ii) if aT = 0 then T
factorizes as T = pTO, with To unique. As usual. the kernel is essentially
unique; we (sometimes) call J the kernel object. Notice that p is monic,
by virtue of the uniqueness of TO.

Theorem 6.2. Let (6.1) be a pull-back diagram in a category t with zero
object. Then

(i) if (J, p) is the kernel of f3, (J, aµ) is the kernel of cp;
(ii) if (J, v) is the kernel of (p, v may be factored as v = a p where (J, p)

is the kernel of f3.

Note that (ii) is superfluous if we know that every morphism in (F has
a kernel. We -show here, in particular, that Q has a kernel if and only if lp
has a kernel, and the kernel objects coincide.

Proof. (i) J = J

Set v = ap. We first show that v is monomorphic; for p and {a, f3} are
monomorphic, so {a, f3} p ={v,0}: J-A x B is monomorphic and hence,
plainly, v is monomorphic. Next we observe that coy = cpaµ = W flu = 0.
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Finally we take r : Z-> A and show that if (pT = 0 then T = vt0 for some
T0. Since wO = 0, the pull-back property shows that there exists a : Z- Y
such that a6 = T, fla = 0. Since (J, p) is the kernel of Ji, a = er0i so that
T = a/LTO = VTQ.

(ii) Since cp v = 0 we argue as in (i) that there exists p : J-* Y with
a p = v, aµ = 0. Since v is a monomorphism, so is p and we show that
(J, p) is the kernel of J3. Let fir = 0, T : Z- Y. Then gpcT = w/3T = 0, so
aT = vT0 = a,vT0. But J3T = JipT0 = 0, so that, {a, J3} being a mono-
morphism, T =µT0. 0

In Chapter VIII we will refer back to this theorem as a very special
case of a general result on commuting limits. We remark that the intro-
duction of A x B in the proof was for convenience only. The argument
is easily reformulated without invoking A x B.

As examples of pull-backs, let us consider the categories CB, Z, 0.
In S, let (p, w be embeddings of A, B as subsets of X ; then Y = A n B and
a, J3 are also embeddings. In X we could cite an example similar to that
given for Cam; however there is also an interesting example when cp, say,
is a fibre-map. Then /3 is also a fibre-map and is often called the fibre-map
induced by w from cp. (Indeed, in general, the pull-back is sometimes
called the fibre-product.) In (5 we again have an example similar to that
given for Cam; however there is a nice general description of Y as the sub-
group of A x B consisting of those elements (a, b) such that sp(a) = w(b).

The dual notion to that of a pull-back is that of a push-out. Thus, in
(6.1), (gyp, w) is the push-out of (a, fl) in (i= if and only if it is the pull-back
of (a, fl) in °'". The reader should have no difficulty in formulating an
explicit universal property characterizing the push-out and dualizing the
statements of this section. If a, Q are embeddings (in S or Z) of Y = A n B
in A and B, then X = Au B. In (5 we are led to the notion of free product
with analgamations [36].

We adopt for the push-out notational and terminological conventions
analogous to those introduced for the pull-back.

Exercises:

6.1. Prove Proposition 6.1.
6.2. Given the commutative diagram in C

Al --!i-+ A, A,

IV1 1Q2

103

Bl t B2 B2 B3
show that if both squares are pull-backs, so is the composite square. Show
also that if the composite square is a pull-back and z2 is monomorphic, then
the left-hand square is a pull-back. Dualize these statements.



III. Extensions of Modules

In studying modules, as in studying any algebraic structures, the standard
procedure is to look at submodules and associated quotient modules.
The extension problem then appears quite naturally: given modules A, B
(over a fixed ring A) what modules E may be constructed with submodule
B and associated quotient module A? The set of equivalence classes of
such modules E, written E(A, B), may then be given an abelian group
structure in a way first described by Baer [3]. It turns out that this group
E(A, B) is naturally isomorphic to a group Exte(A, B) obtained from A
and B by the characteristic, indeed prototypical, methods of homological
algebra. To be precise. ExtA(A. B) is the value of the first right derived
functor of HomA(-, B) on the module A, in the sense of Chapter IV.

In this chapter we study the homological and functorial properties of
ExtA (A, B). We show, in particular, that ExtA(-, -) is balanced in the
sense that ExtA(A, B) is also the value of the first right derived functor
of HomA(A, -) on the module B. Also, when A =7L, so that A, B are
abelian groups, we indicate how to compute the Ext groups; and prove a
theorem of Stein-Serre showing how, for abelian groups of countable
rank, the vanishing of Ext(A, 71) characterizes the free abelian groups A.

In view of the adjointness relation between the tensor product and
Hom (see Theorem 7.2), it is natural to expect a similar theory for the
tensor product and its first derived functors. This is given in the last
two sections of the chapter.

1. Extensions

Let A, B be two A-modules. We want to consider all possible A-modules E
such that B is a submodule of E and E/B -=A. We then have a short
exact sequence

A

of A-modules; such a sequence is called an extension of A by B. We shall
say that the extension B.--+E1-»A is equivalent to the extension
B-+E2-»A if there is a homomorphism l; : E1->E2 such that the



1. Extensions 85

diagram

14

B- E2-»A
is commutative. This relation plainly is transitive and reflexive. Since
is necessarily an isomorphism by Lemma 1.1.1, it is symmetric, also.

The reader will notice that it would be possible to define an equiv-
alence relation other than the one defined above: for example two
extensions E1, E2 may be called equivalent if the modules E1, E2 are
isomorphic, or they may be called equivalent if there exists a homo-
morphism : E1->E2 inducing automorphisms in both A and B. In our
definition of equivalence we insist that the homomorphism : E1->E2
induces the identity in both A and B. We refer the reader to Exercise 1.1
which shows that the different definitions of equivalence are indeed
different notions. The reason we choose our definition will become clear
with Theorem 1.4 and Corollary 2.5.

We denote the set of equivalence classes of extensions of A by B by
E(A, B). Obviously E(A, B) contains at least one element: The A-module
ApB, together with the maps 1B, 7[A, yields an extension

(1.1)

The map 1A : A-*AE B satisfies the equation 1tA lA =1A and the map
nB : AQ+ B-+B the equation nB 1B =1B. Because of the existence of such
maps we call any extension equivalent to (1.1) a split extension of A by B.

Our aim is now to make E(-, -) into a functor; we therefore have
to define induced maps. The main part of the work is achieved by the
following lemmas.

Lemma 1.1. The square Y-A
Js 1-P (1.2)

BMX
is a pull-back diagram if and only if the sequence

O-+Y ta.aL AQ+ B < T> X
is exact.

Proof. We have to show that the universal property of the pull-back
of ((p,tp)is the same as the universal property of the kernel of <qO, -tp>.
But it is plain that two maps y : Z--+A and S : Z-*B make the square

Z" )A
jo jc

B'P X
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commutative if and only if they induce a map {y, S} : Z->A (DB such
that <(p, -W> ° {y, S} = 0. The universal property of the kernel asserts the
existence of a unique map C: Z-+ Y with {a, f3} - C = {y, S}. The universal
property of the pull-back asserts the existence of a unique map i : Z--' y
with a v C = y and f3 t; = S. 0

Lemma 1.2. If the square (1.2) is a pull-back diagram, then
(i) f3 induces kera-*kery);

(ii) if ip is an epimorphism, then so is a.
Proof. Part (i) has been proved in complete generality in Theorem

11.6.4. For part (ii) we consider the sequence 0- Y- A (D B X
which is exact by Lemma 1.1. Suppose a e A. Since w is epimorphic there
exists b e B with (pa = tpb, whence it follows that (a, b) e ker <cp, - p>
= im {a, f3} by exactness. Thus there exists y e Y with a = ay (and b = fty).
Hence a is epimorphic. 0

We now prove a partial converse of Lemma 1.2 (i).
Lemma 1.3. Let

B>-E' *A'

B, )E ' -WA

be a commutative diagram with exact rows. Then the right-hand square is
a pull-back diagram.

Proof. Let

be a pull-back diagram. By Lemma 1.2 s is epimorphic and cp induces
an isomorphism kere = B. Hence we obtain an extension

BHP-»A'.

By the universal property of P there exists a map t4 : E'->P, such that
cp C = , e l; = V. Since C induces the identity in both A' and B, l; is an
isomorphism by Lemma 1.1.1. 0

We leave it to the reader to prove the duals of Lemmas 1.1, 1.2, 1.3.
In the sequel we shall feel free to refer to these lemmas when we require
either their statements or the dual statements.
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Let a : A'---+A be a homomorphism and let "»A be a repre-
sentative of an element in E(A, B). Consider the diagram

Ea !' '

I-
B K )E "oA

where (E"; v', ) is the pull-back of (a, v). By Lemma 1.2 we obtain an
extension BCE" -+A'. Thus we can define our induced map

a* : E(A, B)-+E(A', B)

by assigning to the class of B-->E-»A the class of Plainly
this definition is independent of the chosen representative

We claim that this definition of E(a, B) = a* makes E(-, B) into a
contravariant functor. Indeed it is plain that for a = 'A : the induced
map is the identity in E(A, B). Let a': A"--+A' and a : A'-A. In order
to show that E(a a', B) = E(a', B) - E(a, B), we have to prove that in the
diagram

where each square is a pull-back, the composite square is the pull-back
of (v, a a'). But this follows readily from the universal property of the
pull-back.

Now let /3: B---)-B' be a homomorphism, and let B-E again
be a representative of an element in E(A. B). We consider the diagram

B'' )E A

B'...._K:. Es

where (Er : K'. ) is the push-out of (fl. K). The dual of Lemma 1.2 shows
that we obtain an extension B'>-Efi--+*A. We then can define

/3* : E(A, B')
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by assigning to the class of Br-+E the class of As
above one easily proves that this definition of E(B, fl) _ /3* makes E(A, - )
into a covariant functor. Indeed, we even assert:

Theorem 1.4. E(-, -) is a bifunctor from the category of A-modules
to the category of sets. It is contravariant in the first and covariant in the
second variable.

Proof. It remains to check that /*a* =a*/i* : E(A, B)-+E(A'. B').
We can construct the following (3-dimensional) commutative diagram,
using pull-backs and push-outs.

B E A\B Ea II A,
s ;

B' = Ep A

B'- (Ea)e A,

(Ep)a

We have to show the existence of (E)p->(Ep)a such that the diagram
remains commutative. We first construct E'->(EO)a satisfying the
necessary commutativity relations. Since Ea->E--+E,-*A coincides
with Ea->A'-*A, we do indeed find Ea-*(Es)a such that Ea-+ (E,)a--.EE
coincides with E--+E--+E, and coincides with E'-+A'.
It remains to check that coincides with
By the uniqueness of the map into the pull-back it suffices to check that
B-- Ea-*(Ep)a-+Es coincides with B-+B'--+(E,)--+E, and B--+E'
-->(Ep)a->A' coincides with B-+B'->(E,)a->A', and these facts follow
from the known commutativity relations. Since B--+ E--+ (EO)a coincides
with B-+B'->(Ep)a we find (E)p _ (Ep)a such that
coincides with B'-*(E,)a and coincides with Ea-*(Es)a.
It only remains to show that (Ea),->(Ep)a--+A' coincides with (P)p--+A'.
Again, uniqueness considerations allow us merely to prove that B'-+(Ea)s
-+(Es)a-*A' coincides with and
coincides with Ea-->(Ea)P->A'. Since these facts, too, follow from the
known commutativity relations, the theorem is proved. Q

Exercises:

1.1. Show that the following two extensions are non-equivalent
Z,OZ ..'Z31 7 _ ) _ _ 3

where p = p' is multiplication by 3, e(1) = I (mod 3) and E'(1) = 2 (mod 3}
1.2. Compute E(Zp, Z), p prime.
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1.3. Prove the duals of Lemmas 1.1, 1.2, 1.3.
1.4. Show that the class of the split extension in E(A, B) is preserved under the

induced maps.
1.5. Prove: If P is projective, E(P, B) contains only one element.
1.6. Prove: If I is injective, E(A, I) contains only one element.
1.7. Show that E(A. B1 Q+ B2) - E(A. B1) x E(A. B2). Is there a corresponding

formula with respect to the first variable?
1.& Prove Theorem 1.4 using explicit constructions of pull-back and push-out.

2. The Functor Ext

In the previous section we have defined a bifunctor E(-, -) from the
category of A-modules to the categories of sets. In this section we shall
define another bifunctor ExtA(-, -) to the category of abelian groups,
and eventually compare the two.

A short exact sequence R+P-LoA of A-modules with P projective
is called a projective presentation of A. By Theorem 1.2.2 such a presenta-
tion induces for a A-module B an exact sequence

Homn (A, B)>- , HomA(P, B)-1-* HomA (R, B). (2.1)

To the modules A and B, and to the chosen projective presentation of A
we therefore can associate the abelian group

Ext'l (A, B) = coker (,u*: HomA (P, B)-i Home (R, B)).

The superscript s is to remind the reader that the group is defined
via a particular projective presentation of A. An element in Ext;l (A, B)
may be represented by a homomorphism cp : R--+B. The element rep-
resented by cp : R-*B will be denoted by [cp] a Ext'A(A, B). Then
[c1] = [92] if and only if p1 -cp2 extends to P.

Clearly a homomorphism fl: B--+ B' will map the sequence (2.1) into
the corresponding sequence for F. We thus get an induced map

Ext;l (A, B)-+ Ext;l (A, B'), which is easily seen to make Ext;l (A, - )
into a functor.

Next we will show that for two different projective presentations of A
we obtain the "same" functor. Let R'-P'-"A' and RAP `»A be
projective presentations of A', A respectively. Let a : A'--* A be a homo-
morphism. Since P' is projective, there is a homomorphism it : P'-,P,
inducing a : R'-*R such that the following diagram is commutative:

R' ' >F A'

R, R ,P
We sometimes say that it lifts a.




